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Abstract—In this paper, we propose a new efficient meta-
modeling approach as a simulation platform to estimate the
performance of automated material handling systems (AMHS)
in a much shorter execution time. Our new mechanism is
based on imprecise probabilities, in which the simulation model
parameters are represented as intervals to incorporate unknown
dependency relationships as total uncertainties. The interval-
based metamodel provides reasonably accurate and fast estimates
of the performance measures of interest. The performance
measures from the interval-based simulation are represented
as intervals that enclose the traditional real-valued simulation
estimates. Using the SEMATECH virtual fab as a test bed, the
metamodel of the wafer fab AMHS is implemented in JSim, a
java-based discrete-event simulation environment, and the results
are compared to the detailed large-scale simulation model to
investigate the validity of the proposed approach.

Index Terms—Automated material handling systems (AMHS),
interval-based simulation (IBS), metamodel semiconductor
manufacturing.

I. Introduction

A. Semiconductor Manufacturing

Semiconductor technology, used in most modern electron-
ics, is the building block of our information technology. The
semiconductor industry is a vital contributor to the world
economy, with $248.6 billion in sales worldwide in 2008,
as reported by the Semiconductor Industry Association press-
room [28]. The transition from 200 mm to 300 mm, and the
potential transition to 450 mm wafer fabrication, is a key ele-
ment of continuing productivity gains in semiconductor device
manufacturing, and is driving fabs toward the full automation
of material flow. AMHS are responsible for moving materials
between production equipment and storage units to complete
the processing of the wafers.

Constructing a 300 mm fab costs $2–3 billion [18],
while a 450 mm fab is projected to cost $10 billion [21].
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The AMHS represent 3–5% of the total fab cost [1]. For the
AMHS to have acceptable return on investment and provide
the expected support to the production equipment, efficient
design and operational strategies must be investigated and
tested in the design and redesign stages of the factory. An
improperly designed or operated AMHS may introduce lot
delays (increasing manufacturing cycle times) or cause tool
idle time (reducing throughput or requiring excess capacity).

In recent years, particular attention has been given to the
development of efficient design and operational strategies for
wafer fabs. These efficient strategies must target increasing the
throughput of the AMHS substantially with reduced delivery
times. Further, the AMHS needs to be flexible and scalable
to achieve the demands of the ever-changing semiconductor
wafer fab.

Estimating AMHS performance in wafer fabs is difficult,
because of the complexity of the systems. The International
Technology Roadmap for Semiconductors [17] characterizes
the AMHS as having several vehicles, operating on a network
with loops, intersections, spurs, and shortcuts, serving many
different pick-up/drop-off stations. The movement requests
appear to be random, and although they exhibit some temporal
correlations, these correlations are not strong enough to permit
precise scheduling of the AMHS resources.

A typical 300 mm AMHS has a spine layout configuration,
as illustrated in Fig. 1. Most wafer fabs use this bay layout
[4], where each bay contains a group of similar process tools.
A spine layout consists of a central material handling spine
(interbay) and loops branching on both sides (intrabays) to
serve production equipment (tools) in the bays. Automated
storage units, referred to as stockers, are used to provide
temporary buffering for work-in-process.

Almost all existing 300 mm AMHS are based on overhead
hoist vehicles (OHV)—space-efficient vehicles traveling sus-
pended on tracks above the main fab floor. The efficiency of
an OHV-based AMHS is highly dependent on the vehicles’
characteristics and control mechanism (i.e., speed, acceler-
ation/deceleration, and dispatching rules). An AMHS with
a small number of vehicles will cause long delays for lots
waiting to be transported. Clearly, longer wait times imply
longer delivery times. On the contrary, an excess of vehicles
can cause traffic congestion in the interbay and intrabay
systems because each of these units will frequently block
other transporters that are traveling on the same path. As a
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Fig. 1. AMHS in a spine layout: one interbay and eight intrabay systems
(based on [16]).

result, delivery times increase significantly due to the longer
delays that wafers experience while traveling in these highly
congested systems.

Interaction between fab design (e.g., where to locate tools)
and AMHS design (e.g., track configuration and fleet size) can
have significant impacts on fab performance. Thus, the number
of design alternatives for the AMHS is vast. Relying solely
on discrete event simulation to navigate the AMHS design
space means a commitment to a lengthy and expensive process,
which may limit the range and number of alternatives that can
be considered in the early stages of fab design. Simulation
is ineffective as a decision support tool in the early phase of
system design, where many configurations need to be con-
sidered. Our metamodeling approach, proposed and tested in
this paper, is to simultaneously estimate accurate performance
measures with shorter simulation time and incorporate input
uncertainties in its estimations.

