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Preface

Human history shows evidence of epochs defined by new material discovery and
deployment, which in turn have led to technology innovation and industrial revolu-
tions. Discovery and development of new and improved materials has accelerated
with the availability of computational modeling and simulation tools. Integrated
Computational Materials Engineering has been widely pursued over the past decade
to understand and establish the process—structure—property relationships of new ma-
terials. Yet the deployment of computational tools for materials discovery and design
is limited by the reliability and robustness of simulation predictions owing to various
sources of uncertainty.

This is an introductory book which presents various uncertainty quantification (UQ)
methods and their applications to materials simulation at multiple scales. The latest
research on UQ for materials modeling is introduced. The book reflects a range of per-
spectives on material UQ issues from over 50 researchers at universities and research
laboratories worldwide. The target audience includes materials scientists and engineers
who want to learn the basics of UQ methods, as well as statistical scientists and applied
mathematicians who are interested in solving problems related to materials.

The book is organized as follows. Chapter 1 provides an overview of various UQ
methods, both nonintrusive and intrusive, the sources of uncertainty in materials
modeling, and the existing research work of UQ in materials simulation and design
at different length scales. Chapters 2—5 describe the existing research efforts on model
error quantification for quantum mechanical simulation to predict material properties
via density functional theory. Chapters 6—7 provide state-of-the-art examples of
Bayesian model calibration of interatomic potentials, the major source of errors in
molecular dynamics simulation, and sensitivity analyses of their effects on physical
property predictions. Chapters 8—10 provide examples of UQ methods developed
for mesoscale simulations of materials, including kinetic Monte Carlo and phase field
simulations. Chapters 11—13 discuss recent research of random fields and their appli-
cations to materials modeling in the higher length scale (mesoscopic) continuum
regime, such as uncertainty propagation between scales in composites for mechanical
property prediction and damage detection. Chapters 14 and 15 illustrate some of the
unique UQ issues in multiscale materials modeling, including Bayesian model calibra-
tion based on information obtained from different scales, and reliability assessment
based on stochastic reduced-order models with samples obtained using multifidelity
simulations. Chapter 16 provides insight regarding materials design and optimization
under uncertainty for cases in which Bayesian optimization and surrogate models can



xviii Preface

play a major role. Chapter 17 highlights the challenges in metamaterial property and
behavior predictions, where the variability induced by additive manufacturing pro-
cesses needs to be quantified in simulations and incorporated in the material database.
We would like to thank all authors of the chapters for their contributions to this
book and their efforts to advance the frontiers of the emerging field of UQ for mate-
rials. We are also in debt to our reviewers who rigorously examined the submissions,
provided helpful feedback during manuscript selection, and improved the quality of
the included chapters. This volume would not have been possible without the tireless
efforts and devotion of Ms. Ana Claudia Abad Garcia, our Elsevier publishing editor
and project manager, as well as the encouragement from the book series editor-in-chief
Prof. Dr. Vadim Silberschmidt.
Yan Wang and David McDowell
Atlanta, Georgia, USA



Uncertainty quantification in
materials modeling

Yan Wang, David L. McDowell
Georgia Institute of Technology, Atlanta, GA, United States

1.1 Materials design and modeling

New and improved materials have long fostered innovation. The discovery of new
materials leads to new product concepts and manufacturing techniques. Historically,
materials discovery emerges from exploratory research in which new chemical, phys-
ical, and biological properties of new materials become evident. Then their potential
applications are identified. This discovery pathway is typically lengthy and has largely
relied on serendipity. In contrast, intentional materials design is an application
requirement—driven process to systematically search for solutions. In general, design
involves iterative searching aimed at identifying optimal solutions in the design space,
which is formed by the material composition and hierarchical structure (e.g., micro-
structure). The goal thus is to find compositions and structures that achieve the most
suitable chemical and physical properties subject to various constraints, including
cost, time, availability, manufacturability, and others.

A transformational trend in early 21st century is to incorporate computational
modeling and simulation of material process—structure and structure—property rela-
tions to reduce materials development cycle time and its reliance on costly and
time-consuming empirical methods. The Integrated Computational Materials Engi-
neering (ICME) initiative [1,2] has been embraced by various industry sectors as a
viable path forward to accelerate materials development and insertion into products
by employing more comprehensive management of data, process monitoring, and
integrated computational modeling and simulation. This has led more recently to the
development of the US Materials Genome Initiative (MGI) [3], as well as companion
thrusts in Europe and Asia [4], which aim to accelerate discovery and development of
new and improved materials via a strategy of fusing information from experiments,
theory, and computational simulation, aided by the tools of uncertainty quantification
(UQ) and data science with the emphasis on high throughput protocols.

An accurate measurement to evaluate the role of ICME is the extent that it princi-
pally provides decision support for materials design and development. In other words,
a metric for measuring the success of ICME is the increase of the fraction of decisions
made in the critical path of materials development, optimization, certification, and
deployment, where decision makers are informed via modeling and simulation as
opposed to experiments. The same is true for the discovery of new materials as per
objectives of the MGI.

Uncertainty Quantification in Multiscale Materials Modeling. https://doi.org/10.1016/B978-0-08-102941-1.00001-8
Copyright © 2020 Elsevier Ltd. All rights reserved.
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2 Uncertainty Quantification in Multiscale Materials Modeling

To design material systems [5] by tailoring the hierarchical material structure to
deliver required performance requires that we go beyond the aims of basic science
to explain phenomena and governing mechanisms, namely to understand and quantify
these phenomena and mechanisms to the extent necessary to facilitate control and to
manipulate structure at individual scales in a way that trends toward desired properties
or responses. This change of emphasis toward connecting process to structure and
structure to properties or responses undergirds much of the science base supporting
ICME goals of materials design and development. The multiscale nature of material
structure and responses is essential; multiscale modeling of utility to ICME must
address the spatial- and temporal-scale hierarchies in order to

* Understand interaction mechanisms across length and time scales that affect cooperative
properties arising from the hierarchical material structure;

* Improve materials by addressing both unit processes at fine scale and couplings of mecha-
nisms across scales.

These two needs call for the application of systematic methods to search material
structures and microstructures that deliver the required sets of properties or responses
at various scales of interests. Multiscale modeling captures the responses and interac-
tions of collective structures at various levels of material structure hierarchy. Further
advances in multiscale modeling are necessary to understand the modes of materials
synthesis in processing, as well as degradation or evolution in service.

Understanding the cause—effect relationship between material structure and prop-
erties or responses is a key element of materials design. The structure—property link-
ages can be regarded as “input—output” relations to facilitate engineering systems
design of materials. Similarly, it is necessary to understand and quantify the relation-
ship between fabrication and materials processing and resulting material structure.
Physical realization of optimal material microstructures may be restricted by the
limitations of available processing techniques. In many cases, available process—
structure linkages are considered as constraints on accessible materials. As a
result, the central task of materials design is to establish the process—structure—
property (P—S—P) relationship based on the needs of properties or responses.

An example of P—S—P relationship is illustrated in Fig. 1.1 [6] for ultrahigh
strength, corrosion-resistant steels. Each of the lines between boxes indicates a linkage
from process to structure or from structure to property. We note that these mappings
often involve phenomena that occur at multiple length and time scales, but these
phenomena can manifest anywhere within the chain of P—S—P relations.

Modeling and simulation is an efficient means to augment physical experiments to
identify P—S—P linkages. ICME tools at different scales have been developed to pre-
dict microstructures from fabrication processes and predict chemical and physical
properties of microstructures. The major paradigm shift of ICME is to develop data-
enhanced and simulation-based tools to inform decisions in materials design and
development. However, there are tremendous challenges in predicting P—S—P rela-
tionships. The first challenge pertains to the quantitative representation of the hierar-
chical nature of material structures at various length scales. Advancement in
multiscale computational modeling as required to bridge the length and time scale
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Figure 1.1 An example of process—structure—property relationship in designing ultrahigh
strength, corrosion-resistant steels.

Adapted from G.B. Olson, Genomic materials design: the ferrous frontier. Acta Mater., 61(3)
(2013) 771-781.

gaps is the second major challenge. The third challenge is the reliability and credibility
of predictions from these models in the face of uncertainty from various sources.
The ultimate goal of ICME tools is to provide assistance to identify the P—S—P
relationships and to inform decisions in materials selection and design processes under
uncertainty. For centuries, uncertainty has been a key component underlying the
domains of philosophy, mathematics, and statistical and physical sciences. The study
of uncertainty led to a new branch of mathematics in the 17th century, known as prob-
ability. Although different interpretations of probability coexist and debates between
scholars from these different schools persist for centuries, it has been generally
accepted by all that the source of uncertainty is our lack of knowledge about future.
In the domains of physical sciences, two sources of uncertainty are differentiated.
One is the lack of perfect knowledge and the other is the random fluctuation associated
with finite temperature processes. The former is referred to by many as epistemic,
whereas the latter is aleatory. Any uncertainty phenomenon we observe is the
conflated effect of these two components. The differentiation of these two components
is pragmatic and mainly for decision-making practitioners. Epistemic uncertainty often
appears as bias or systematic error in data or simulation results and is regarded as
reducible; increasing our level of knowledge can reduce the epistemic component of
uncertainty. In contrast, aleatory uncertainty appears as random error and is irreduc-
ible. Random fluctuation inherently exists in position of atoms and electrons at temper-
atures above absolute zero and is manifested as uncertainty of material structure at
various scales. When decision makers can differentiate the sources of uncertainty,
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the risk of a go/no-go decision is more readily managed. Gaining more knowledge to
reduce the epistemic component of uncertainty will generally lead to more precise
estimation of the risk.

