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Abstract

Computational fluid dynamics (CFD)-based wear predictions are computationally expensive to evaluate, even

with a high-performance computing infrastructure. Thus, it is difficult to provide accurate local wear predicti-

ons in a timely manner. Data-driven approaches provide a more computationally efficient way to approximate

the CFD wear predictions without running the actual CFD wear models. In this paper, a machine learning

(ML) approach, termed WearGP, is presented to approximate the 3D local wear predictions, using numerical

wear predictions from steady-state CFD simulations as training and testing datasets. The proposed framework

is built on Gaussian process (GP) and utilized to predict wear in a much shorter time. The WearGP frame-

work can be segmented into three stages. At the first stage, the training dataset is built by using a number of

CFD simulations in the order of O(102). At the second stage, the data cleansing and data mining processes

are performed, where the nodal wear solutions are extracted from the solution database to build a training

dataset. At the third stage, the wear predictions are made, using trained GP models. Two CFD case studies

including 3D slurry pump impeller and casing are used to demonstrate the WearGP framework, in which 144

training and 40 testing data points are used to train and test the proposed method, respectively. The numerical

accuracy, computational effiency and effectiveness between the WearGP framework and CFD wear model for

both slurry pump impellers and casings are compared. It is shown that the WearGP framework can achieve

highly accurate results that are comparable with the CFD results, with a relatively small size training dataset,

with a computational time reduction on the order of 105 to 106.
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1. Introduction10

Wear predictions using computational fluid dynamics (CFD) simulation are accurate and reliable, but

computationally expensive. Even if parallelism is enabled on multi-core and multi-processor high-performance

computing (HPC) systems, it is difficult to obtain accurate 3D wear predictions within a short period of time.

The limitation in parallelism is rooted in the bounded upper limit of computational speedup from Amdahl’s law,

which is approached asymptotically as the number of processors increases [1]. While the local wear predictions15

with details are very useful, its expensive computational cost prohibits the usage among related personnel who

do not have assess to HPC systems. Thus, parallelism does not provide a satisfactory solution in bringing down

the computational cost for intensive computing applications, such as wear predictions using CFD. Reducing

the computational cost of CFD wear predictions, from hours to seconds, would enable the results to be used

in a much more expansive manner, from research and design for research engineers and design engineers, to20

troubleshooting and pump selections for sales engineers. Furthermore, in mining applications, allowing wear

predictions within seconds enables field engineers to change operating conditions appropriately according to the

mining operations, such that the life cycle of different slurry pump components can match, and maintenance

can be scheduled all at once to replace most of the old pump components. Predicting life time and avoiding

sudden shutdowns in mining applications are very important, as a few days of pipeline shutdown would result25

in millions dollar of loss in revenue.

Data-driven approaches, also known as machine learning (ML), have been shown to be a powerful paradigm

with predictive capabilities, and does not require direct access to HPC systems. The ML approaches have been

shown to be a promising candidate to replace the actual CFD predictions. They are not only fast and robust,

but also accurate if trained properly. Simply speaking, data-driven approaches, or ML algorithms, allow one30

to build a surrogate model, or metamodel, to predict the quantity of interest (QoI) within a much shorter

time.

Computational efficiency, accuracy, and effectiveness are the three major factors to determine the quality of

ML algorithms. The computational efficiency measures how much computational time has been reduced. The

accuracy describes how well the QoI has been approximated, for example, by measuring the difference between35

the predictions from CFD simulations and from the ML model. In this paper, the QoI is the predicted wear

rate of different slurry pump components under specific operating conditions. The effectiveness describes how

fast the ML algorithm can approximate the QoI, with respect to the size of the training dataset. Increasing

the size of the training dataset typically yields a smaller approximation error. Highly effective algorithms are
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associated with high convergence rate, where the approximation error decays with respect to the number of40

training data points [2].

Neural networks, including traditional artificial neural networks (ANN) and more recent convolutional neu-

ral networks, have been used to approximate CFD solutions. While the CFD community has been integrating

ML to accelerate its solvers, multiphase flow, such as slurry particulate flow at high concentrations, is more

complex and poses a challenging problem. The complexity is rooted in the wear mechanism, and the interaction45

between the carrier fluid and the solid particles. Furthermore, randomness also plays an important role in

capturing erosive wear. For example, a particle population can only be captured by a statistical distribution,

which in turns introduces stochasticity into wear predictions.

In this paper, a Gaussian process (GP) based framework, called WearGP, is proposed to approximate

wear predictions from CFD to improve the computational efficiency of traditional simulation approaches. The50

wear prediction dataset is decomposed according to the wall nodes of the mesh. At each wall node, a GP is

constructed, where the GP inputs describe the operating conditions, whereas the GP output is the nodal wear

solution at that particular node.

The advantage of the WearGP framework is three-fold. First, we show that the the WearGP framework is

highly effective in the sense that fewer CFD simulations in the order of O(102) are needed to train, compared55

to O(103) − O(106) training points required in deep learning algorithms. Second, the computational time is

reduced five to six orders of magnitude, enabling the wear predictions to be made within seconds, compared

to hours on a HPC platform. Third, the wear predictions by WearGP framework and the CFD simulations

are comparable, both quantitatively and qualitatively. Our comparison demonstrates the high accuracy of the

proposed WearGP framework.60

The state-of-the-art ML methods predict wear mainly based on temperature, particle velocity, particle

impingement angle, wall shear stress, turbulent kinetic energy, concentration, and experimental erosion rate.

However, these methods do not predict wear in local regions with respect to geometric models of components.

In other words, the state-of-the-art ML methods mainly consider wear predictions as a global QoI, as opposed

to a local QoI. Compared to the global QoI, the local QoI level contains much more information. Our work65

differs from other related work in literature by predicting wear at the local QoI level. In this paper, the

geometric models of the object of interest are slurry pump impellers and casings. The goal of the WearGP

framework is to accurately approximate the wear predictions from CFD simulations, at a significantly lower

cost in terms of computational time. To the best of the authors’ knowledge, this is the first work attempting
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to predict local wear with respect to a geometric model, such that the wear predictions can be visualized70

in 3D, based on an ML algorithm. Compared to other methods, our proposed WearGP framework provides

an accurate and computationally efficient approach to predict wear solutions of the same quality as CFD,

including 3D visualization.

In the rest of this paper, Section 2 provides the literature review on ML approaches for CFD and wear

problems. Section 3 describes the WearGP formulation and its potential applications. Section 4.1 describes the75

impeller CFD wear model and compares the CFD model with the WearGP framework. Section 5.1 describes

the casing CFD wear model and compares the CFD model with the WearGP framework. Section 6 discusses

the WearGP framework advantages and disadvantages. Section 7 concludes and summarizes the paper.