B. Motivation for Interval-Based Simulation (IBS)

Uncertainty and variability should be differentiated in sim-
ulation. Variability is due to the inherent randomness in the
system. In the paper, variability is also referred to as stochastic
uncertainty, simulation uncertainty, aleatory uncertainty, and
irreducible uncertainty. Variability is irreducible even by ad-
ditional measurements about the random variable of interest.
The typical representation of variability is based on probability
distributions. On the contrary, uncertainty is due to the lack
of perfect knowledge or enough information about the system.
Uncertainty is also known as epistemic uncertainty, reducible
uncertainty, and model-form uncertainty. Since uncertainty is
caused by lack of information about the system, it can be
reduced by increasing our knowledge to fill the information
gap. The total uncertainty in simulation consists of these two
components, uncertainty and variability.

Input uncertainties in simulation have different sources,
including lack of data, conflicting information, conflicting
beliefs, lack of introspection, measurement errors and lack of
information about dependency, and the difficulty to incorporate
certain details of the real system due to limited modeling capa-
bilities. In the AMHS, sources of uncertainties could be due
to vehicle congestion and blocking, vehicles and equipment

breakdowns, and insufficient sample data to estimate systems’
random variables, such as interarrival and service times.

Recently, we proposed a new discrete-event simulation
framework based on imprecise probabilities to model input un-
certainties [2]. The parameters of the probability distributions
in simulation are intervals; therefore, the associated probabili-
ties become imprecise. Imprecise probabilities allow the total
uncertainty in the simulation to be represented in a concise
form. Interval-parameter statistical distributions are used to
incorporate the two components in simulations. Consequently,
interval-valued imprecise probabilities are used, and interval-
random variates are generated for simulation.

The IBS is more reliable than traditional discrete-event sim-
ulation. A simulation mechanism is reliable if the completeness
and soundness of its results with respect to uncertainties can be
verified. A complete solution includes all possible occurrences.
A sound solution does not include impossible occurrences. The
proposed simulation mechanism enables us to obtain a sound
and a complete solution by incorporating these uncertainty
components in simulation.

The remainder of this paper is organized as follows. Sec-
tion II presents a review summarizing past published papers
relevant to our work. Section III introduces the interval-
based metamodel. Section IV describes the implementation
and validation of the IBS for the AMHS. Last, Section V
concludes and briefly outlines our future work.

II. Literature Review

The objective of this paper is to use the IBS mechanism
to model AMHS in wafer fabs. Herein, we introduce the
background of our proposed simulation mechanism.

A. Input Uncertainty Quantification in Simulation

In our previous paper [2], we propose a new reliable
discrete-event simulation based on intervals to model input
uncertainties. Other related simulation techniques proposed to
account for input uncertainties include second order Monte
Carlo simulation [20], Bayesian approaches [7], [13], [36],
[37], Delta method [5], [6], and bootstrapping [3]. In the
Bayesian approaches, a prior distribution on each input pa-
rameter in the simulation is assigned to describe its initial
uncertainty. The prior distribution is then updated to a posterior
distribution based on the observed data. In the delta method,
the total simulation output variance is estimated by two terms.
The first term is the simulation variance, and the second one
is the input parameter variance. In the bootstrap approach, the
effect of input parameter uncertainty is quantified by percentile
confidence intervals. Using the available information, the pa-
rameters are first estimated by the maximum likelihood estima-
tion. The estimates are then used to draw new samples of the
observations. See [15] for a detailed review and comparison.

B. Imprecise Probability

Imprecise probability is used in our proposed IBS. Impre-
cise probability uses a set of probabilities to quantify the
uncertainty associated with an event. E, a pair of lower and
upper probabilities P(E) =

[
p, p

]
is used instead of a precise
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value of P(E) = p to represent the uncertainty. Imprecise
probability captures the total uncertainty and represents its
two components quantitatively. It provides a concise form to
improve the robustness of simulation without the traditional
sensitivity analysis operations.

Many representations of imprecise probabilities have been
proposed. For example, the Dempster–Shafer evidence the-
ory [8], [27] characterizes evidence with discrete probabil-
ity masses associated with a power set of values, where
belief–plausibility pairs are used to measure uncertainties.
The behavioral imprecise probability theory [30] models un-
certainties with the lower prevision (supremum acceptable
buying price) and the upper prevision (infimum acceptable
selling price) with behavioral interpretations. The possibility
theory [9] represents uncertainties with necessity–possibility
pairs. A random set [22] is a multivalued mapping from
the probability space to the value space. Probability-bound
analysis [10] captures uncertain information with p-boxes,
which are pairs of lower and upper distribution functions. F-
probability [34] incorporates intervals into probability values
which maintain the Kolmogorov properties. Fuzzy probability
[23] considers probability distributions with fuzzy parameters.
A cloud [25] is a combination of fuzzy sets, intervals, and
probability distributions. Recently, an imprecise probability
with a generalized interval form [31], [33] was also proposed,
where the probabilistic calculus structure is simplified based
on the algebraic properties of the Kaucher arithmetic [19] for
generalized intervals. IBS captures the total uncertainty using
the generalized interval form.