ICME tools, such as density functional theory (DFT), molecular dynamics (MD),
coarse-graining atomistic modeling methods, kinetic Monte Carlo (kMC), dislocation
dynamics (DD), microscopic and mesoscopic phase field (PF), and finite-element anal-
ysis (FEA), predict physical phenomena at different length and time scales. The sour-
ces of uncertainty associated with these tools should be identified if we would like to
make robust decisions based on the results of these computational tools.

All models require certain levels of abstraction. Simplification can be related to
dimensional reduction in parameter space when too many factors are involved, sepa-
ration of size or time scales, and separation of physical domains when tightly coupled
physics confers complexity to models. Assumptions of independence between factors,
temporally or spatially, are often made to reduce model complexity. Approximation
error is always involved, and truncation is inevitable when functional analysis is
applied in modeling and experimental data analysis. Numerical discretization or line-
arization is regularly applied during computation. Furthermore, the choice of model
forms from domain experts is typically subjective and based on user preference.
The subjectivity of model choice also includes the unintended bias or convenient short-
cuts in the modeling process of each expert based on their own scope of knowledge
and understanding. As a result of simplification, approximation, and subjectivity, all
models have model form uncertainty and it affects the predictions.

In addition, the parameters of models need to be calibrated for accurate prediction.
Calibration-related model errors are called parameter uncertainty. Typically, model
predictions are compared with experimental observations, and the parameters are
adjusted to match with the observations. Data fitting or optimization procedures are
pursued in the calibration process. All experimental measurements have systematic
errors stemming from instruments or human operators. This leads to bias in the param-
eters of the fitted empirical model. Random errors from experimental measurements,
especially with a small dataset, are also propagated to models. All sensors that are
used to collect data rely on certain mathematical or physical models to map the
collected signals to quantities of interest. These sensor models also have model
form and parameter uncertainties. These errors associated with the underlying sensor
models are in turn propagated to the models that are being calibrated. In first principles
modeling, model parameters are calibrated based on first principles calculations and
seek consistency with higher scale observations. The model form and parameter uncer-
tainties of the first principles models also propagate through model calibration.

Model form uncertainty and parameter uncertainty are the major components of
epistemic uncertainty. An overview of model form and parameter uncertainties in mul-
tiscale modeling is listed in Table 1.1. Lack of perfect knowledge about the physical
phenomena also contributes to the discrepancy between the models and actual physics.
Needless to say, bias also exists in the data archived in ICME databases that are
produced either via experiment or simulation [7].

Model form and parameter uncertainties affect the accuracy of the predictions of
ICME tools. The reliability of P—S—P linkages can be problematic. The errors
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Table 1.1 An overview of model form and parameter uncertainties in multiscale modeling.

Category Source Examples

Model form uncertainty Simplification Dimension reduction
Separation of scales
Separation of physics
Independence assumption

Approximation Truncation
Numerical treatment

Subjectivity Model preference
Knowledge limitation

Parameter uncertainty Experiment data Systematic error
Random error
Sensor model

First principles models Model form uncertainty
Parameter uncertainty

associated with the predictions need to be quantified so that the robustness of design
can be assessed. UQ is the exercise of applying quantitative methods to measure and
predict uncertainty associated with experimental data and model predictions. The
predicted uncertainty is used to support risk analysis and decision making in materials
design and development. Various UQ methods, including probabilistic and nonproba-
bilistic approaches, have been developed in the areas of statistics and applied mathe-
matics and have been widely applied in engineering and science domains. Uncertainty
is usually quantified in terms of probability distributions, confidence intervals, or
interval ranges. In modeling and simulation, uncertainty is associated with model
inputs, e.g., initial and boundary conditions, which comes from the sources of data.
Uncertainty propagates to the output of simulation, spatially and temporally,
confounded with model form and parameter uncertainties associated with the
simulation model(s).

It is particularly challenging to estimate uncertainty propagation in UQ methods for
materials modeling because materials modeling often relies on application of multiple
tools at different length and time scales that range from discrete to continuous, with a
large number of design variables. Formal application of model order reduction
concepts across these disparate models differs substantially from traditional applica-
tions of continuum modeling for solids and fluids where the discrete character of
defects and structures that controls responses of materials at fine scales is not consid-
ered. Reduced-order models themselves introduce model-form errors. Traditional
stochastic modeling is typically confined to a single class of models with a given
set of governing differential equations to address parametric uncertainty associated
with variability of fields. Each simulation tool, such as DFT, MD, kMC, DD, PF,
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and FEA, has a unique basis and set of assumptions and is limited to a particular range
of length and time scales. Given the hierarchical nature of materials, sufficient under-
standing of material behavior often requires multiple tools to be applied. The outputs
of alower scale model are usually used as inputs to a higher scale model, whether oper-
ating sequentially (hierarchical modeling) or concurrently. Moreover, materials often
exhibit a very strong sensitivity of response to change of configuration of structure
and/or defects that is not smooth and continuous, which challenge the coarse-
graining and model order reduction approaches that attempt to address material
response over many length and perhaps time scales. Hence, propagation of uncertainty
arises not only from individual scales in the hierarchy of material structure but also
from the way in which information from different models is interpreted to inform
the application of models at other scales (so-called scale-bridging or linking).
Cross-scale propagation is one of the unique issues in UQ for materials modeling.

The purpose of this first chapter is to provide an overview of the sources of uncer-
tainty in materials modeling, as well as the major classes of UQ methods that have
been developed in the past few decades. As the ICME paradigm is adopted by
researchers in materials science and engineering, understanding the sources of uncer-
tainty in materials modeling and choosing appropriate UQ methods to assess the
reliability of ICME prediction become important in materials design and development,
as well as in deployment of materials into products.

1.2 Sources of uncertainty in multiscale materials
modeling

We focus here on uncertainty in materials modeling across length and time scales.
Reliable simulation requires that uncertainty to be quantified and managed. The first
step of UQ is to identify the sources of uncertainty in the model. Based on the sources,
epistemic and aleatory components of uncertainty are differentiated. The differentia-
tion is helpful for us to apply different quantification and management strategies to
the two components. For the epistemic component, which is due to the lack of knowl-
edge, increasing the level of knowledge about the system under study can help reduce
the uncertainty. Examples of strategies to reduce epistemic uncertainty include
(1) building a more accurate physical model with better understanding of the physics
and cause—effect relationships, (ii) controlling the most sensitive factors that cause
the variations in model predictions or experimental observations, (iii) performing
model calibration with a larger amount of data collection for targeted sensitive param-
eters, and (iv) conducting instrument calibration based on more precise standard
references to reduce the systematic error. In contrast to epistemic uncertainty, aleatory
uncertainty owes to the inherent randomness due to fluctuation and perturbation,
which cannot be reduced. To cope with it, we typically perform multiple measure-
ments or multiple runs of simulations and use the average values, with the notion of
variance, to predict the true but unknown quantities of interest subject to variability.
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1.2.1 Sources of epistemic uncertainty in modeling and
simulation

The major sources of epistemic uncertainty in the general scheme of modeling and
simulation are illustrated in Fig. 1.2, which can be categorized as data related and
model related. They are summarized as follows.

The data-related epistemic uncertainty is due to

* Lack of data or missing data. The parameters of models, probability distributions, and
distribution types are uncertain when the sample size is small. The availability of high-
quality experimental data is critical for fitting data during model calibration and for compar-
ison in model validation. In materials modeling, the additional challenge is that it may not be
possible to directly measure the quantity of interest (Qol) because of experimental
techniques. A different quantity, sometime at a different scale, is measured and used to infer
the value of the Qol. Lack of sufficient information will introduce errors in models and
requires the analyst to find new ways to describe the associated uncertainty more rigorously.

* Measurement errors. Systematic errors can be introduced because of the limitation of
measurement environment, measurement procedure, and human error. In addition, most
sensing protocols in measurements rely on some type of sensor models that relate Qols to
electrical signals. Model form and parameter uncertainty associated with these sensor models
also contribute to measurement error.

The model-related epistemic uncertainty is due to

* Conflicting information. If there are multiple sources of information, the analyst may face
conflicts among them in model selection. For instance, it is not appropriate to draw a simple
conclusion regarding distributions from several pieces of contradictory evidence. The incon-
sistency results in potentially inaccurate types of distributions.