2. Literature review

In this section, we review existing work that combines CFD and ML methods. Applications of ML and80

CFD wear predictions are discussed, including the use of deep learning methods to approximate unsteady CFD

solutions.

2.1. Data-driven CFD solutions and wear predictions

Deep learning approaches, such as convolutional neural networks, have been one of the most common

choices in using ML to solve CFD problems. Guo et al. [3] successfully deployed convolutional neural networks85

to approximate steady flow solution. Tompson et al. [4] developed a deep neural network architecture to

approximate the CFD solution for Eulerian fluid simulation. Miyanawala and Jaiman [5] also deployed deep

learning to approximate the unsteady fluid forces for different bluff body shapes at low Reynolds number.

Chu and Thuerey [6] proposed a deep learning architecture that yields high-resolution space-time solutions for

smoke simulations.90

Likewise, ANN is one of the most common choice in data-driven wear predictions. Friedrich et al. [7] [8]

first applied ANN to predict wear test measurements for polymers. Danaher et al. [9] included temperature to

model wear in high temperature erosion Ni-base alloys, also using the ANN. Suresh et al. [10] adopted ANN

approach to model wear on polymeric materials. Shamshirband et al. [11] also employed ANN approach to

predict wear in a 90◦ elbow, trained by CFD simulations, where the QoIs (total erosion and maximum erosion95

rate) are global variables. Qu and Zuo [12] applied support vector machine to classify the wear degree of slurry

pump impellers. Pandya et al. [13] employed ANN to predict solid particle erosion based on ANSYS Fluent.
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Dai et al. [14] used GP for uncertainty quantification in erosive wear predictions following data mining process.

However, the work described above limits its scope in wear predictions as a global QoI, rather than a local

QoI.100

2.2. Gaussian process

Brochu et al. [15] and Shahriari et al. [16] provide a comprehensive review about GP and Bayesian

optimization based on the GP surrogate model. Here we adopt the notation from Shahriari et al. [16], and

summarize the GP formulation that is used in this paper as the ML solver.

Assume that f is a function of x, where x ∈ X is the d-dimensional input. A GP (µ0, k) is a nonparametric105

model over functions f , which is fully characterized by the prior mean functions µ0(x) : X 7→ R and the

positive-definite kernel, or covariance function k : X × X 7→ R. In GP regression, it is assumed that f = f1:n

is jointly Gaussian, and the observation y is normally distributed given f , leading to

f |X ∼ N (m,K), (1)

y|f , σ2 ∼ N (f , σ2I), (2)

where mi := µ(xi), and Ki,j := k(xi,xj). Equation 1 describes the prior distribution induced by the GP.110

The covariance kernel k is a choice of modeling covariance between inputs. One of the most widely used

kernel is the squared exponential kernel, where f is implicitly assumed to be smooth. The covariance kernel is

Ki,j = k(xi,xj) = θ2
0 exp

(
−r

2

2

)
, (3)

where r2 = (x− x′)Γ(x− x′), and Γ is a diagonal matrix of d squared length scale θi.

The hyper-parameters θ is determined by maximum likelihood estimation, where the log marginal likelihood

is described as115

log p(y|x1:n, θ) = −1

2
(y −mT

θ )(Kθ + σ2I)−1(y −mθ)−
1

2
log |Kθ + σ2I| − n

2
log(2π). (4)

Optimizing the likelihood functions yields the hyper-parameters θ for the GP. Because the optimization process

involves computing the inverse of the covariance matrix, the algorithmic complexity is at O(n3).

Let the dataset D = (xi, yi)
n
i=1 denote a collection of n noisy observations and x denote an arbitrary input

of dimension d. Under the formulation of GP, given the dataset Dn, the prediction for an unknown arbitrary
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test point is characterized by the posterior Gaussian distribution, which can be described by the posterior120

mean and posterior variance functions, respectively as

µn(x) = µ0(x) + k(x)T (K + σ2I)−1(y −m), (5)

and

σ2
n = k(x, x)− k(x)T (K + σ2I)−1k(x), (6)

where k(x) is the covariance vector between the test point x and x1:n. Compared to other types of surrogate

models and machine learning algorithms, the GP framework has several advantages. First, the framework

is adaptive, which does not restrict the locations of the sampling data points. Second, it provides a way to125

quantify uncertainty in terms of posterior mean and posterior variance.

3. WearGP framework

In this section, we describe the main idea behind the WearGP framework, which is a data-driven method

that approximates the steady state CFD wear solution, and its implementation, flexibility, and scalability in

industrial environments.130

3.1. Methodology

Figure 1 illustrates the process of wear predictions. On one hand, the slurry behaviors are determined by

the carrier fluid, which can be modeled by density, temperature, viscosity, and the solid particles, which can be

characterized by average solid concentration, particle size distribution (PSD), hardness, sphericity, shape factor,

etc. With appropriate boundary conditions, the slurry particulate flow fields can be solved by multiphase CFD135

simulations to obtain the velocity field, pressure field, wall shear stress, particle impingement angle, particle

impingement velocity, and local solid concentration. The collection of these slurry parameters, combining

both carrier fluid and solid particles, form an input (xsolids,xliquids,xBCs). The materials behaviors, on the

other hand, describe the wear response of materials, under the imposed shear stress by the slurry. From the

process-structure-property perspective, the material behaviors can be captured by another set of parameters,140

including a number of processing parameters, microstructure descriptors, and constitutive material models.

The collection of the parameters, which describe the constitutive model of materials, form an input xmaterials.

The material characterization is performed experimentally, where the wear response of materials is measu-

red. A constitutive material wear model is then constructed. Using the predicted flow fields for both solid and

liquid phases, the wear response of the materials under some specific boundary conditions can be predicted.145
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Figure 1: Schematic of wear prediction process involving multiphase CFD simulations.

Wear response of the materials, denoted as Ẇ , can be considered as a function of all of the above-mentioned

parameters that model both slurry and materials. That is, the Equation describing wear response

Ẇ = Ẇ (xsolids, xfluid, xBCs, xmaterials) (7)

holds for every location on the walls of the geometric models within the CFD simulations. Given that the

CFD simulations are non-stochastic, i.e. a set of inputs corresponding to a deterministic wear prediction,

the WearGP framework can be constructed as a shortcut to predict the wear directly from the set of input150

parameters (xsolids, xfluid, xBCs, xmaterials) without running the CFD wear models. Consequently, the main

idea of the WearGP framework can be equivalently interpreted as approximating the CFD wear predictions

with varying input parameters.