C. Interval Analysis

1) Interval Arithmetic: IBS needs to compute and analyze
interval data. Interval mathematics [24] is a generalization in
which interval numbers replace real numbers, interval arith-
metic replaces real arithmetic, and interval analysis replaces
real analysis. Interval arithmetic was originally developed to
solve the issue of numerical errors in digital computation
due to the floating-point representation of numbers, where
rounding and cancelation errors put the reliability of digital
computation at risk. Intervals not only solve the problem of
representation for real numbers on a digital scale but they also
provide a generic form to represent uncertainties and errors in
technical construction, measuring, computation, and range of
fluctuation.

Interval arithmetic considers all possibilities of variation in
worst cases in uncertainty propagation. Let

[
x, x̄

]
and

[
y, ȳ

]
be

two real intervals (i.e., x, x, y, y ∈ R) and ° be one of the four
basic arithmetic operations for real numbers, ° ∈ {+, −, ×, ÷}.
The set-based enclosure for intervals

[
x, x̄

]
and

[
y, ȳ

]
is[

x, x̄
]

°
[
y, ȳ

]
=

{
x°y|x ∈ [

x, x̄
]
, y ∈ [

y, ȳ
]}

.
The corresponding interval arithmetic operations are de-

fined for worst cases. For example
[
x, x̄

]
+

[
y, ȳ

]
= [x + y,

x̄ + ȳ],
[
xx̄

] − [
y, ȳ

]
=
[
x − ȳ, x̄ − y

]
and

[
x, x̄

] × [
y, ȳ

]
=[

min
(
xy, xȳ, x̄y, x̄ȳ

)
max

(
xy, xȳ, x̄y, x̄ȳ

)]
.

When the lower and upper bounds of an interval is equal,
the point-wise interval is the same as a real number.

In the interval arithmetic, it is guaranteed that intervals cal-
culated from the arithmetic include all possible combinations

TABLE I

Illustrations of the Semantic Extension of Generalized

Interval

Algebraic Relation: Corresponding Logic Interpretation[
x, x̄

]
+
[
y, ȳ

]
= [z, z̄]

[2, 3] + [2, 4] = [4, 7] (∀x ∈ [1, 3]) (∀y ∈ [2, 4]) (∃z ∈ [4, 7])(x + y = z)
[2, 3] + [4, 2] = [6, 5] (∀x ∈ [2, 3]) (∀z ∈ [5, 6]) (∃y ∈ [2, 4])(x + y = z)
[3, 2] + [2, 4] = [5, 6] (∀y ∈ [2, 4]) (∀x ∈ [2, 3]) (∃z ∈ [5, 6])(x + y = z)
[3, 2] + [4, 2] = [7, 4] (∀z ∈ [4, 7])(∀x ∈ [2, 3]) (∃y ∈ [2, 4])(x + y = z)

of real values within the respective input intervals, that is ∀x ∈[
x, x̄

]
, ∀y ∈ [

ȳ, ȳ
]
, ∃ z ∈ [

x, x̄
]

°
[
y, ȳ

]
, x°y = z.

For example, [1, 3] + [2, 4] = [3, 7] guarantees that ∀x ∈
[1, 3], ∀y ∈ [2, 4], ∃ z ∈ [3, 7], x + y = z.

Similarly, [3, 7]− [1, 3] = [0, 6] guarantees that ∀x ∈ [3, 7],
∀y ∈ [1, 3], ∃ z ∈ [0, 6], x − y = z.

This is an important property that ensures the complete-
ness of range estimations. When input variables are not
independent, the output results will over-estimate the actual
ranges. This affects only the soundness of estimations and
not the completeness. Some special techniques have also
been developed to avoid the range over estimations based on
monotonicity properties of interval functions.

Generalized interval [12] is an extension of the above set-
based classical interval with better algebraic and semantic
properties based on the Kaucher arithmetic [19]. A generalized
interval

[
x, x̄

]
is not constrained by x ≤ x̄ any more.

Therefore, [4, 2] is also a valid interval and is called improper.
The relationship between proper and improper intervals is
established with the operator dual. Given a generalized interval[
x̄, x

]
, dual

[
x, x̄

]
=

[
x̄, x

]
. The four examples in Table I

illustrate the interpretations for operator “+,” where the range
estimation of [

[
z, z̄

]
= [4, 7] in the first row is complete and

the estimation of
[
z, z̄

]
= [7, 4] in the fourth row is sound.

−, ×, have the similar semantic properties. The interpretation
of the intervals varies according to its type (i.e., proper or
improper) and its order in the interpreted algebraic relation.
More information of generalized interval can be found in [31]–
[33].

Based on the theorems of interpretability, the general-
ized interval provides more semantic power to help verify
completeness and soundness of range estimations by logic
interpretations.