Measurement
systematic
errors

Round-off
errors

Truncation
errors

Sources of epistemic
uncertainty in
modeling and
simulation

Lack of
information
about
dependency

Conflicting
information

Lack of
introspection

Conflicting
beliefs

Figure 1.2 Major sources of epistemic uncertainty in modeling and simulation.
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* Conflicting beliefs. When data are not available or are limited, the analyst usually relies on
expert opinions and beliefs to determine the model forms. Information obtained from the
experts is subjective due to the diversity of their past experiences and their own understand-
ing of relevant phenomena, which can easily lead to inconsistent model predictions. This is
particularly true of assigning phenomena to consider in multiscale modeling and can arise
from differing perspectives of materials science and structural mechanics communities, for
example.

* Lack of introspection. In some cases, the analyst cannot afford the necessary time to think
deliberately about an uncertain process or event, derive more accurate description of physical
systems, perform more sensitivity studies, or run additional simulations. The lack of intro-
spection increases the risk of using inaccurate model.

* Lack of information regarding dependencies. Given the limitation of modeling and simula-
tion techniques, a complex system is usually decomposed into subsystems, which are
assumed to be independent from each other to mitigate complexity. Lack of knowledge about
the correlations among factors and variables, as well as unknown time dependency of these
factors, contribute to the error and bias in model predictions.

* Truncation errors. Functional analysis is the foundation for modeling and simulation which
enables numerical methods to solve differential equations and model stochastic processes.
It is also widely applied in spectral analysis of experimental data. Truncation is inevitably
applied in the analysis for affordable computational expenses.

* Round-off errors. Floating-point representation is essential for digital computers to represent
real numbers. The errors can become prominent when the number of arithmetic operations
increases, e.g., system dynamics simulation with a very short time step but for a long period
of time.

In modeling and simulation, epistemic uncertainty is the result of the errors mainly
associated with the models and input data. Since aleatory and epistemic uncertainties
stem from separate sources and have very different characteristics, they are ideally
distinguished and modeled in different forms. Aleatory uncertainty is traditionally
and predominantly modeled using probability distributions. Epistemic uncertainty
however has been modeled in several ways, including probability, interval or convex
bounds, random sets, etc.

1.2.2 Sources of model form and parameter uncertainties in
multiscale models

1.2.2.1 Models at different length and time scales

Model form and parameter uncertainties are major epistemic components of error in
modeling and simulation. These are elaborated next in commonly used ICME mate-
rials modeling tools at various scales.

In DFT simulations, the major source of model form uncertainty is the exchange-
correlation potential functionals, where many-particle interactions are approximated
and simplified in the data fitting procedure. The so-called rungs in Jacob’s ladder,
varying from local spin-density approximation to generalized gradient approximation
(GGA), meta-GGA, hyper-GGA, and higher-order approximations, lead to different
accuracy levels. In addition, the Born-Oppenheimer approximation assumes that the
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lighter electrons adjust adiabatically to the motion of the heavier atomic nuclei, and
thus their motions can be separated. Zero-temperature ground state of the system is
also assumed in DFT calculation. In addition, the pseudopotentials are typically
used to replace the Coulomb potential near each nucleus in the calculation to reduce
computational load, which also introduces approximation error. Error is also intro-
duced in the trade-offs between long-range and short-range dispersions and between
efficiency and accuracy during the approximation. Numerical treatments such as
k-point sampling and orbital basis selection also introduce model form uncertainty.
In the self-consistent calculation of ground state energy, the chosen threshold for
convergence introduces additional numerical errors.

In MD simulations, the major sources of model form and parameter uncertainty are
associated with the interatomic potential functions, most of which are obtained empir-
ically. The choice of analytical forms, number of parameters, and the calibration pro-
cess introduce approximation errors. The systematic error in measurement data can be
inherited through calibration. The errors associated with the interatomic potentials
propagate to the output prediction through the simulation process. Prediction errors
of extrapolative nature emerge when interatomic potentials are calibrated with one
property but used to predict another property. Other sources of uncertainty include
the cut-off distance in simulation for ease of computation, the type of imposed bound-
ary conditions (e.g., periodic) that may introduce artificial effects, small simulation
domain size that is not representative of realistic defect structures and may lead to
image stresses, deviation of microstructure from the physical case, and use of short
simulation times to estimate statistical ensemble behavior. To overcome the time scale
limitation of MD, errors are introduced in accelerating simulations by use of larger
time steps, modified interatomic potentials to simulate transitions, high temperatures,
parallel replicates for rare events, or the application of physically unrealistic high strain
rates due to mechanical and/or thermal loading. Computational errors with different
computer architectures arise due to round-off in floating-point numbers as well as
task distribution and sequencing in parallel computation.

In kMC simulation, the major sources of epistemic uncertainty are incomplete event
catalogs and imprecise associated rates or propensities. The accuracy of kMC simula-
tion depends on the validity of complete knowledge of all possible events, which is
impossible. Furthermore, the actual kinetic rates can vary with time. They also depend
on the state of the system. For instance, external loads can alter the diffusion of defects.
The crowding effect reduces reaction rates when molecules or reaction products block
reaction channels. The assumption of constant rates is unreasonable in such cases.
In kMC, events are also assumed to be independent from each other, and the interar-
rival times between events are assumed as random variables that follow exponential
distributions. These assumptions simplify computation. In reality, the events may be
correlated, and memory effects in evolution of material structure also violate the
assumption of exponential distributions. These assumptions and simplifications lead
to model form uncertainty, in addition to parameter uncertainty arising from
calibration with experimental data.

In discrete DD simulation models, the major approximations include the modeling
of the stress field and phenomenological rules for dislocation—dislocation interactions,
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neglect of dislocation core spreading and partial dislocations, interactions of disloca-
tions with precipitates or other second phases, and interfaces. Simple mobility relations
are assumed with considerable uncertainty. Numerical errors are introduced with the
piecewise linear approximations of dislocation curves during discretization, and
numerical solutions of ordinary differential equations. Similarly, in continuous DD
simulations, the major sources of uncertainty include the approximation of dislocation
density evolution with the associated partial differential equations over ensembles.
Numerical errors are introduced in the solving process based on spectral analysis
with truncation and calculating integrals.

In PF simulation, the major source of model form and parameter uncertainty is the
empirical model of the free energy functional, which is usually derived from principles
of thermodynamics with assumptions of constant temperature, pressure, or volume,
with approximation errors from truncation and pure empirical data fitting. The addi-
tional numerical treatment in solving the partial differential equations of Cahn—
Hilliard and Allen—Cahn also introduces errors. This includes the antitrapping current
to eliminate the solution trapping during interface diffusion when an interface larger
than the physical one is modeled in order to improve computational efficiency.
Some other parameter uncertainty is caused by assumptions such as temperature-
independent interface mobility and location-independent diffusion coefficient.

In FEA simulations, besides the model form uncertainty inherited in partial differ-
ential equations and material constitutive laws, approximation errors are the result of
domain discretization with meshes, interpolation with limited numbers of basis func-
tions, truncation with low-order approximations, numerical methods to solve linear
equations, and others.

In summary, incomplete description of physics, experimental data, and numerical
treatment introduce epistemic uncertainty into simulation models. As a result, the pre-
diction of Qol as the simulation output is inherently inaccurate. When Qols are statis-
tical ensembles that depend on temperature, the output is also imprecise and contains
variability. Therefore, the simulation output usually contains the confounded effects of
model form, parameter, and aleatory uncertainties.

1.2.3 Linking models across scales

UQ for ICME has the distinct need to consider uncertainty propagation between mul-
tiple length and time scales in material systems. Uncertainty observed at a larger scale
is the manifestation of the collective uncertainties exhibited at smaller scales. For
instance, the nondeterministic strengths of material specimens are due to the statistical
distributions of grain boundaries and defects. The randomness of molecular movement
known as Brownian motion arises from the stochasticity of physical forces and inter-
actions among electrons at the quantum level. The ability to model the propagation of
uncertainty between scales is essential to obtain useful information from multiscale
modeling as necessary to inform understanding of higher-scale material response
and to support decision making in materials design and development. EXisting
ICME tools simulate material systems over a range from nanometers to micrometers.
The major challenge of UQ in these tools is the information exchange between
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different models, where assumptions of scales and boundaries are made a priori. For
purposes of model validation, not all physical quantities predicted in simulation can
be directly observed, especially those at small length and short time scales. Measurable
quantities at larger scales are typically used to validate models. This is based on some
assumed, implied, and/or derived correlation between measured quantities and unob-
servable quantities, which introduces model form uncertainty as part of sensing or
measurement errors. In other words, even physical measurements appeal to some
model construct to interpret. As a result, model calibration and model validation
face new challenges in multiscale modeling.

Another pervasive and understated challenge for multiscale materials modeling is
the common lack of “smoothness” between material response functions and micro-
structure. The structure—property relationships can be highly nonlinear. For example,
phase transformations confer distinct jumps of structure and properties. Moreover, the
nature of the interaction of defects with interfaces in crystals depends substantially on
the structure of the interface and character of the applied stress state. Strong tempera-
ture dependencies in kinetics of evolution can lead to evolution of local microstructure
states that differ from assumed isothermal conditions. In many cases, applications
involving uncertainty propagation in mechanics of structures based on finite-
element modeling, for example, do not address these kinds of common, material-
specific nonlinearity or discontinuities in material structure evolution and associated
responses. Such cases require the identification of these complex mechanisms, in
addition to a multifidelity modeling capability capable of resolving or addressing them.