Since equation 7 holds locally, we seek to approximate the nodal wear prediction Ẇ at every node of the

mesh using GP. The GP inputs describing solid properties, fluid properties, boundary conditions, and materials155

properties are in a vector form (xsolids, xfluid, xBCs, xmaterials). The GP output is the nodal wear prediction

Ẇ .

The overall workflow of the WearGP framework is illustrated in Figure 2. In order to perform data-mining

and training procedure for the proposed method, an initial database is built to train the ML framework, using

the CFD wear model as the training model. The mesh settings remain unchanged for a particular object.160
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Figure 2: Workflow of WearGP framework for a specific pump component.

The CFD simulations are evaluated repeatedly to construct the training and testing dataset for different input

parameters. After the training dataset is built, the nodal wear solution is extracted from the training dataset

using a data mining approach.

To predict the wear solutions trained using the WearGP framework, at every node of the mesh, the trained

GP is used to directly predict the wear rate Ẇ based on the input parameters (xsolids, xfluid, xBCs, xmaterials).165

The nodal wear predictions are then assembled together to mimic a 3D CFD wear predictions, which can be

visualized by other post-processing packages. To evaluate the performance of the WearGP framework, the

WearGP wear predictions are compared with the CFD wear predictions.

3.2. Slurry pump applications

In this study, the geometric models of the slurry pump components, such as the pump impeller and pump170

casing, are fixed, and the pump operating conditions vary. The slurry pump operating conditions are mainly

specified by the head H, flow rate Q, PSD, and concentration by volume Cv. The %BEPQ is defined as

the ratio between the operating flow rate Q and the flow rate at the best efficiency point, QBEP, at a given

head H and pump speed N . Mathematically, %BEPQ =
Q

QBEP
. QBEP is a unique flow rate for a given

head H and pump speed N , which can be obtained experimentally by maximizing the pump efficiency. In175

this case, the PSD is represented by the effective particle size deff, which is proportional to the mean particle
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size d50. Varying the head H, flow rate Q, would subsequently change the inlet and outlet velocities of the

boundary conditions. Varying the mean PSD d50 affects wear predictions in the CFD slurry steady solutions,

as well as the material constitutive models. Larger particles typically also result in higher concentration along

the wall surfaces, affecting the wear predictions. Higher wear predictions are observed with increasing the180

particle size. Varying the concentration in volume Cv would completely change the CFD solution, where the

Eulerian-Eulerian framework is utilized to solve for a steady flow field solution.

Since many input parameters are repetitive and redundant, a set of parameters is chosen to represent a

pump duty condition, such that the dimensionality of the problem is minimized. Reducing the dimensionality

based on physics-based knowledge is an important step to avoid the curse of dimensionality, and thus improve185

the performance of the WearGP framework. Two options for choosing the basis parameters are investigated

in this study. The first parameter set is (H,Q, d50, Cv), whereas the second set is (H,%BEPQ, d50, Cv). The

pump speed N , as well as the efficiency η are solved as inputs for CFD simulations based on a particular

operating condition, using an in-house program, before the CFD simulations are performed. For each part

of the pump, i.e. the impeller and the casing, the CFD simulation is called to evaluate the wear solution.190

For each wall node of the mesh, a GP is constructed, where the inputs of the GP are the pump operating

conditions, and the output of the GP is the nodal wear solution corresponding to a particular set of input

operating conditions.

3.3. Implementation

Essentially, the WearGP targets the node of the mesh and constructs a local GP at each node, with respect195

to different pump operating conditions, or more specifically boundary conditions. In practice, the WearGP

is implemented and carried out in three stages. The first stage includes the data cleansing and data mining

processes, which seeks to purify the output of CFD simulations. The second stage is the training, which can

be massively parallelized, because the nodes of the mesh are treated independently. The advantage of nodal

decomposition is two-fold. First, the computational efficiency is guaranteed, based on the nodal decomposition200

such that each GP is associated with a particular node, and the nodes are treated independently of each other.

Second, the discontinuity and the singularity of the CFD simulations is preserved. The drawback of the nodal

decomposition approach is that the number of GPs must be trained in on the same scale with the number

of nodes. However, in theory, the problem can be mitigated by massively parallelizing and distributing the

computation workload across a multi-core computing architecture, since the nodes are treated independently.205

The third stage involves the forward evaluation to predict the wear solution, including the postprocess for
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visualization. The postprocess in the third stage can be considered as the reversal of data cleansing in the first

stage.

In this paper, we describe two variants of WearGP framework for two main components of slurry pump:

impeller and casing. They are both formulated on the nodal decomposition approach, where GP is employed210

to predict the wear at each node in the mesh.

4. Impeller wear model

In this section, we apply the WearGP framework on the 3D CFD impeller wear model [17] developed as an

in-house wear code to assess the erosive wear rate of the slurry pump. Section 4.1 summarizes the formulation

of the CFD impeller wear model. Section 4.2 compares the numerical performance, in terms of both accuracy215

and efficiency of the proposed WearGP framework and the CFD impeller wear model.

Table 1 shows the variables used to generate the training dataset. The flowrate Q is numerically solved

using another in-house pump solver, given the other operating conditions. The training dataset is generated

at the following locations according to last column of Table 1. It is noted that the %BEPQ is not always at

130% for the upper bound, because the in-house pump solver does not always converge for certain operating220

conditions. To circumvent the problem, the upper bound of %BEPQ is gradually decreased down to 110%

until a convergence solution for pump input is obtained. Consequently, 144 locations are chosen to build the

training datasets, in which one location corresponds to one CFD simulations.

Table 1: Parameters used for building training datasets.

Variable Physical description Unit Lower bound Upper bound Used Values

H pump head m 35 65 35,50,65

%BEPQ percentage of BEP flow rate % 70 130 70,100,130

d50 mean particle size µm 150 600 150,300,450,600

Cv concentration by volume % 10 40 10,20,30,40

Table 2 describes the operating conditions of testing datasets. In this table, four operating variables, H,

%BEPQ, d50, Cv, are varied independently to generate the testing dataset. The upper bound of %BEPQ is225

set at 110%, to avoid any divergence from the in-house pump solver. Both Tables 1 and 2 are used to train

and test the CFD impeller wear model and CFD casing wear model, respectively.
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Table 2: 40 testing cases and the corresponding operating conditions.