2) Interval Statistics: The mean or average value of a set
of random intervals

{[
xi, x̄i

] |xi ≤ x̄i, xi ∈ R, x̄i ∈ R
}

, where
i = 1, . . . , N, is also an interval. It should include the
smallest possible and the largest possible means which can be
calculated from any possible enclosed real number xiε

[
xi, x̄i

]
.

Because the formula to calculate the mean is a monotone
function, the lower bound of the interval mean is just the
average of the left endpoints xi’s, and the upper bound is
the average of the right endpoints x̄i’s [14]. Therefore, the
arithmetic mean of random intervals is given by

[µ, µ̄] =

[
1

N

N∑
i=1

xi,
1

N

N∑
i=1

x̄i

]
(1)

where N is the sample size of the random intervals.
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Computing the range for the variance
[
V, V̄

]
, for a set of

intervals, is an NP-hard problem. Several algorithms [11], [14],
[35] were proposed to obtain the bounds on the variance. It
was found that V can be computed in 0(N logN) computational
steps for N interval data samples. However, computing the
upper bound of the variance V̄ requires the computational
effort that grows exponentially with the number of intervals
in the data set. Only for several special cases, such as when
intervals are not overlapped and there is no interval completely
nested in another, 0(N logN) and linear time algorithms are
available to compute V̄ . In this paper, we represent data
variation by the lower bound of interval data as

N∑
i=1

(
xi − µ

)2
/N − 1.

III. IBS

We proposed a new discrete-event simulation platform ad-
dressing the input uncertainties using intervals. The following
is an introduction of the proposed mechanism that supports
the interval metamodeling approach for AMHS.

A. IBS Modeling

Our new simulation mechanism incorporates input uncer-
tainty factors by using intervals as input parameters. This al-
lows us to simulate a range of scenarios from a set of probabil-
ities, simultaneously. For instance, we represent the probability
distribution of a random variable as exp

([
λ, λ̄

])
instead of

exp(λ). Our knowledge in the system, the level of uncertainty,
is modeled as the width of the interval parameter, i.e.,

[
λ̄ − λ

]
.

The larger the width is, the less knowledge we have about
this parameter and vice versa. This representation of statis-
tical distributions generates the lower and upper cumulative
distribution functions, as illustrated in Fig. 2. As a result, the
cumulative distribution function (cdf ) associated with an input
is no longer one crisp curve. Instead, we have a pair of cdf ’s
corresponding to the lower and upper bounds. Based on impre-
cise probabilities, a set of distributions can be enclosed within
the bounds. Fig. 2 can be read in two equivalent ways; for a
value of a random variable, the cumulative probability is rep-
resented by an interval probability

[
F (x), F̄ (x)

]
. Conversely,

for a cumulative probability F (x), a corresponding random
variate,

[
x, x̄

]
, can be generated, where x and x̄ are the lower

and upper bounds of the random interval variate, respectively.
Interval random variates instead of real-valued random

variates are generated given a particular distribution.
Consequently, the simulation proceeds using these random
intervals. The generated random intervals include all possible
random numbers which would be generated based on real-
valued cdf ’s that are enclosed by

[
F (x), F̄ (x)

]
with certain

confidence level, continuous or discrete. For the purpose
of this paper, we use the exponential distribution inverse
transform method to generate interval interarrival times.
For example, the lower and upper bounds of the random
interval

[
x, x̄

]
, are generated by a pair of cdf curves with the

parameters of λ̄ and λ, respectively, that is

x = −
(

1

λ

)
In(1 − u) and x̄ = −

(
1
λ

)
In(1 − u)

Fig. 2. Upper and lower cumulative distribution functions are used.

with a uniformly generated random number u ∈ [0, 1]. For
distributions with multiple parameters, all combinations of
the parameters need to be investigated. Then, the respective
minimum and maximum from the combinations are selected as
the lower and upper bounds of the generated interval random
variate, for instance, for a normal distribution with the mean
of

[
µ, µ̄

]
and a standard deviation of

[
σ, σ̄

]
. The inverse

transform method generates the interval random variate

[
x, x̄

]
= [min(c1, c2, c3, c4), max (c1, c2, c3, c4)]

where c1 = F−1
r

(
µ, σ

)
, c2 = F−1

r

(
µ, σ̄

)
, c3 = F−1

r (µ̄, σ), and
c4 = F−1

r (µ̄, σ̄) are real-valued random values generated indi-
vidually from each parameter combination, where F−1

r (µ, σ)
is the inverse transform of the normal distribution with a mean
µ and a standard deviation σ.

B. Interval Parameterization

An important question is how we select the probability
distributions’ interval parameters. If it is possible to collect
data for an input random variate of interest, the set of data is
used to fit a theoretical interval-based distribution form. First,
the data is used to build a theoretical distribution with real-
valued parameters as the traditional approach states. Based on
the obtained distribution with real-valued parameters and the
available data sample size, n the lower and the upper bounds
of the interval parameters are estimated. The parameter bounds
are calculated such that all possible real-valued scenarios are
included in the simulation output with certain confidence level
of (1 − α) at any order r = 1, 2, . . . , n.