This latter point brings us to a distinction between so-called hierarchical and
concurrent multiscale modeling [8]. Models pertaining to different levels of the mate-
rial structure hierarchy are typically related to each other or exercised in one of two
ways: hierarchical (one-way, bottom up) or concurrent (two-way) multiscale schemes.
Concurrent multiscale modeling schemes exercise simultaneous simulations for
models with different fidelities or spatial resolutions over the same temporal duration,
necessitated in cases where (i) time scales are not separable for phenomena that occur
at several length scales of interest or (ii) the collective, higher-scale responses of inter-
est relate inextricably to certain fine-scale features or mechanisms that differ from one
problem to the next. An example is a specific type of failure mechanism solicited by a
specific higher-scale component geometry (e.g., notch) or loading condition (e.g., low
velocity impact). These models can be either applied to the same spatial domain with
different spatial resolution and degrees of freedom or pursued with different fidelity in
adjacent, abutting, or overlapping domains; the latter requires schemes for communi-
cation of model responses between these regions and are typically referred to as
domain decomposition methods. Hierarchical multiscale modeling schemes typically
pass information from models exercised at each successive length and/or time scale to
the next higher scale(s), with the intent to instruct model form and/or parameters of the
latter. In some cases, they can pass information to models framed at much higher
scales. For example, elastic constants and diffusion coefficients computed using
DFT or other atomistic simulations can be employed in crystal plasticity models or
macroscale plasticity models. They may be hierarchical in length and time, adding
additional flexibility to the framing of the multiscale modeling problem. Most
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multiscale modeling work to date has focused more on hierarchical multiscale models
that are linked by handshaking or passing of information from the outputs of one
model to the inputs of the next. Formulation of concurrent multiscale models, partic-
ularly for a heterogeneous set of models at various scales, is quite challenging if there
is an attempt to identify and track the sources of uncertainty.

As another special challenge of UQ in multiscale modeling, uncertainty propaga-
tion between scales needs to be carefully treated. Simply regarding these models as
series of “black boxes” with simple input—output functional relations has the tendency
to overestimate uncertainty. The Qols between scales are intrinsically correlated. As a
result, uncertainty is not necessarily always worsened or amplified through propaga-
tion. Understanding of the physics assists to more accurately estimate uncertainty.

1.3 Uncertainty quantification methods

Various UQ methods have been developed in the past half century. Most UQ
approaches have been based on probability theory. Alternative approaches [9] such
as evidence theory, possibility, interval analysis, and interval probability have also
been developed, differentiating between aleatory and epistemic uncertainty. With
respect to the application of modeling and simulation, UQ methods can be categorized
as either intrusive or nonintrusive. Nonintrusive UQ methods do not require an internal
representation of uncertainty in the simulation models. The original simulation tools
are treated as “black boxes” and the UQ methods are implemented as parent processes
to call upon the simulation tools to conduct the necessary evaluations. In contrast,
intrusive UQ methods require the modification of the original simulation software
tools so that uncertainty can be represented internally. This distinction is very impor-
tant in light of the nature of hierarchy of length and time scales in the heterogeneous
cascade of multiscale models. Specifically, intrusive methods require that uncertainty
propagates internal to the entire system of models, including linking formalisms be-
tween models; this is quite challenging in view of the need to adaptively refine and
make decisions regarding treatment of scales within each of the distinct models.
Nonintrusive methods might be attractive in such cases owing to their more modular
character in assisting to construct flexible workflows; however, they likely do not scale
well for solving high-dimensional problems and the implementation in high-
performance computing architectures.

Commonly used nonintrusive UQ methods include Monte Carlo (MC) simulation,
global sensitivity analysis (GSA), surrogate models, polynomial chaos, and stochastic
collocation. Common intrusive UQ methods include local sensitivity analysis (LSA),
stochastic Galerkin, and interval-based approaches.

1.3.1 Monte Carlo simulation

MC simulation is the earliest formal attempt to quantify uncertainty inherent in phys-
ical models, where pseudo random numbers are generated by computers and used in
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evaluating models, although the technique was originally devised to numerically
calculate deterministic integrals in quantum mechanics (with its inherent uncertainty).
The effectiveness of MC relies on how truly “random” the numbers generated by the
pseudo random number generators (PRNGs) are. Common implementations of
PRNGs as the core of MC to generate uniformly distributed numbers include linear
congruential method [10,11] and its various extensions [12—16] for longer periods
and better uniformity, feedback shift register generators [17,18], and Mersenne twister
[19]. Based on the uniformly distributed numbers, random variates that follow other
distributions can be generated via computational methods such as inverse transform,
composition, convolution, and acceptance—rejection. When MC is applied to assess
the uncertainty associated with the inputs of a model, inputs with predetermined
distributions are randomly generated. They are used to evaluate the model or run
the simulation many times. The distribution of the resulting outputs is then used to
assess the effect of uncertainty, which is quantified with statistical moments of
different orders.

The major issue with MC for UQ in ICME is its computational cost. The quality of
uncertainty assessment depends on how many runs of simulation can be conducted in
order to generate statistical distributions of outputs and draw meaningful conclusions
from the results. Worse yet, for a high-dimensional sampling space where many input
variables are involved, the number of samples to densely cover the sampling space
grows exponentially as the dimension increases. If each simulation run is expensive,
as is the case with DFT and MD and with higher scale models that explicitly address
3D microstructure, the cost of UQ will be high in the pure sampling—based approach.
In addition, MC also requires predetermined input distributions from which the
samples are drawn.

If there is a lack of prior knowledge regarding the types of distribution types or lack
of experimental data, the effect of model form uncertainty needs to be assessed.
Second-order Monte Carlo (SOMC) [20,21] is a natural extension of MC to study
the uncertainty associated with the input distributions. In the outer loop, the parameters
or types of statistical distributions are randomly sampled. In the inner loop, classical
MC is applied with each of the sampled distributions to study the variability. The
SOMC results can provide an overall picture of the combined effects from both
epistemic and aleatory uncertainties.

1.3.2 Global sensitivity analysis

Sensitivity analysis is a general concept of studying how uncertainty in the output of a
model is attributed to uncertainty associated with model inputs. GSA [22] quantifies
the effect of each individual input as well as their joint effects by conducting the
analysis of variance.

For a given model or simulation input—output relation ¥ = f(Xi, ..., X,) where
input X;’s are random variables, by fixing input variable X; to be x} one at a time,
the conditional variance of the output Var(Y |Xl- = xl*) is typically less than the original
total variance Var(Y). The difference between the two is an indicator of the contribu-
tion of variance from input variable X;, i.e., the sensitivity of output uncertainty with
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respect to input X;. Given all possible values of x}, Var(Y ’Xi = x;‘) itself is a random
variable. Thus, its expected value E[Var(Y|X;)] can be calculated. The deterministic
value Var(Y) — E[Var(Y|X;)] therefore is a metric to quantify the importance of input
X;. Similarly, the conditional expectation E[Y |X; = x| with all possible values of x} is
a random variable. Equivalently, the value Var(Y) — Var(E[Y|X;]) is an indicator of
the  contribution of variance from input variable X; because
Var(Y) = E[Var(Y|X;)] + Var(E[Y|X;]). The first-order Sobol’ sensitivity index
[23,24] S; = Var(E[Y|X;])/Var(Y) is commonly used to quantify the sensitivity of
output with respect to the uncertainty associated with the ith input variable, which
is referred to as the main effect. The interactions among input variables are estimated
by second- or higher-order sensitivity indices. By fixing two variables X; and X; simul-
taneously at a time, Var(E[Y|X;, X;]) measures the joint effect of the two variables. The
second-order index S;; = Var(E[Y|X;, Xj])/Var(Y) — S; — S; shows the interaction ef-
fect of the two input variables.

Higher-order indices can be defined in a similar way. In general, the total
variance can be decomposed as Var(Y) ="V, + > Vi+ > Viu+...+Via .

i ij>i ij>ik>j

where V; = Var(E[Y|X;]), Vij = Var(E[Y|X;, X;]) — Vi — V}, Vi = Var(E[Y|X;, X;, Xi])

— Vi = Vik = Vig = Vi = V; =V, etc. Therefore, ZS,- + ZSij + Z S + ...+

i ig>i ij>ik>j
S12, ... » = 1. The total effect of X, including all orders that have X; involved, is
measured by the total effect index [25] S;; =1 — >S5 — > Sg —...=1—
i Jk>ji#Ei

Var(E[Y|X1, ..., Xi—1, Xi+1, ---, Xu]) /Var(Y). Using the latter approach to calculate the

total effect index is computationally more tractable.