Testing case H(m) BEPQ(%) d50(µm) Cv(%)

1 61.0238 100.7292 166.3271 17.1453

2 59.1267 98.1905 315.0980 32.1904

3 44.7113 108.3772 240.2366 20.7519

4 48.4715 91.1032 559.3353 30.8105

5 61.5799 88.8346 164.6182 29.2931

6 60.6776 93.6561 409.1707 14.3419

7 55.3361 90.3236 543.6216 30.1760

8 49.2122 79.0786 244.4687 33.3295

9 40.8413 96.6661 176.7400 18.0289

10 37.3730 84.1489 194.7891 23.2157

11 52.6503 89.6869 469.7961 35.7262

12 44.7080 95.1341 321.9043 38.8840

13 40.7969 79.9512 234.7505 12.2550

14 40.7849 84.3104 274.8115 34.8312

15 52.0627 86.1245 234.0740 38.4080

16 46.5643 106.2776 291.9244 36.7283

17 42.4220 91.7494 391.4051 36.8881

18 57.2903 89.4059 516.8324 36.8432

19 57.7757 81.3670 404.4440 14.4302

20 63.5732 77.5094 293.5427 18.2543

21 46.8153 105.3642 300.4395 21.8259

22 38.6464 76.4270 252.9711 29.3955

23 51.5555 94.2633 412.6286 19.7275

24 41.3691 81.1006 507.0509 30.9224

25 60.6506 105.4266 287.0631 31.1752

26 44.4207 99.7222 151.2729 29.2686

27 55.1794 76.4686 489.6172 21.6258

28 45.4443 80.8128 596.0691 10.3929

29 41.9834 81.6694 394.4312 21.1014

30 39.9178 105.8456 407.9843 36.4604

31 49.8985 86.2312 171.2106 28.1420

32 51.7241 93.4960 235.8800 35.4772

33 55.7365 79.2394 469.7201 39.0805

34 63.8825 77.7157 418.2133 39.7347

35 54.2585 106.0398 417.2460 29.2489

36 50.3763 85.9893 488.4799 32.5342

37 46.0812 90.4854 412.1844 24.4333

38 37.6830 87.7900 436.1273 22.7111

39 42.0202 96.4432 393.2446 16.7365

40 35.6735 94.1172 367.0682 11.8249
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4.1. CFD impeller wear model

The CFD impeller wear used to predict wear in centrifugal slurry pump impellers is described in detail

by Pagalthirvarthi et al [17]. The CFD impeller wear model is summarized here for the sake of completeness230

and convenience of the readers. To capture the multi-size solid-liquid particulate flow, the Eulerian-Eulerian

framework is utilized, where the PSD is discretized into finitely many species, each with a different particle

size and individual species concentration and shape factor. The continuity and momentum equations of the

mixture and different species are formulated using the volume and time-averaged governing equations. In

this study, a mono-size solid PSD is used to approximate the multi-size PSD in the CFD wear predictions,235

where the mono-size effective particle size is taken as deff = 1.65d50 [18]. Figure 3 describes the computational

domain of the CFD impeller wear model in the Cartesian coordinate system. Due to the angular symmetry,

the governing equations are rewritten in the polar coordinate system. The Spalart-Allmaras model [19] is used

to describe the turbulence.

Figure 3: Three-dimensional pump impeller with mesh and its boundary conditions.

Figure 3 also shows the boundary conditions of the CFD impeller wear model. The inlet velocity boundary240

condition is applied at the inlet surface B1. The stress free boundary condition is applied at the outlet surface

B2. The blade surfaces B3 and B4, the hub surface B5, and the shroud surface B6 are treated as wall, where

Spalding wall functions [20] are utilized. On the surfaces B7, B8, B9, and B10, periodic boundary conditions

are applied.

The solver for CFD impeller wear model is constructed based on the finite element problem formulation,245
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where the streamwise upwind Petrov Galerkin [21, 22] is utilized. The nonlinear governing equations are then

solved iteratively using Newton’s method with under-relaxation factors. The CFD solver is implemented and

parallelized using the Intel PARADISO solver [23].

A constitutive model for wear prediction is formed based on experimental measurements [24]. The total

wear is decomposed as the sum of the sliding wear and impact wear of all the species. For each species, the250

impact wear and sliding wear are computed using empirically determined wear coefficients in concert with

the CFD-predicted flow field; particle concentration, mixture density, velocity magnitude, tangential velocity,

shear stress, impingement angle, and particle size [25] are predicted by the CFD, and, together with the wear

coefficients, are used to predict the wear rate locally over the wetted surfaces.

4.2. Comparison between WearGP and CFD impeller wear model255

To evaluate the performance of the WearGP framework, we compare its prediction with the 3D CFD wear

simulation for slurry pump impeller. 144 CFD simulations are performed to build the training dataset, and 40

CFD simulations are used to build a testing dataset. The testing operating conditions are all sampled using

Monte Carlo algorithm with uniform distributions.

GIW pump impeller 0509X LSA-36 5525D 7671D-A1 is chosen as a case study in this example. The design260

impeller diameter is 0.9144 m. The impeller has 3 vanes, with impeller eye diameter of 0.3112 m. The hub

entrance radius is 0.2286 m. Figure 4 shows the actual slurry pump impeller in the field.

Figure 4: GIW impeller 0509X LSA-36 5525D 7671D-A1 in the field.

For CFD simulation, a structured mesh of 10478 nodes and 8784 elements is used to discretize the com-
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putational domain. Among those, the 1664 wall nodes are used to evaluate the wear performance of the

impeller.265

In Figures 5 to 8, the wear prediction results are compared for the back shroud of the impeller, front

shroud of the impeller, pressure side of the impeller vane, and suction side of the impeller vane, respectively,

for testing case 16, where H,%BEPQ, d50, Cv are 46.5643, 106.2776, 291.9244, 36.7283, respectively. The left

subfigure is the wear predictions result based on the CFD simulation, the middle one is based on the WearGP

implementation using (H,Q, d50, Cv) basis, and the right one is based on the WearGP implementation using270

(H,%BEPQ, d50, Cv) basis. They all show an excellent agreement between each other, not only in predicting

the wear magnitude, but also the location of wear hotspots, where high wear is concentrated in a small area.

(a) CFD-3DImpeller. (b) WearGP (H,Q, d50, Cv). (c) WearGP (H,%BEPQ, d50, Cv).

Figure 5: Impeller Case 16: (H,%BEPQ, d50, Cv) = (46.5643, 106.2776, 291.9244, 36.7283): Comparison of wear predictions on

back shroud surface.

(a) CFD-3DImpeller. (b) WearGP (H,Q, d50, Cv). (c) WearGP (H,%BEPQ, d50, Cv).

Figure 6: Impeller Case 16: (H,%BEPQ, d50, Cv) = (46.5643, 106.2776, 291.9244, 36.7283): Comparison of wear predictions on

front shroud surface.