This confidence is interpreted as the probability of having
an assumed real-valued random variable x bounded by the
corresponding random interval

[
x, x̄

]
at any cumulative prob-

ability p in cdf. If the simulation is run from any real-valued
parameter bounded by the interval parameter, the associated
random variable at order r is given as xr. This random variable
is desired to be included within the interval

[
xr, x̄

]
with a

certain level of confidence as follows:

P (xr ∈ [xr, x̄r]) ≥ 1 − α. (2)

If the independence of the lower and upper bounds is
assumed, the probability in (2) can be written as follows:

P (xr ≤ xr ≤ x̄r) = P
(
xr ≤ xr

)
(1 − P (x̄r ≤ xr)) . (3)
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Order statistics is used to ensure that the probability in (3)
at any order r is at least (1 − α). If the real-valued variables
are ordered as x(1), x(2), . . . , x(n), the corresponding value of
the cumulative probability p associated with the rth ordered
observation is given by (r −0.5)/n. The sampling distribution
of the transformed order statistics cdf is given by Gr(x). Gr(x)
is interpreted as the probability that at least r observations in
the sample do not exceed x and can be calculated [29] as
follows:

Gr(x) =
n∑

j=r

[(
n
j

)
(F (x))j(1 − F (x))n−j

]
(4)

where F (x) is the cdf of any random variable. Based on
the ordered statistics sampling distribution, the probability of
having the rth random variable xr between the rth bounds of
the interval random variable

[
xr, x̄r

]
is given by

P(xr ≤ xr ≤ x̄r) = G(xr)(1 − Ḡ(xr)) (5)

where G(xr) and Ḡ(xr) are the upper and the lower sampling
distribution, respectively. To find the lower parameter interval
limit at any order r, we set the upper sampling distribution
G(xr) to (1 − α) as follows:

n∑
i=r

[(
n
j

)
(F (xr))

j (1 − F (xr))
n−j

] ≥ 1 − a (6)

where xr is calculated from the inverse transform of the
assumed distribution function with real-valued parameters as
follows:

xr = F−1

(
r − 0.5

n

)
. (7)

The probability in (5) can be used for any probabilistic
distribution function by replacing the upper cumulative distri-
bution function F (x) with the corresponding distribution form.
In computing the lower interval parameter limit of F (x), a real
value is first assumed. Then, it is decreased gradually until the
desired probability of (1 − α) is achieved.

On the contrary, for the upper interval parameter limit, we
set the complement of the lower sampling distribution at any
order r

(
1 − Ḡr(x)

)
to (1 − α) as follows:⎛

⎝1 −
n∑

j=r

[(
n
j

) (
F̄ (xr)

)j (
1 − F̄ (xr)

)n−j
]⎞⎠ ≥ 1 − α. (8)

As well, the probability in (8) can be used for any proba-
bility distribution function by replacing the lower cumulative
distribution function F̄ (x) with the corresponding distribution
form. Similarly, in computing the upper interval parameter of
F̄ (x), it is obtained by increasing its value until the probability
of (1 − a) is achieved.

Here, we derive the specific form of (6) and (8) for the
exponential distribution to demonstrate the use of the derived
equations. Assume a stochastic process follows an exponential
distribution with an estimated real-valued mean. An interval
exponential distribution with the mean of

[
β, β̄

]
is used to

enclose the real-valued cdf, where β ∈ [
β, β̄

]
. The upper

bound cdf is associated with β and the lower bound cdf is with

β̄, substituting the exponential upper cumulative distribution
function F (xr) = 1 − e

−xr/β and the random variate as follows:

xr = −β ln

(
1 − r − 0.5

n

)
. (9)

At order r in (6), we obtain the following:

P(xr ≤ xr) =
n∑

j=r

⎡
⎣ (

n
j

) (
1 − (

1 − r−0.5
n

)β/β
)j

((
1 − r−0.5

n

)β/β
)n−j

⎤
⎦ . (10)

Substituting the exponential lower cumulative distribution
function F̄ (x) = 1 − e−x/β̄ and the random variate xr in (9) at
order r in (8), we get the following:

P(xr ≤ x̄r) = 1 −
n∑

j=r

⎡
⎢⎣

(
n
j

) (
1 − (

1 − r−0.5
n

)β/β
)j

((
1 − r−0.5

n

)β/β̄
)n−j

⎤
⎥⎦ . (11)

We calculate the lower interval mean β at any order r as
follows. First, we set β = β. Given a particular value of β

and the available sample size n, we start gradually reducing
the value of β and compute the probability of enclosure using
(10) repeatedly until it reaches the predetermined probability
of (1 − α). The resulted β is the value satisfying the desired
probability at the predetermined order r. Similarly, we use (11)
to find β̄ for the desired probability of enclosure by gradually
increasing the initial value of β̄ = β. Since the parameter is
sensitive up to three significant digits, 0.001 is used as the
incremental step size.