It should be noted that variance-based GSA does not require a known or closed-
form mathematical function Y = f(Xj,...,X,) for the input—output relation. For
black-box simulations, if enough runs of simulations are conducted with proper design
of experiments to generate statistically meaningful pairs of input and output, GSA can
be performed by the analysis of variance. Instead of variance, other moment-
independent sensitivity indices [26,27] have also been proposed to directly quantify
the importance of input uncertainty based on cumulative distributions or density
functions.

The limitation of GSA for ICME applications is similar to the one in MC, since MC
sampling is typically needed to estimate the variances. Notice that traditional MC only
provides information regarding overall output distributions, whereas GSA can provide
fine-grained information of individual and compounded effects of input variables.
Instead of variance, other measures of uncertainty can also be applied for GSA,
such as the Hartley-like measure [28] which quantifies the level of uncertainty by
the width of an interval range. This approach can avoid the high computational cost
of sampling in variance-based GSA.
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1.3.3 Surrogate modeling

When the input—output relations in simulation models are too complex, expensive, or
unknown, surrogate models can be constructed to approximate the response between
inputs and outputs. The simplified surrogate models, typically in the form of polyno-
mials or exponentials, can improve the efficiency of model evaluations and predic-
tions. For UQ, surrogate models can be used for sensitivity analysis and prediction
of response variation. The input—output responses can be generated by experimental
designs such as factorial, fractional factorial, central composite, and orthogonal
designs [29—31]. The resulting models are generally called response surfaces. They
are constructed by interpolation or regression analysis of the results from simulations
with combinations of input variable values. With the constructed response surfaces,
performance of new input values and the sensitivity can be predicted without running
the actual simulation itself.

To construct response surfaces, sampling the input parameter space thoroughly is
important because predictions from interpolation are generally more reliable than those
from extrapolation. For high-dimensional input parameter space, exhaustive sampling
with all possible combinations can be very costly. The computational complexity
grows exponentially as the dimension increases. Latin hypercube sampling (LHS)
[32—34] is an efficient sampling approach to choose samples in high-dimensional
space. It is a stratified sampling strategy for variance reduction where samples are
taken from the predefined input subspaces. For each subspace, there is an equal prob-
ability that the input samples are drawn from. The sampling is then performed within
each of these subspaces so that all subspaces can be covered by much fewer samples
than classical MC sampling. Thus, the number of samples can be significantly reduced
while results are still statistically representative. LHS is also extended to dividing
subspaces with unequal probabilities, and the estimates are weighted by the corre-
sponding probability values [35]. LHS is a versatile tool and can be applied to study
statistical properties of responses directly without constructing response surfaces. The
limitation of LHS is that the efficiency of the sampling strategy depends on the prior
knowledge of probability distributions associated with input variables. When there is a
lack of knowledge about the types and parameters, the variance reduction technique
may introduce bias.

1.3.4 Gaussian process regression

Kriging or Gaussian process regression [36,37] is a regularized regression approach to
find approximated response models between inputs and outputs. It predicts new func-
tional value from some existing ones by modeling the underlying but unknown true
function as a Gaussian process. Different from simple regression with the point
estimation of model parameters, the probability distributions of model parameters
are estimated. Gaussian process can be regarded a special type of stochastic process
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which is only specified by the mean vector and covariance matrix. The modeling and
prediction are based on Bayesian inference. That is, given the prior probability P(M,)
for different models M, (o = 1,2, ...), as well as the likelihood P(D|M,) associated
with observation D, the posterior probability of M, is obtained as
P(M|D) «<P(D|M,)P(M,). The prediction of a new value y is the Bayesian model
average, calculated as

P(y) =" P(y|Ma)P(Mq|D) (1.1)

The major assumption in Gaussian process regression is that the functional values
for existing inputs follow a joint Gaussian distribution. As a result, the prediction of the
new value is simplified to be the weighted average of the existing values plus an
additive noise as a stationary covariance process with zero mean. This is illustrated
with the following example of generalized linear regression. A Gaussian process is
specified by a mean function u(x)=E[Y(x)] and a covariance function
C(Y(x),Y(x") =k(x,x'). Based on a finite set of basis functions
{;(x),j =1,...,m}, the output function is expressed as

Y(x)= > widj(x) + &= p(x)'w+e=yx;w)+e (1.2)
j=1

where w = [wy, ..., wy,] " is the weight vector, ¢(x) = [¢;(x), ..., ¢,,(x)]" is the vector
of basis functions, and Gaussian noise ¢ ~ N (0, 0’(2)) is assumed to be associated with
observations. Let the prior probability distribution of the weight vector w be Gaussian
N(0,%,), as

1 | )
Pw)=——>——7exp|—zw 2w (1.3)
( ) (27r)m/2|2w|]/2 p( 2

With the observed dataset D = {(x;,y;),i=1,...,n} with n input—output tuples and
independent observation assumption, the likelihood is

1 L 1 )
Pyt,..oomlw)=———7 | | exp| — 5500 — y(xisw)) (14)
(2ma2)"? 1;[1 203

based on the Gaussian kernel k(x,x') = exp(— #|x —x |2) The posterior mean
value of weights w is obtained by minimizing the negative logarithmic of the posterior
probability, as

minE(w) = min iz > (i wlo(x;)” + %WTE;IW (1.5)

w w 2(70 =
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By solving the linear equations dE/dw = 0, we obtain

w=a,’A"'®Ty (1.6)
where y = [y1, ..., ya] ' is the vector of observations, matrix A = ! + 5;2®T®,
and @ is the n x m design matrix with elements ¢;(x;)’s. For a new input x., the
predicted mean function value is

E[Y(x.)] = ¢(x.) W = 05 °(x.) A @Ty

-1
= ¢(x,) =, @7 (@2, ®" +0y°L,) y 1.7)

which shows that the new prediction is a weighted average of existing ones in y. Here,
I, is the n x n identity matrix. The variance of the prediction is

VY (x.)] = ¢(x.) A $(x.) + 0]

— ¢(x)" (zw - 3,07 (93,87 + cgln)_ltbiw) ¢ (x.) + 0}
(1.8)

It is important to note the difference in computational complexity of the two above
equivalent ways presented in the foregoing to calculate the mean and variance of pre-
diction. The computational bottleneck involves the inversion of covariance matrices.
The size of matrix A is m x m, whereas the size of (®X,,®" +03l,) is n x n. There-
fore, the complexities of computation increase in the orders of O(m*) and O(n?),
respectively.

Gaussian process regression can be applied to construct the surrogates for simula-
tions where the closed-form input—output functional relationships are not available.
That is, Eq. (1.2) serves as the surrogate with input x and output Y. Based on the simu-
lation data, hyperparameters w can be trained and obtained from Eq. (1.6). The predic-
tions of means and variances for a new input are calculated based on Egs. (1.7) and
(1.8), respectively. More complex kernel functions with more hyperparameters can
also be introduced. The training of hyperparameters can be done by maximizing the
likelihood, similar to Eq. (1.5).

The major challenge of using Gaussian process regression is the computational
complexity for high-dimensional problems. As the dimension of input x increases,
the required number of training samples n grows exponentially in order to have a
good coverage of the high-dimensional input space. Major research efforts have
been given to improve the computational efficiency with large datasets. Besides tradi-
tional data processing techniques for dimension reduction (e.g., principal component
analysis, factor analysis, and manifold learning), integrated statistical and computa-
tional methods have been developed. The first approach is to reduce the rank of the
covariance matrix. For instance, a selected subset of samples can be taken to construct
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a sub-Gaussian process to predict the original process [38,39]. In fixed ranking kriging,
the covariance matrix is projected into a fixed dimensional space so that the inversion
relies on the fixed-rank matrix in the projected space [40]. Based on the Karhunen—
Loéve expansion to approximate the covariance function, the inverse of the covariance
matrix can be obtained with reduced-rank approximation [41,42]. Gaussian Markov
random field on sparse grid has also been used to approximate covariance [42]. The
second approach is to reduce the computational complexity with the sparse approxima-
tion of covariance matrices. For instance, the spatial localization of covariance func-
tions leads to sparse (or tapered) covariance matrices, and the inverse of sparse
matrices can be computed more efficiently [43,44]. The bias introduced by the tapering
also needs to be compensated [45]. Sequential sampling or active learning can also be
applied to update the subset of data in approximation of the global model [46]. The
third approach is using sparse spectral approximation of covariance functions, where
a finite set of basis functions are chosen in the construction. For instance, sinusoidal
functions [47,48] have been applied in the spectral approximation. The fourth
approach to deal with the large dataset is distributed or clustered kriging, where the
data are subdivided into subsets and multiple surrogate models are constructed. The
new value is predicted as the weighted average of predictions from multiple models.
The weights can be determined by an optimization procedure to minimize the
predicted variance [49], the distances between the input to predict and the centers of
clusters [50], or the Wasserstein distances between the Gaussian posteriors of the
main cluster and the neighboring ones [51].