Figures 9 to 12 show the wear predictions for the back shroud, front shroud, pressure side, and suction

side of the impeller, respectively, for the testing case 7/40 of the CFD impeller wear model, where the testing
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(a) CFD-3DImpeller. (b) WearGP (H,Q, d50, Cv). (c) WearGP (H,%BEPQ, d50, Cv).

Figure 7: Impeller Case 16: (H,%BEPQ, d50, Cv) = (46.5643, 106.2776, 291.9244, 36.7283): Comparison of wear predictions on

pressure surface.

(a) CFD-3DImpeller. (b) WearGP (H,Q, d50, Cv). (c) WearGP (H,%BEPQ, d50, Cv).

Figure 8: Impeller Case 16: (H,%BEPQ, d50, Cv) = (46.5643, 106.2776, 291.9244, 36.7283): Comparison of wear predictions on

suction surface.
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operating conditions are H,%BEPQ, d50, Cv are 55.3361, 90.3236, 543.6216, 30.1760, respectively. Compared275

to the testing case 16/40, as in Figure 5 to Figure 8, the predicted wear magnitudes are significantly higher.

Yet, similar to previous case, case 7 shows a very good agreement between the WearGP framework and the

CFD simulation.

(a) CFD-3DImpeller. (b) WearGP (H,Q, d50, Cv). (c) WearGP (H,%BEPQ, d50, Cv).

Figure 9: Impeller Case 7: (H,%BEPQ, d50, Cv) = (55.3361, 90.3236, 543.6216, 30.1760): Back shroud surface comparison.

(a) CFD-3DImpeller. (b) WearGP (H,Q, d50, Cv). (c) WearGP (H,%BEPQ, d50, Cv).

Figure 10: Impeller Case 7: (H,%BEPQ, d50, Cv) = (55.3361, 90.3236, 543.6216, 30.1760): Hub surface comparison.

To rigorously quantify and compare the error between two methods, the mean square error (MSE) is used

to measure and evaluate the numerical prediction between two variants of WearGP framework. The MSE for280

each node is calculated as

MSE =
1

Ntest

Ntest∑
i=1

(
Ẇ

(WearGP)
T − Ẇ (CFD)

T

)2
, (8)

where Ntest is the number of testing cases, which is 40 in this study. Ẇ
(WearGP)
T is the total wear predicted

using the WearGP framework, and Ẇ
(CFD)
T is the wear predicted using the CFD impeller wear model.

Figures 13 to 16 plot and compare the MSE between the two WearGP implementation variants on the back

shroud, front shroud, pressure vane side, suction vane side of the slurry pump impeller, respectively, where285
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(a) CFD-3DImpeller. (b) WearGP (H,Q, d50, Cv). (c) WearGP (H,%BEPQ, d50, Cv).

Figure 11: Impeller Case 7: (H,%BEPQ, d50, Cv) = (55.3361, 90.3236, 543.6216, 30.1760): Pressure surface comparison.

(a) CFD-3DImpeller. (b) WearGP (H,Q, d50, Cv). (c) WearGP (H,%BEPQ, d50, Cv).

Figure 12: Impeller Case 7: (H,%BEPQ, d50, Cv) = (55.3361, 90.3236, 543.6216, 30.1760): Suction surface comparison.
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the color bars are adjusted to the same scale. The comparison figures show that for WearGP framework, the

MSE using (H,Q, d50, Cv) as a basis is smaller than the MSE using the (H,%BEPQ, d50, Cv).

(a) WearGP (H,Q, d50, Cv). (b) WearGP (H,%BEPQ, d50, Cv).

Figure 13: Comparison of MSE (averaged over 40 testing cases) between two variants of WearGP framework and the actual CFD

wear predictions on the back shroud surface.

(a) WearGP (H,Q, d50, Cv). (b) WearGP (H,%BEPQ, d50, Cv).

Figure 14: Comparison of MSE (averaged over 40 testing cases) between two variants of WearGP framework and the actual CFD

wear predictions on the front shroud surface.

Table 3 shows the descriptive statistics of the MSE between two WearGP variants and the CFD impeller

wear model. It is clearly proved that the basis choice of (H,Q, d50, Cv) supersedes the choice of(H,%BEPQ, d50, Cv)

in terms of predicting error, for all surfaces of the slurry pump impeller.290

To provide an insight regarding the robustness of the proposed WearGP framework, the mean absolute

relative error (MARE) is quantified as a measure for uncertainty in wear predictions. The MARE is calculated
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(a) WearGP (H,Q, d50, Cv). (b) WearGP (H,%BEPQ, d50, Cv).

Figure 15: Comparison of MSE (averaged over 40 testing cases) between two variants of WearGP framework and the actual CFD

wear predictions on the pressure side of the impeller vane.

(a) WearGP (H,Q, d50, Cv). (b) WearGP (H,%BEPQ, d50, Cv).

Figure 16: Comparison of MSE (averaged over 40 testing cases) between two variants of WearGP framework and the actual CFD

wear predictions on the suction side of the impeller vane.
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Table 3: Descriptive comparison of the MSE (µm2/hr2) of the total wear ẆT between two WearGP variants and the CFD impeller

wear model prediction, averaged over all 40 testing cases, and over all nodes in each respective region.

(H,Q, d50, Cv) (H,%BEPQ, d50, Cv)

Back shroud

min 0.0000 0.0000

mean 0.0081 0.0151

max 0.1441 0.2265

Front shroud

min 0.0000 0.0000

mean 0.0062 0.0284

max 0.3126 0.7994

Pressure

min 0.0000 0.0000

mean 0.0020 0.0068

max 0.1924 0.5195

Suction

min 0.0000 0.0000

mean 0.0050 0.0262

max 0.0647 0.4528
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as

MARE =
1

Ntest

Ntest∑
i=1

∣∣∣∣∣Ẇ
(WearGP)
T − Ẇ (CFD)

T

Ẇ
(CFD)
T

∣∣∣∣∣× 100%, (9)

Figures 17 to 20 plot and compare the MARE between the two WearGP implementation variants on the

back shroud, front shroud, pressure vane side, suction vane side of the slurry pump impeller, respectively,295

where the color bars are again adjusted to the same scale. Once again, the quantitative comparison figures

show that for WearGP framework, the MARE using (H,Q, d50, Cv) as a basis is smaller than the MSE using

the (H,%BEPQ, d50, Cv). The relative error on the region with local high wear rate are approximately 8%,

averaged across all the cases. The numerical error is likely caused by implementation, retaining only a certain

number after decimal points. To circumvent the numerical artifacts which undermines the performance of the300

proposed WearGP framework, a threshold of 1µm/hr is imposed. The nodes where the CFD wear predictions

are smaller than the threshold are excluded from the relative error quantification process. In the regions with

locally high wear rate, which are more important, the wear predictions accurately approximate the CFD wear

model.