The factors that decide the lower and the upper bounds of
the interval parameters include: 1) sample size n; 2) the desired
confidence of enclosure (1 − α); and 3) the order r. First, as n
increases, the parameters’ bounds get narrower. This is because
the uncertainty related to the random variable decreases by
increasing the sample size. Second, as the desired degree of
enclosure (1 − α) increases, the bounds have to be wider
to enclose all possible real-point parameters. For a desired
enclosure of (1 − α), we notice that the ratio of β̄/β obtained
is the same for a particular order r and a sample size of n. This
also applies to the ratio of β/β. Given n = 100 and α = 0.1,
Fig. 3(a) and (b) depicts the ratio of β/β and β̄/β with the
orders r = 1, 2...1000, respectively.

Due to the narrow width of the cdf bounds, i.e., the
cdf curves become flatter at those bounds, it becomes more
difficult to bound the real-valued variable at small and very
large orders. If we use the interval parameter obtained at these
orders, we are estimating a complete solution that includes all
possible occurrences at all orders. For instance, the lower mean
at these orders has the minimum value, and on the contrary,
the upper mean has the maximum value. The ratios for the
lower and the upper parameters to the real-valued mean are
approximately the same for middle orders. The simulation
analyst can choose the interval-parameter associated with any
order r based on the desired level of including all possible
solutions. If a complete solution is desired, the analyst uses
the smallest order, r = 1 to include all possible mean values
of all orders. The associated mean at order r = 1 is the
smallest and the largest possible parameter value for the lower
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Fig. 3. (a) Ratio of β/β with order r. (b) Ratio of β̄/β with order r.

and the upper bounds, respectively. According to the desired
level of enclosure to the possible solutions, each simulation
analyst then select a certain order r. In this paper, we use
order r = 100 with a confidence level of α = 0.1 to estimate
the interval-parameters needed in simulation.

IV. AMHS Metamodel

The AMHS metamodel is an abstraction of the detailed
simulation model. In our implementation, we represent the
exact process routes by a number of move requests and their
routing probability obtained from the detailed simulation.

A. System Description

The general layout of the example used to represent the
AMHS is composed of 24 machines: 48 stations (24 loading
and 24 unloading stations). This layout is based on a 300 mm
virtual semiconductor fabrication facility developed and pub-
lished by International SEMATECH [26]. The vehicles travel
on a unidirectional closed-loop at a constant speed of 3 f/s. The
product family modeled is SEMATECH’s 300 mm aluminum
process flow for 180 nm technology. Such technology node
contains 6 metal layers and 21 masks. For this single product
family, ten products are continuously released into the process.
The release rate is 20 000 wafers per month (wpm). The
processing route consists of approximately 316 operations
(i.e., steps). In addition, there are 60 different workstations
and about 300 tools. Wafers travel in carriers (lots) that
hold 25 units. The 300 mm Wafer Fab Model has 24 bays
arranged using a spine layout configuration similar to the
layout previously shown in Fig. 1. We will only model the
central aisle, also referred to as the interbay AMHS that
transfers the wafers between the 24 bays. A schematic of the
interbay system is shown in Fig. 4.

The software used for detailed simulation is AutoMod 11.1.
In order to obtain steady-state estimates, we start with an
empty system and warm it up until it reaches steady state as
indicated by the steady level of work-in-process in the system.

Fig. 4. Schematic of the modeled interbay system.

Fig. 5. Object-oriented modeling for AMHS implemented in JSim.

After the warm-up period, all the appropriate statistics are
collected. We refer to the results obtained from this simulation
as “detailed results” because this simulation model explicitly
models the wafers movement between the different bays, and
these are assumed to be accurate estimates.

B. Interval-Based Metamodel

The metamodel is implemented in a java-based object-
oriented simulation package, JSim. JSim is considered the
basic platform to execute the IBS. Any extension to new
objects can be built and added to the package. Object-oriented
languages, like Java, are flexible to allow for customized
models of different applications. In JSim, we use Source to
represent the bays that generate the Entities (group of wafers,
also referred to as lots) with given interarrival times. Server
is used to characterize the vehicles that transfer Entities in the
interbay system. Finally, exits in the system are represented
using a Sink to dispose an entity upon the end of its service
time. Fig. 5 illustrates the object-oriented modeling for the
AMHS in JSim.