One issue with universal kriging for UQ is that the mean response is usually
assumed to follow the polynomial form. Therefore, model form uncertainty is intro-
duced in terms of particular orders of polynomial basis functions. To improve the
accuracy of prediction, a Bayesian model update approach with multiple models has
been proposed [52]. Similarly, blind kriging modifies polynomials with Bayesian
update by incorporating experimental data [53]. As the alternative, sinusoidal func-
tions instead of polynomials have also been used in predicting the mean response
[54]. The assumption of covariance functions is another source of model form uncer-
tainty. Stochastic kriging or composite Gaussian process [55,56] methods were intro-
duced to decompose the covariance into two components. One covariance process is
from the underlying true function, whereas the other is from experimental data. This
approach allows for the decomposition of model form uncertainty. Nevertheless, the
assumption of the unknown covariance of the two Gaussian processes still has to be
made. One more issue of constructing Gaussian process regression models is the
lack of data when extensive simulation runs and/or experiments are costly. Multifidel-
ity cokriging [57,58] is a cost-effective approach for surrogate modeling with the
consideration of experimental cost, where low- and high-cost data are combined to
construct the surrogate. New sequential sampling strategies can be taken to decide
the optimal combination of low- and high-fidelity data [59]. The low- and high-
fidelity cokriging model can also be extended to multiple fidelity levels as a recursive
model with nested design sites [60].
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1.3.5 Bayesian model calibration and validation

One important procedure in modeling and simulation is model calibration, where
parameters of physical models need to be tuned to match experimental measurements.
Gaussian process regression has been applied in simulation model calibration [61,62].
As an extension of Eq. (1.2), the surrogate for simulations is modeled as a composite
Gaussian process in

Y(x)=pn(x,0;w) +o6(x) + ¢ (1.9)

where @ are the model parameters to be calibrated, n( -) approximates the physical
model, and §( -) is the model discrepancy. Both n( -) and 6( -) are Gaussian process
models. The additional hyperparameter p can be introduced as the scaling factor.
Combining the simulated dataset D = {(x;, ;,y;)}, where simulations are run with
different parameter values 6;’s and inputs x;’s, with experimental measurements D' =
{(x/',yi)}, Eq. (1.9) can be treated as a multivariate Gaussian process regression
model with inputs (x;, ;)’s. The model parameters @ can be similarly trained by
maximizing the likelihood, along with all hyperparameters, in the calibration process if
the covariance associated with the model parameters is also assumed to be Gaussian.
Further extensions of capturing the model discrepancy in the Gaussian processes
[63,64] and categorical parameters [65] were also studied.

In a more general setting without the assumption of Gaussian processes, model
calibration can be performed by finding parameter values that minimizes the differ-
ence between the observation and simulation prediction as the posterior [66,67].
Calibration thus is an optimization process to minimize the difference. Choosing
the prior however can affect the accuracy of calibration, especially when there are
limited data. Besides parameter calibration, model forms can be calibrated with
Bayesian model averaging to incorporate model form errors [68]. Fractional-order
derivatives can also be treated as hyperparameters of model forms and similarly
calibrated as continuous variables [69].

Model validation is to compare the model predictions with experimental experi-
ments and evaluate the level of agreement [70]. A straightforward comparison is to
check the confidence level associated with the difference between the predicted and
measured quantities subject to statistical errors [71]. The Bayesian approach for model
validation is comparing the prior and posterior probability distributions of the quanti-
ties of interests. The prior distribution is from the original model prediction, whereas
the posterior is from the prediction after the model parameters are updated with exper-
imental observations. The general criterion is the distance or difference between two
probability distributions [72]. The composite Gaussian process model in Eq. (1.9)
can also be applied in validation. When the posterior estimation of model bias ¢( -)
with consideration of both simulation and experimental data is within an error
threshold interval, the model is regarded as valid [73]. Bayesian hypothesis testing
can also be applied for validation, where the null and alternative hypotheses are
compared after they are updated with experimental observations [74].
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1.3.6 Polynomial chaos expansion

Polynomial chaos expansion (PCE) [75—77] approximates random variables in func-
tional or reciprocal space with orthogonal polynomials as bases. In PCE, a stochastic
process or random variable is expressed as a spectral expansion in terms of orthogonal
eigenfunctions with weights associated with a particular probability density. More
specifically, a stochastic process u(x; &) can be approximated as

M N+P
w(xiE) = D ln(x)Wn(E) M= ( N ) (1.10)
where § = [£1, ..., £y] is an N-dimensional vector of random variables as parameters of
u(x; &) which follows a particular distribution with probability density function p(§),
N-variant P-th order polynomials W,,(§)’s form the orthogonal basis, and u,,’s are the
PCE coefficients. An example of the expansion is that the Wiener process (also known
as Brownian motion) can be written as a spectral expansion in terms of the Hermite
polynomials and normal distribution. Different polynomials are available for different
probability distributions. For example, Legendre polynomials are for uniform distri-
bution, Jacobi polynomials for beta distribution, Laguerre polynomials for gamma
distribution, Charlier polynomials for Poisson, Krawtchouk polynomials for binomial,
and Hahn polynomials for hypergeometric. Orthogonality ensures the efficiency of
computation and ease of quantifying the truncation error.
The PCE coefficients in Eq. (1.10) can be calculated by projection as

) = / (s E) W, (E)p(E)dE (L1D)

The integral in Eq. (1.11) can be estimated with MC sampling. Yet a much more
efficient approach is the quadrature as weighted summation. That is, discrete nodes
E(k>’s and associated weights are predefined, and the integral is calculated as the
sum of the weighted values of u(x; E(k))llfm E(k)). In the nonintrusive PCE, the
solution u( x; £®)) with respect to each sample of random variable & (%) can be obtained
by solving existing the deterministic model or simulation. Because of the orthogonality
of polynomial basis, the statistical moments of the random process u can be easily
obtained. The mean solution is estimated as

M
Elu(x)] = /(Zﬁm(x)‘lfm(i)>p(8)d£:al(x) (1.12)

m=1

The covariance function is

M
Cluxr), u(@x2)] = > n(x1)lm(x2) (1.13)
m=2
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The variance function is

Viu()] =Y i, (x) (1.14)

The nonintrusive PCE approach has been applied to assess the sensitivity of input
parameters in reaction—diffusion simulations [78] and perform variance estimation for
GSA [79].

Computational efficiency is a challenge for nonintrusive PCE. A large number of
samples are required, even though LHS and sparse grid can be applied. Each sample
can correspond to a simulation run. Solving a stochastic differential equation is
reduced to solving many deterministic differential equations. The efficiency of compu-
tation is directly related to the truncation, which also depends on types of distributions
and the corresponding polynomials. Some distributions such as those with long and
heavy tails cannot be efficiently modeled using PCE approximation.

1.3.7 Stochastic collocation and sparse grid

When the number of input parameters for simulation models is very high, i.e., in the
hundreds, the direct construction of the high-dimensional response surface will
become inefficient. Stochastic collocation [80,81] is an approach to alleviate the curse
of dimensionality. The main idea is to choose the sampling positions of input wisely
for functional evaluations in conjunction with the orthogonal polynomials in the prob-
lem solving process (i.e., partial differential equation with random inputs) so that a
sparse grid [82] can be used. The samples can be selected as the zeros or roots of
samples at the sparse grid can be used in either the construction of Lagrange interpo-
lating polynomials or in the pseudospectral with quadrature interpolation.

K
In the Lagrange interpolation scheme, a set of nodes {S <k)} in the probabilistic

parameter space of u(x; &) are predetermined. The solution u(x; &) of a stochastic dif-
ferential equation can be approximated as

K
u(x; €) = Zu(x;é("))Lk(E) (1.15)
k=1
where Li( -)’s are the Lagrange polynomials, and u(x; S<k)) is the solution of the
deterministic differential equation when random variable & takes the sample value of
£®)_ To obtain u (x; 13 <k>>, the existing deterministic solver can be readily applied.

In the pseudospectral interpolation, PCE style expansion is applied instead of the
Lagrange interpretation. Similar to Eq. (1.10), the solution is approximated by

M N+P
w(x;E) = Y Cu(x)Wn(E) M=< ; ) (1.16)
m=1
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where the expansion coefficients however are calculated as
Cnlx) = Zu(x;s</>)lpm(g</>)w</> (1.17)
j=1

which are the weighted discrete sums realized at the sampled grid locations & ()’s. The
grid locations & ")°s and weights wl)’s are carefully chosen so that the weighted sum
can approximate the integral in Eq. (1.11) well.

The grid location selection in stochastic collocation is important for accuracy and
efficiency. For a one-dimensional problem, Gauss quadrature is usually the optimal
choice. The challenge is high-dimensional cases, where full tensor products will
grow the number of grid points exponentially as the dimension increases. Sparse
grid method is an approach to cope with the efficiency issue. It was proposed to reduce
the number of grid points and improve the efficiency in multidimensional quadrature
and interpolation [83] and has been widely applied in stochastic collocation. Instead of
full tensor products to generate grids in a high-dimensional sampling space, a much
coarser tensorization can be taken in Smolyak’s quadrature. The subset of grid points
is chosen with recursive hierarchical subspace splitting so that the interpolation can
have small approximation errors.