Table 4 shows the MARE, as a measure of relative error. It is noted that as indicated earlier, the high305

relative error is due to the small wear magnitude in some regions, and the numerical error which was imple-

mented into the WearGP framework. The wall nodes where CFD wear predictions are less than the imposed

threshold are excluded from the analysis.

(a) WearGP (H,Q, d50, Cv). (b) WearGP (H,%BEPQ, d50, Cv).

Figure 17: Comparison of the MARE % with threshold 0.1µm/hr enabled between two variants of WearGP framework and the

actual CFD wear predictions on the back shroud surface.

Table 5 presents the computational time for training and testing of two WearGP variants, compared with

the CFD impeller wear model, for all 40 testing cases. The testing time is computed as the elapsed time to310
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Table 4: Descriptive comparison of the MARE (%) with threshold 0.1µm/hr enabled of the total wear ẆT between two WearGP

variants and the CFD impeller wear model prediction, averaged over all 40 testing cases, and over all nodes in each respective

region.

(H,Q, d50, Cv) (H,%BEPQ, d50, Cv)

Back shroud

min 0.1273% 0.1503%

mean 6.7169% 9.0529%

max 19.7952% 56.1574%

Front shroud

min 0.0070% 0.0667%

mean 3.5324% 6.7354%

max 15.7389% 30.3777%

Pressure

min 0.0653% 0.0237%

mean 3.9786% 7.8427%

max 16.9161% 78.4961%

Suction

min 0.1039% 0.3798%

mean 4.7568% 6.7658%

max 14.1376% 27.4350%

(a) WearGP (H,Q, d50, Cv). (b) WearGP (H,%BEPQ, d50, Cv).

Figure 18: Comparison of the MARE % with threshold 0.1µm/hr enabled between two variants of WearGP framework and the

actual CFD wear predictions on the front shroud surface.
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(a) WearGP (H,Q, d50, Cv). (b) WearGP (H,%BEPQ, d50, Cv).

Figure 19: Comparison of the MARE % with threshold 0.1µm/hr enabled between two variants of WearGP framework and the

actual CFD wear predictions on the pressure side of the impeller vane.

(a) WearGP (H,Q, d50, Cv). (b) WearGP (H,%BEPQ, d50, Cv).

Figure 20: Comparison of the MARE % with threshold 0.1µm/hr enabled between two variants of WearGP framework and the

actual CFD wear predictions on the suction side of the impeller vane.
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predict the wear rate for 40 cases. The total amount of time for ML approaches are both approximately at 100

order in terms of seconds, whereas the CFD approach is at 105 order in terms of seconds. We show that the

same type of wear predictions can be achieved in a significantly shorter amount of time. The computational

time difference is in five orders of magnitude.

Table 5: Comparison of computational time in predicting wear using WearGP framework and CFD impeller wear model for 40

testing cases. The training time for CFD is computed by totaling the computational time for 144 training cases.

WearGP CFD

(H,Q, d50, Cv) (H,%BEPQ, d50, Cv)

Training time (s) 876388.2345 876369.0820 876,213

Testing time (s) 1.2961 1.0764 252,022

5. Casing wear model315

In this section, we demonstrate the effectiveness of the proposed WearGP framework to predict the local

erosive wear on slurry pump casing, using in-house CFD wear code. The description of the CFD casing wear

model is summarized in Section 5.1. The WearGP framework is then deployed to predict the local wear rate,

following the data mining. The numerical performance of WearGP is then compared to the CFD casing wear

model in Section 5.2, in terms of both accuracy and efficiency.320

5.1. CFD casing wear model

The CFD casing wear model used to predict erosive wear in the centrifugal slurry pump casing is also

the co-authors’ previous work [26, 27]. Similar to the CFD impeller wear model, the CFD casing wear model

is summarized as follows. Figure 21 shows the computational domain of the CFD casing wear model. An

Eulerian-Eulerian framework is utilized, and the continuity and momentum equations of the mixture and325

different solids species are derived using volume and time averaged governing equations. The casing inlet is

divided into three sections, as shown in Figure 22. The inlet velocity boundary conditions are applied on

the region AA’, BC, and B’C’, where radial and tangential velocities are imposed separately based on the

head H and flow rate, Q, of the slurry pump. The regions AB and A’B’ are treated as walls, where Spalding

wall functions [20] are applied. Similar to the CFD impeller wear model, in CFD casing wear model, the330

Spalart-Allmaras turbulence model [19] is used, and the set of nonlinear governing equations in the finite
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element problem are solved iteratively until a given residual level is achieved. Based on the CFD solutions, the

constitutive model for wear prediction is then utilized to predict the total wear as a function of concentration,

density, velocity magnitude, tangential velocity, shear stress, impingement angle, and the particle size [26, 27].

Figure 21: Three-dimensional pump casing with mesh and its boundary conditions.

Figure 22: Sections of casing inlet.

5.2. Comparison between WearGP and CFD casing wear model335

GIW pump casing 0509X LSA-36 5525D 7723D-A0 is chosen as a case study in this example. The radius to

inside tongue is 0.5583 m. The casing inner radius is 0.9906 m, whereas the casing outer radius is approximately

1.397 m. Figure 23 shows the actual slurry pump casing in the field.

To evaluate the performance of the WearGP framework, we compare its prediction with the 3D CFD wear

simulation for slurry pump impeller. 144 CFD simulations are performed to build the training dataset, and340

40 CFD simulations are used to build a testing dataset. The testing operating conditions are all sampled

using Monte Carlo algorithm. A structured mesh of 59844 nodes and 55600 elements is used to discretize the
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Figure 23: GIW casing 0509X LSA-36 5525D 7723D-A0 in the field.

computational domain. Among those, the 4719 wall nodes are used to evaluate the wear performance of the

impeller.

Figure 24 and Figure 25 show the comparison between the CFD simulation wear predictions and WearGP345

implementation based on the CFD results for case 7 and case 16 in the 40 testing cases. Both figures show an

excellent agreement between the CFD simulation results and the ML prediction, verifying the implementation

and validating the proposed WearGP approach. The ML results are obtained using 144 CFD runs with different

operating conditions for the pump. In other words, the boundary conditions of the computational domain are

changed, while the CFD formulation remains the same.350

To evaluate the accuracy of the WearGP framework, the MSE, as described in Equation 8, is used again to

quantify the error between the CFD casing wear model and its two WearGP variants. Essentially, it measures

the average discrepancy of the predicted wear using WearGP framework and CFD casing wear model, among

40 testing cases. Figure 26 show the comparison of MSE between two WearGP implementation variants, where

the MSE is significantly smaller for the (H,Q, d50, Cv) implementation, compared to the (H,%BEPQ, d50, Cv).355

The error magnifies the most near the tongue region of the casing.