Essentially, the metamodel does not explicitly model the
wafers’ flow through each bay in its process route. Instead,
details concerning the processing of wafers are implicitly
represented by the number of move requests received by the
AMHS. These moves are summarized in the metamodel as
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“From-To” matrices, which describe the rate of moves between
two different bays of the fab. The From-To matrices are
generated from the production volume and the process route
of the products in SEMATECH’s model. The basic unit in
the metamodel is the vehicle that is dedicated to one move
request, and each move request is considered a single lot that
represents a group of 25 wafers. Our metamodel does not
study what happens to a move request after it gets delivered
to its destination. The from-to matrix represents the frequency
of moves between each two bays, which was created from
the product recipe (route) in the detailed simulation. The
metamodel results are referred to as “IBS Metamodel Results.”
In this paper, we implemented two dispatching rules. oldest
load closest vehicle (OLCV) and closest load closest vehicle
(CLCV). The two dispatching rules are implemented in two
models to incorporate the differences in deciding the priorities
for processing wafer fabs using the two rules.

C. Interval Input Random Variates

In this AMHS system, it is assumed that we do not
have enough information to be certain about the parameters
of the interarrival times for the bays. Only 1000 sample-
points from the “detailed simulation” are collected to fit an
exponential distribution with real-valued parameter β using
the maximum likelihood estimator (MLE) for each bay. Based
on the value obtained from the MLE, the proposed interval-
parameterization technique in Section III-B is used to find the
interval mean of the exponential distribution for the interarrival
times at order r = 100 with α = 0.1. The obtained ratios of

β

β̄

and β̄

β̄
are 0.8506 and 1.1831, respectively. Hence, we multiply

these ratios by the real-valued mean obtained from the MLE
for each bay to find the interval mean. For example, the real-
valued average interarrival time obtained for the first bay is
β = 2347.40 s. Hence, the corresponding interval mean at
r = 100 is

[
β, β̄

]
= [0.8506β, 1.1831β] = [1996.70, 2777.21].

The interarrival times of entities of the 24 bays with the real-
valued parameters and the associated intervals are available
upon request. Because order r = 100 is selected out of
n = 1000, at least 90% enclosure of the ordered real-valued
random variates between their corresponding interval variates
is guaranteed. Moreover, a probability of at least (1−α) = 90%
is guaranteed to enclose the real-valued variate between the
bounds of interval variate at each order. For instance, if we
run these bounds n times, we are confident that at least n(1−α)
times the interval variates enclose the real variates generated
from the exponential distribution exp(β).

The obtained intervals for the interarrival times in Table II
are used to run the metamodel to enclose the detailed simula-
tion results. Note that no entities are generated from bays 6 and
23. Bays 6 and 23 have no flows based on the SEMATECH
model. Additionally, travel times of vehicles are assumed to
be constant. The routing probabilities matrix and the vehicles’
from-to travel times matrix used to generate our results are
available upon request.

D. Metamodel Simulation Process

As mentioned previously, we study two dispatching rules to
serve the entities for this metamodel: 1) OLCV, and 2) CLCV.

TABLE II

Interarrival Times Real-Point Exponential Means and

Intervals (s)

Bay Real-point Mean (s) Interval Mean (s)
1 2347.40 [1996.70, 2777.21]
2 2002.39 [1703.23, 2369.03]
3 1164.78 [990.76, 1378.05]
4 1270.86 [1080.99, 1503.55]
5 1170.68 [995.78, 1385.03]
6 0 [0, 0]
7 2345.79 [1995.33, 2775.31]
8 303.92 [258.51, 359.56]
9 3496.66 [2974.26, 4136.89]
10 563.48 [479.29, 666.65]
11 881.46 [749.77, 1042.85]
12 1280.50 [1089.19, 1514.96]
13 1407.37 [1197.11, 1665.06]
14 1401.75 [1192.33, 1658.42]
15 1396.91 [1188.21, 1652.69]
16 2332.05 [1983.64, 2759.05]
17 2331.11 [1982.84, 2757.94]
18 2791.37 [2374.34, 3302.47]
19 4675.92 [3977.33, 5532.08]
20 7061.44 [6006.46, 8354.39]
21 1993.41 [1695.60, 2358.41]
22 2327.75 [1979.98, 2753.96]
23 0 [0, 0]
24 1759.17 [1496.35, 2081.28]

The OLCV dispatching rule ensures that waiting entities are
served based on a first-in-first-out principle while selecting the
closest idle vehicle to serve the entities. Similarly, the CLCV
dispatching rule selects the closest vehicle to serve an entity.
However, it serves the closest waiting entity when a vehicle
becomes idle. The two scenarios are simulated in this paper
varying the fleet size between 8 and 10 vehicles.