1.3.8 Local sensitivity analysis with perturbation

In contrast to GSA, LSA studies the effect of input uncertainty locally. A straightfor-
ward way is to estimate derivatives of models with the finite-difference approach
where the difference between two responses is divided by the perturbation of inputs.
The finite-difference approach is a nonintrusive approach to assess sensitivity. In addi-
tion to these direct (forward) methods, adjoint (backward) SA approaches were also
developed for deterministic simulation based on differential equations [84,85].
A more efficient LSA method that is specific for stochastic simulation is to estimate
the derivatives of the expected values of output performance, i.e., the expected values
of stochastic derivatives or gradients, from simulation directly. This can be achieved
by either varying output performance w.r.t. input parameters as the infinitesimal
perturbation analysis [86,87] or by varying the probability measures w.r.t. inputs as
in the likelihood ratio method [88—90]. These approaches are intrusive in order to
promote efficiency of computation.

1.3.9 Polynomial chaos for stochastic Galerkin

Similar to nonintrusive PCE, stochastic Galerkin method relies on polynomial expan-
sion to estimate probability density and propagate parameter uncertainty. The differ-
ence is that stochastic Galerkin is an intrusive UQ approach to solve stochastic
ordinary or partial differential equations. In the intrusive PCE approach, the target
stochastic process u(x; &) is not readily available, and the approach in Eq. (1.11) to
calculate PCE coefficients is of no use. Instead, it is assumed that u(x;&) can be
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computed based on some physical models (i.e., ordinary and partial differential equa-
tions), and the mathematical forms of the models are available. The expansions are
substituted for the variables into the differential equations, and the operations on the
original variables are applied to the expansions.

1.3.10 Nonprobabilistic approaches

Differing from traditional probabilistic approaches, nonprobabilistic approaches for
UQ have been developed. Perhaps the best known is the Dempster—Shafer evidence
theory [91,92]. In this theory, evidence is associated with a power set of discrete
random events, in contrast to random events in probability theory. Uncertainty is quan-
tified with the so-called basic probability assignment (PBA). As an illustration, if the
event space is Q = {A, B, C}, the probability assignments in traditional probability
theory are P(A), P(B), and P(C), subject to constraint P(A) + P(B) + P(C) = 1.
In the Dempster—Shafer theory, imprecision of assignments is allowed. Therefore,
probabilistic measures are assigned to the power set of events,
22 = {2, {A},{B},{C},{A,B} {A,C},{B,C},{A,B,C}}. The assignments are
BPAs, as m( @), m({A}), ..., m({A,B,C}), subject to Y m(x) = 1. That is, uncer-
xe 2@
tainty is directly measured with a set of events. As a result, when we try to estimate
the uncertainty associated with individual events, the probability becomes not
precisely known. Two quantities are associated with each event. One is the lower limit
of probability, also known as belief, calculated as P(y) = ) m(x). The other is the up-
xSy
per limit of probability, also known as plausibility, calculated as P(y) = > m(x).
xNy #= &

The belief—plausibility pair provides a convenient way to capture epistemic and aleatory
uncertainty. The difference between the lower and upper probability limits is epistemic
in nature, whereas the probability itself is aleatory.

There are several mathematical formalisms and theories that are very similar to the
Dempster—Shafer theory, such as the theory of coherent lower previsions [93], prob-
ability box [94], interval probability [95], generalized interval probability [96], etc.
These imprecise probability modeling approaches were developed from slightly
different perspectives with different interpretations. Another mathematical formalism,
random set [97,98], which quantifies uncertainty associated with random sets of
events, is also equivalent to the Dempster—Shafer theory and other imprecise proba-
bility theories.

In engineering, interval analysis [99—101] has been widely applied to perform
sensitivity analysis and model uncertainty propagation. It was originally developed
to address the issue of numerical errors in digital computation due to the floating-
point representation of numbers. It is based on a generalization in which interval
numbers replace real numbers, interval arithmetic replaces real arithmetic, and interval
analysis replaces real analysis. In other words, calculation is based on interval numbers
with lower and upper limits. Interval provides a distribution-neutral form to represent
uncertainty and error in measurement or computation. Similar to confidence interval in
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statistics, the bounds provide an estimate of uncertainty, but without the need to keep
track of the associated statistical distribution (which typically is computationally
expensive to be tracked). Therefore, it is an efficient scheme to quantify uncertainty
when statistical information does not need to be kept or is not available due to lack
of data.

1.4 UQ in materials modeling

Chernatynskiy et al. [102] and Wang [103] previously provided reviews on UQ in mul-
tiscale materials simulation. This section focuses on an overview of research efforts in
the most recent years of rapid growth of interest in UQ for ICME.

1.4.1 UQ for ab initio and DFT calculations

Model form error in first principles simulation has been recently explored. Formal UQ
methods have been applied to quantify uncertainty in DFT calculations. Particularly,
Bayesian approach to estimate the errors associated with DFT exchange-correlation
functionals by incorporating experimental data has been extensively studied, including
GGA [104], van der Waals interactions [105], meta-GGA [106,107], and Bayesian
model calibration [108]. Regression analysis has also been used to predict the system-
atic errors associated with the exchange-correlation functionals for different crystal
structures [109,110]. Gaussian process regression has been applied to construct surro-
gates of potential energy surface and quantify errors from DFT calculations
[50,111—113]. Generalized polynomial chaos was also applied to construct surrogate
of energy surface [114]. Other UQ methods such as LSA [115] and resampling [116]
are used to estimate the error distribution of DFT calculations.

In addition to UQ methods, comprehensive comparisons of accuracy among ab ini-
tio methods have been studied. Irikura et al. [117] studied the bias in vibration fre-
quency predictions of Hartree-Fock with 40 different basis sets. Lejaeghere et al.
[118,119] provided a comprehensive quantitative error analysis for DFT energy pre-
dictions from over 40 different methods including all-electron, projector-augmented
wave (PAW), ultrasoft (USPP), and norm-conserving pseudopotential (NCPP). It is
seen that model form errors increase because of simplification and approximation in
order to gain computational time. Tran et al. [120] compared the error of Rungs 1
to 4 in DFT Jacob’s ladder based on lattice constant, bulk modulus, and cohesive
energy of solids.

1.4.2 UQ for MD simulation

Uncertainty in materials simulation was first recognized with sensitivity of interatomic
potential selection in MD simulation of solid materials [121,122], water molecule
[123,124], irradiation damage [125], and others, as well as the effect of cut-off radius.
Only recently, formal UQ methods have been applied.
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To construct better interatomic potentials in MD, Bayesian calibration has been
extensively applied to different potentials such as MEAM [126], Lennard-Jones
[127—129], TIP4P [130,131], and coarse-grained MD models [132,133]. Based on
experimental observations, the parameters of potentials are adjusted to maximize the
likelihood. The major challenge of Bayesian approach is the computational load of
Markov chain Monte Carlo involved in estimating the posterior. Numerical approxi-
mations can be applied to improve the efficiency [134,135].

Surrogate modeling can also be applied to construct response surfaces from MD
simulations as the structure—property relationships to predict material properties.
The uncertainty associated with property predictions with respect to interatomic poten-
tial parameters can also be evaluated based on surrogate modeling. The modeling
methods such as PCE [136,137], Kriging [138], and Lagrange interpolation [139]
have been used to assess the uncertainty effect or sensitivity of interatomic potentials
on MD simulations.

Instead of constructing response surfaces, the straightforward sensitivity analysis
can be done by varying the values of input parameter values based on factorial exper-
imental design [140,141] or MC sampling [142—144]. The above UQ and sensitivity
analysis approaches are categorized as nonintrusive, where MD simulation is treated as
a black box. Data are collected as input—output pairs for response analysis. Therefore,
multiple runs of simulations are needed. Different from the above, Tran and Wang
[145,146] developed an interval-based MD mechanism via Kaucher interval arithmetic
to assess sensitivities on-the-fly. This is an intrusive approach where the detailed
knowledge of MD simulation is needed and simulation packages need to be modified.
The new MD simulation tool is an extension [147] of original LAMMPS [148]. Only
one run of MD simulation is enough to predict the propagation of uncertainty. Also as
gray-box approaches, Tsourtis et al. [149] measured the state distribution variation
with respect to the model parameter perturbation in the Langevin dynamics of MD,
where only two simulation runs are needed for sensitivity analysis. Reeve and Strachan
[150] developed a functional local perturbation approach based on the knowledge of
interatomic potential forms to estimate computational prediction errors associated
with the Lennard-Jones potential.

Sensitivity analyses exploring uncertainty of MD simulations have gone beyond
consideration of interatomic potentials. For instance, Patrone et al. [151] evaluated
the variabilities of model size and simulation time on the glass transition temperature
of polymers. Kim et al. [152] studied the effects of model size and simulation time on
the shear viscosity prediction by the Green—Kubo formulation. Alzate-Vargas et al.
[153] assessed the sensitivities of molecular weight, force field, and data analysis
scheme in predicting glass transition of polymers.