Figure 27 plots the mean absolute relative error between the WearGP prediction and the CFD prediction,

again, showing the high relative error regions typically associate with low local wear regions, which could pos-

26



(a) 3D slurry pump casing CFD

wear simulation result.

(b) WearGP: (H,Q, d50, Cv) imple-

mentation result.

(c) WearGP: (H,%BEPQ, d50, Cv)

implementation result.

Figure 24: Comparison for wear prediction results between CFD simulation and two variants of WearGP implementation for case

7/40 testing cases.

(a) 3D slurry pump casing CFD

wear simulation result.

(b) WearGP: (H,Q, d50, Cv) imple-

mentation result.

(c) WearGP: (H,%BEPQ, d50, Cv)

implementation result.

Figure 25: Comparison for wear prediction results between CFD simulation and two variants of WearGP implementation for case

16/40 testing cases.
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(a) WearGP (H,Q, d50, Cv). (b) WearGP (H,%BEPQ, d50, Cv).

Figure 26: Comparison of MSE (averaged over 40 testing cases) between two variants of WearGP framework and the actual CFD

wear predictions in the slurry pump casing.

sibly be due to numerical implementation. However, the regions with low wear rate are relatively unimportant,

compared to regions with high wear rate.360

(a) WearGP (H,Q, d50, Cv). (b) WearGP (H,%BEPQ, d50, Cv).

Figure 27: Comparison of the MARE (averaged over 40 testing cases) between two variants of WearGP framework and the actual

CFD wear predictions in the slurry pump casing.

Table 6 compares the accuracy between two WearGP variants implementation. It is clearly shown that

the (H,Q, d50, Cv) basis supersedes the (H,%BEPQ, d50, Cv) approach. The mean value of the MSE for the

former approach, which uses (H,Q, d50, Cv) as the basis, is approximately 3 times lower than of the later

approach.

Table 7 compares the MARE, as a measure of accuracy between two WearGP variants implementation. In365

general, the (H,Q, d50, Cv) basis performs better in most of the regions on the slurry pump casing. Overall,

the (H,%BEPQ, d50, Cv) achieves around 2% of relative error, compared to 3% of relative error using the
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Table 6: Descriptive comparison of the MSE (µm2/hr2) of the total wear ẆT between two WearGP variants and the CFD casing

wear model prediction.

(H,Q, d50, Cv) (H,%BEPQ, d50, Cv)

min 0.0007 0.0024

mean 0.0531 0.1472

max 0.5293 41.3362

(H,%BEPQ, d50, Cv) approach. The wall nodes where CFD wear predictions are less than the imposed

threshold are excluded from the analysis. The high MARE are associated with only a few nodes, where both

the ML and CFD wear predictions.370

Table 7: Descriptive comparison of the MARE (%) with threshold 0.1µm/hr enabled of the total wear ẆT between two WearGP

variants and the CFD casing wear model prediction.

(H,Q, d50, Cv) (H,%BEPQ, d50, Cv)

min 1.0187% 1.9588%

mean 4.6578% 6.9938%

max 64.9434% 84.7626%

Table 8 compares the computational time to obtain the wear predictions for all 40 cases, including training

and testing time. The training time for CFD simulation is summed over 144 training cases. The testing time

for CFD simulation is summed over 40 testing cases.

Table 8: Comparison of computational time in predicting wear using WearGP framework and CFD casing wear model for 40

testing cases. The training time for CFD is computed by summing the computational time for 144 training cases.

WearGP CFD

(H,Q, d50, Cv) (H,%BEPQ, d50, Cv)

Training time (s) 4043908.0146 4043879.1943 4,043,374

Testing time (s) 4.3613 4.2793 1,061,203
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6. Discussion

Figure 28 and Figure 29 present the computational time to obtain the wear predictions for 40 testing cases375

in log scale for slurry pump impeller and slurry pump casing, respectively. Five to six orders of magnitude for

computational time reduction is observed. It is indicated that the ML approach has the clear advantage of

computational efficiency, compared to the CFD approach.

Figure 28: Comparison of computational efficiency for impeller wear predictions between CFD and ML methods.

Figure 29: Comparison of computational efficiency for casing wear predictions between CFD and ML methods.

Figure 30a and Figure 30b show the coefficient of determination R2 between WearGP and CFD wear

predictions for slurry pump impeller, using (H,Q, d50, Cv) and (H,%BEPQ, d50, Cv) basis, respectively. Figure380
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31a and Figure 31b show the coefficient of determination R2 between WearGP and CFD wear predictions

for slurry pump casing, using (H,Q, d50, Cv) and (H,%BEPQ, d50, Cv) basis, respectively. The CFD wear

predictions are plotted as x-axis, whereas the WearGP wear predictions are plotted as y-axis. A solid diagonal

line showing ideal case where two predictions are identical, y = x, is also plotted. Notably, the WearGP

framework shows a strong predictive capability, with R2 > 0.99 in all cases, demonstrating a highly accurate385

wear predictions.

(a) Coefficient of determination R2 between WearGP

and CFD wear predictions for slurry pump impeller,

using (H,Q, d50, Cv) basis.

(b) Coefficient of determination R2 between WearGP

and CFD wear predictions for slurry pump impeller,

using (H,%BEPQ, d50, Cv) basis.

Figure 30: Comparison of the coefficient of determination R2 for WearGP and CFD wear predictions in slurry pump impeller.

Numerical verification and experimental validation studies have been conducted in parallel with the deve-

lopment and implementation of the CFD wear models for slurry pump components. Most of the results have

not been published, but some results can be found in the literature. For example, ultrasonic measurement

techniques have been employed by Furlan et al. [28, 29] to investigate particle velocity and concentration and390

compare against the CFD wear models described in this paper. Wear coefficients in the CFD wear models used

in this study are obtained from Coriolis and impact wear testers [30]. Experimental results in laboratories have

been shown to agree fairly well with numerical predictions of pump wear within casings and impellers. Expe-

rimental field data are much harder to validate because the operating conditions are not perfectly controlled,

and many assumptions no longer hold. Furthermore, as components in the pump wear out, the geometry of395

components evolve gradually, and thereby altering the flow. Thus, the numerical wear predictions are only

technically valid for predicting wear rates on unworn pumps. However, wear rate ratios predicted from one
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(a) Coefficient of determination R2 between WearGP

and CFD wear predictions for slurry pump casing,

using (H,Q, d50, Cv) basis.

(b) Coefficient of determination R2 between WearGP

and CFD wear predictions for slurry pump casing,

using (H,%BEPQ, d50, Cv) basis.

Figure 31: Comparison of the coefficient of determination R2 for WearGP and CFD wear predictions in slurry pump casing.

pump to another or from one set of operating conditions to another set have been found to be reliable in

making wear life predictions in cases where a baseline, field observed wear life is known. In this paper, none

of the training or testing conditions has been thoroughly validated.400

For the pump impeller code, a representative case for experimental validation of the CFD impeller wear

model for a cyclone feed pump (mill discharge) in a copper mine is shown in Figure 32. Figures 32a and 32b

show the wear prediction on the pressure and suction sides of the impeller vane, respectively. The localized

wear regions are located near the trailing edge of the impeller on the suction side, as well as midway of the

impeller on the pressure side.405

For the pump casing code, Figure 33 shows the inside of a pump casing with significant wear at the tongue

and on the casing side wall, which is typically referred to as side wall gouging, for a pump that was operated at

low flow rates relative to the pump best efficiency point flow rate. Figure 33a presents the numerical predictions

using the CFD casing wear model at the same operating conditions, showing a substantial wear rate on the side

wall. Figures 32 and 33 demonstrate that qualitatively, numerical predictions and experimental observations410

are very close. Quantitative wear analyses with high accuracy in the field are harder to obtain because the

operating conditions in practice often are transient. However, as mentioned previously, quantitative validation

between the CFD wear codes and experimental data have been conducted on liquid and solids velocity, as well

as local particle concentration.
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(a) CFD wear prediction on pressure

side of impeller vane.

(b) CFD wear prediction on suction

side of impeller vane.

(c) Field observation of impeller

wear.

Figure 32: A qualitative experimental validation of CFD impeller wear model.
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(a) CFD wear prediction on casing. (b) Field observation of casing wear.

Figure 33: A qualitative experimental validation of CFD casing wear model [27].

The GP formulation is well-known to have scalability problems. If the number of observations n is larger415

than 104, it is computationally very expensive to obtain the inverse of the covariance matrix, with a size of

n × n. In WearGP framework, this scalability issue is avoided by decomposing the large dataset based on

the nodes of the mesh, and treating the nodal wear solution as the GP output, where the pump operating

conditions or boundary conditions are considered as GP inputs. This significantly reduces the dimensionality

of the WearGP approach, allowing the nodal wear solution to be predicted with an acceptable accuracy. The420

relative errors of wear predictions using the proposed WearGP framework fall within another validation studies

[29], where concentration and particle velocities are compared between experimental and computational model.

Compared to deep learning approaches, such as Guo et al. [3], the size of the training dataset is significantly

smaller. In this work, the WearGP framework is trained using O(102) samples, whereas for example, Guo et

al. [3] used a large number of samples in the order of O(104) to O(105). The main difference of computational425

effectiveness is originated from the solid theoretical foundation of GP, which yields a smaller approximation

error, compared to the deep learning and convolutional neural network approaches.

Another advantage of the nodal decomposition approach is that the local discontinuity in wear predictions
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is preserved, because the nodes are treated independently from each other. For example, near the tongue

region of the slurry pump casing, there are small local regions that typically correspond to high wear rates. If430

the nodes are not considered as independent from each other, the GP kernel would induce wear predictions to

be overly smoothed, compared to the CFD wear model. Thus, nodal decomposition is appropriate for CFD

wear predictions with highly varied local wear, where local wear are concentrated at the locations with high

solid particle velocities.

There are two shortfalls of the nodal decomposition approach. First, the number of GPs that are required435

to be trained is in the same order of the number of wall nodes in the mesh. Second, the current WearGP

algorithm requires the same mesh settings, only allowing boundary conditions to be varied simultaneously.

Relaxing this constraint would leverage the flexibility of the current framework, which consequently requires

further studies. There are two possible extensions for the current work. The first extension is the adaptation

to multi-fidelity meshes, where constraints on the mesh are completely removed. Such relaxation allows the440

results from coarse mesh and fine mesh to be combined. However, a significant modification must be applied

in order to account for extra nodes that do not exist in the coarse mesh, but do exist in the fine mesh. The

second extension is to use the WearGP framework to propose a good initial guess for faster CFD simulations

with fewer iterations.

The current WearGP framework can also be easily extended for wear prediction with different meshes, for445

example, by constructing a global GP or equivalent ML framework that includes the 3D Cartesian coordinates

of the nodes as inputs, as well as other inputs in Equation 7. Such an extension is more practical, but requires

a global ML framework, instead of a local and nodal GP approach proposed in this paper. Because the

dimensionality of the problem increases, a larger dataset might be needed to obtain the same accuracy achieved

using the local WearGP approach. A scalable GP framework can also be adopted to cope with scalability450

issues and extend the current WearGP framework, such as the subset of data, the subset of regressor, the

deterministic training conditional, and the partially and fully independent training conditions approximations

[31] [32]. Mesh independence studies were performed during the development and implementation of the CFD

wear codes. The final mesh used in this study has been selected based on the mesh independence results.

7. Conclusion455

In this paper, the WearGP framework that predicts 3D wear for slurry pump components, impellers and

casings, in times on the order of seconds is introduced. The proposed WearGP framework is investigated
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by training using 144 CFD simulations, and testing using 40 CFD simulations. A data mining process is

applied to extract the nodal wear solution, and a GP is constructed at each node to predict the wear rate at

the testing operating conditions. Four parameters are used to vary the pump operating conditions, which in460

turns is interpreted as boundary conditions for CFD simulations. Two variants of the WearGP are proposed:

(H,Q, d50, Cv) and (H,%BEPQ, d50, Cv). The accuracy performance between two variants are tested and

analyzed in terms of MSE and MARE. The MARE is shown to be 1.4-8.7% for slurry pump impellers, and

1.9-3.3% for slurry pump casings. It is concluded that the (H,Q, d50, Cv) approach has smaller MSE and

MARE in general, and thus is more accurate, compared to the (H,%BEPQ, d50, Cv) approach.465

A significant computational efficiency of five or six orders of magnitude is observed, where the prediction

time is reduced from O(105) − O(106) seconds to O(100) seconds. Additionally, it is shown that the wear

predictions using the ML approach approximates well the CFD wear solutions. Visually, the wear pattern is

essentially similar, comparing between the ML-based and CFD approaches.

Compared to other deep learning approaches where O(104) to (106) data points are required, our proposed470

WearGP framework can be trained more efficiently using only O(102) data points. Yet, the relative errors of the

WearGP predictions are less than 9%, compared to the CFD predictions, because of the rigorous formulations

and properties of GP. The proposed framework is proven to be feasible for industrial applications.
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