1.4.3 UQ for meso- and macroscale materials modeling

UQ methods have been widely applied at macroscale or continuum level modeling and
simulation. Particularly related to structural materials, methods of Karhunen—Loeve
expansion [154], PCE [155], and Kriging [156] for Gaussian and non-Gaussian
processes or random fields have been well studied in stochastic mechanics given the
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variability of material distributions [157,158]. Multiphase material morphology and
corresponding properties have been modeled by non-Gaussian random fields such
as level-cut filtered Poisson field [159], Markov random field [160], and nonparametric
random field [161]. Porosity in solid structures can also be modeled by Gaussian
random fields and integrated in FEA [162]. In addition to Karhunen—Logve and poly-
nomial expansions, random fields can also be approximated by Fourier series [163],
autoregressive moving average [164], and wavelets [165].

Because of missing physics in traditional ordinary and partial differential equations,
stochastic versions of ordinary and partial differential equations have been introduced,
where loads or coefficients are random variables, to capture the randomness of material
properties and behaviors. Stochastic partial differential equations can be solved by MC
sampling, or more efficiently by second-order moment approximation [166], Neumann
expansion [167], interval convex method [168,169], Karhunen—Loeve expansion
[170], stochastic collocation [80,171—173], and PCE [64,77,174]. For stochastic
differential equations, Fokker—Planck equation [175] that is equivalent to the It6 pro-
cess can be formulated to simulate evaluation of probability distributions in dynamics
simulation such as Langevin dynamics. Real physical processes, however, are not
perfectly Markovian although they may be Gaussian. Generalization of the Fokker—
Planck equation thus is needed. For example, generalized Fokker—Planck equation
with time-dependent friction coefficients can model the velocity field of Brownian par-
ticles subjected to arbitrary stochastic forces [176]. A generalization with a memory
kernel introduced in the diffusion coefficient simulates the Brownian motion of parti-
cles in viscoelastic fluid more accurately [177]. Non-Gaussian Brownian and Lévy
processes can be modeled through transformations or mappings to Gaussian—
Markovian process [178].

Traditional models of random fields as well as statics and dynamics behaviors cannot
efficiently capture the physical complexity of material properties such as memory effects
and energy dissipation in viscoelastic materials, fractal porous media, liquid—solid
mixture, sub- and superdiffusive transport, etc. Fractional calculus has been introduced
to reduce the model form error caused by traditional integer-order integrals and
derivatives [69]. For instance, the viscoelastic behavior of materials is modeled more
efficiently with fractional derivatives [179]. The sub- and superdiffusion can be captured
by the fractional Langevin equation [180]. The effective reaction—diffusion process in
porous media can be modeled as Lévy process [181]. Fractional-order continuum
mechanics for fractal solid materials was also introduced [182].

UQ for mesoscale simulations is relatively unexplored. For instance, in PF simula-
tion of solidification, the majority of existing work remained on sensitivity analysis on
the model parameters, such as solute expansion factor [183], convection [184], grain
orientation [185], and latent heat [186]. Recently, the nonintrusive PCE was applied to
quantify the effects of microstructural parameters and material properties on the mac-
rosegregation and solidification time [ 187] and microstructure [188] in PF simulations.
To alleviate the numerical instability in simulation because of model approximation,
empirical antitrapping current term can be introduced [189]. Stochastic Cahn—Hilliard
equation [190] and stochastic Allen—Cahn equation [191] have been studied.
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Fractional Cahn—Hilliard and Allen—Cahn equations [192] were also introduced to
mitigate model form uncertainty.

1.4.4 UQ for multiscale modeling

One unique need of UQ for materials modeling is the multiscale nature of simulation
predictions. Model calibration and validation may have to be based on experimental
observations of Qols that are different from the predicted Qols at a different length
or time scale. To enable cross-scale or cross-domain information fusion, Bayesian
approaches based on different information sources in sensing and modeling can be
done, where the hidden or latent variables can be introduced as in hidden Markov
models [193], and cross-scale model calibration and validation with epistemic and
aleatory uncertainties can be accomplished [194,195]. The hidden Markov model
can also be used to establish the connection between coarse-grain and fine-grain model
parameters [196]. Even at the same scale, different models may exist to describe the
same Qols. Bayesian approaches can also be taken to reconcile model inconsistency.
For example, to calibrate crystal plasticity models and combine models derived from
bottom-up atomistic simulations and top-down experimental measurements, the
maximum likelihood criterion can be extended to include the constraints of model
parameter inconsistency [197] or model form discrepancy [198] so that the regularized
likelihood incorporates different sources of information. The Bayesian model average
approach can also be taken to reconcile the discrepancy between predictions of Qols
from different scales, e.g., between quantum and molecular level simulations [199].

Another unique need of UQ for materials modeling is to support cross-scale uncer-
tainty propagation. Qols predicted by simulations at different scales are usually
coupled, as the outputs of a smaller-scale simulation can be the required inputs for a
larger-scale simulation. To model cross-scale uncertainty propagation, Bostanabad
et al. [200] developed a nested random field approach where the hyperparameters of
an ensemble of random fields at the lower scale is characterized by yet another random
field at the upper scale. Variations and perturbations can be applied in the input—
output relationships between different simulation models, such as from MD to PF,
DD, and crystal elasticity, to assess the sensitivities [201].

1.4.5 UQ in materials design

Design is an iterative process of searching feasible solutions and identifying in some
sense the optimal subset during which decisions are made based on available informa-
tion. Uncertainty needs to be incorporated in engineering and materials design for
robustness consideration. UQ methods have been applied for robust design of struc-
tural materials given the uncontrollable factors in complex fabrication processes.
For instance, polynomial regressions have been used as surrogates for simulations
in simulation-based robust design of materials [202]. The constructed response surface
models as the structure—property relationships can be applied to identify feasible
design space and search for the optimum [203]. In junction with atomistic simulations,
nanoscale materials can also be designed with the optimum macroscopic properties,
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for instance, the maximum yield strength of nanowires under the uncertainty associ-
ated with environment variables (e.g., strain rate, temperature, and size) [204].
When multiple design objectives are considered, the Pareto frontier can also be iden-
tified efficiently aided by the response surfaces [205]. Most recently, Bayesian optimi-
zation is recognized as a useful tool for robust global optimization. Instead of the
original design objective, an acquisition function is used as the utility function to guide
the sequential sampling process to construct Gaussian process surrogates [51,206].
The uncertainty associated with simulation predictions thus can be considered, and
a balance between exploration and exploitation is achieved. Acquisition functions
such as the expected improvement function can be used in designing NiTi-based alloys
with the minimum thermal dissipation based on Bayesian optimization [205,207].

To quantify the uncertainty in materials, random fields have a unique advantage of
modeling spatial distributions of phases or properties. Random fields have been used to
predict the stochasticity of material properties as well as uncertainty propagation
between design parameters so that the response surfaces at multiple scales can be con-
structed applied for multilevel robust optimization [208]. For topological optimization
of materials and metamaterials, the robustness of optimal topology can be improved by
incorporating random fields of loads [209,210]. The random material distributions can
also be modeled with polynomial chaos [211]. For robust topological optimization,
local sensitivities of geometry and topology variations [212,213], manufacturing errors
[214], and external loads [215,216] with respect to the optimal solutions need to be
assessed. The simultaneous considerations of mean and variance in design objectives
with confidence bounds are typically needed to ensure robustness [217].

1.5 Concluding remarks

Uncertainty is an inherent factor in various aspects of modeling, design, and develop-
ment of materials. Aleatory uncertainty or randomness has been a core focus in phys-
ics, e.g., quantum mechanics and statistical mechanics. Nevertheless, the importance
of epistemic uncertainty was only recognized more recently in the research community
of materials science and engineering. Given the limitations of both experimental obser-
vation and physics-based modeling, the lack of knowledge is the most common cause
of uncertainty in materials. This is manifested primarily as approximation and simpli-
fication. Compared to most science and engineering disciplines, materials research
faces specific challenges in bridging the knowledge gap from the scale of electrons
and atoms in physics to the scale of homogenized material properties that support tradi-
tional engineering design. Uncertainty naturally arises from the lack of good physical
models to address phenomena at different length and time scales, as well as the lack of
data for calibration and validation of complex empirical or semiempirical models.
Obviously elevating the level of knowledge is the ultimate solution to reduce epistemic
uncertainty. This will lead to higher quality and more powerful physical models in the
future. Along the way, acknowledging the uncertainty and imperfection associated
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with existing models is essential to advance scientific discovery and exploit the control
of structure to enable materials design and development.

Developing practical UQ tools for the materials domain that are scalable for high-
dimensional complex problems is also essential. Most of existing tools can be mathe-
matically sound for small and academic problems. However, they are often not
applicable to ICME because of its special needs, including high-dimensionality of
the design space, operation of phenomena at multiple length and time scales, both
short- and long-range phenomena of interest, and parallel and high-performance
computing environments. Development of domain-oriented UQ methods for these
particular needs is relevant to this community.
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