In IBS, entities are generated with interval arrival times, i.e.,[
ai, āi

]
for entity i. An important question here is which entity

to serve first when the interval arrival times of the entities
overlap. We decide the sequence of serving entities based on
the upper bounds of their interval arrival times āi, i.e., the latest
time the entities arrive at the system. Therefore, the entities
arrive at time

[
ai, āi

]
and leave the system at a departure time

given as
[
di,d̄i

]
for entity i[
di, d̄i

]
=

[
ssti, sst

]
+

[
si, s̄i

]
(12)

and
[
si, s̄i

]
is the interval service time to transfer entity

between the bays including the loading time. The interval
service time is considered as a point-wise interval, i.e., si, s̄i,
because service times are assumed to be constant. Following a
predetermined dispatching rule, the interval service start time
for entity i, denoted as

[
ssti, ssti

]
is determined by[

ssti, ssti
]

= [max(ai, di−1), max(āi, d̄i−1)]. (13)

From the IBS metamodel, we are interested in calculating
the interval response time to move requests. The response time
to a move request, i.e., the waiting time in the queue, is the
sum of the waiting time until a vehicle becomes idle and the
travel time of empty vehicle to the load location. In addition,
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we study the enclosure of these intervals to the real-valued
response time to move requests obtained from the detailed
simulation. The interval response time to move requests is
now calculated as follows:[

wi, wi

]
=

[
ssti, ssti

] − dual
[
ai, āi

]
. (14)

Equation (14) gives a range estimate to the waiting time of
the entities to be served. The dual operator is used to estimate
a sound solution to the response time to move requests
in comparison with the complete solution that results from
the interval arithmetic to estimate best-case and worst-case
scenarios. The solution provided by (14) is a sound solution
that does not include impossible solutions. Hence, some real-
valued solutions may be out of the calculated bounds from
(14). But they all are bounded by the complete solution from
the following: [

wi, wi

]
=

[
ssti, ssti

] − [
ai, āi

]
. (15)

However, the complete solution usually overestimates and
gives every wide bounds. In this IBS metamodel, we use (14)
for calculations. Assume that entity interval arrival time is
given as [12.34, 17.64] s and the interval service start time
is given as [18.45, 25.65] s. If (14) is used to estimate the
interval response time, the solution is [6.11, 8.01] s and its
interpretation is as follows:

(∀ai ∈ [12.34, 17.64])(∀w↓i ∈ [6.11, 8.01]])
(∃ssti ∈ [18.45, 25.65])(ssti − dual(ai) = wi).

(16)

However, if (15) is used to calculate the interval response
time, the complete solution is [0.81, 13.31] s and interpreted
as follows:

(∀ai ∈ [12.34, 17.64])(∀ssti ∈ [18.45, 25.65])
(∃ wi ∈ [0.81, 13.31])(ssti − ai = wi).

(17)

Moreover, we represent the variation in the interval response
time obtained from the IBS by calculating the standard devi-
ations for the lower bounds wi ’s.

In addition, the vehicles’ utilization is measured by the
percentage of time the vehicle is loaded, travels with entities,
and unloaded. In the IBS metamodel, the vehicles’ average
utilizations are given as real-valued estimates. The average
utilization are calculated as the percentage of time the vehicles
travel to serve an entity, regardless of whether the entity arrives
at its lower bound ai, or its upper bound āi.

Such models are valuable to early stages of design because
it allows the designer to experiment with different design
strategies for the number of vehicles and the flow path layout.
Increasing the number of vehicles has the potential to reduce
the expected response time to move requests, which is directly
related to the production cycle time of the wafers. Reducing
the production cycle time is always a priority for fabs because
of the short life span of these types of products. However, there
is an optimal number of vehicles to install, beyond which the
improvement in response time is marginal and may not be jus-
tifiable financially. Fab designers benefit from the metamodel
as it provides fast answers to different design scenarios. The
importance of monitoring the standard deviation of response

Fig. 6. Average response times to move requests for OLCV: eight vehicles.

times is twofold: first, inconsistent response times translate to
inconsistent delivery times to the end customer, an undesirable
and expensive situation as increased variability is directly
related to increased levels of safety stocks. Second, from
simple queueing formulas, we know that increased variability
propagates through a manufacturing line and increases the
work-in-process and the queueing delays at subsequent stages.

E. Comparison of the Metamodel Results to the Detailed
Simulation Output

In the JSim implementation of the IBS metamodel, we
executed n = 5 independent replications for both OLCV and
CLCV scenarios. The number of replications was selected so
that the confidence intervals of the simulation outputs have a
half-width to mean ratio of less than 5%. Each replication has
a length of m = 200 days. Conservatively, we chose a warm-up
period of l = 100 days to reach the steady-state. This section
summarizes the simulation results. The performance measures
include the interval time to move request

[
wi, w̄i

]
, the standard

deviation of the lower bounds s(wi), and the average utilization
of the vehicles ρ, with respect to the two dispatching rules.

1) Oldest Load Closest Vehicle Rule: First, we present
the results obtained from the OLCV dispatching rule with the
simulation of eight and ten vehicles to transfer entities. The
simulation results of the average response time using eight
vehicles are shown in Fig. 6. We compare the lower and upper
bounds obtained from the IBS with the detailed simulation
results obtained from AutoMod.

The lower and the upper estimates of the interval results
enclose the detailed simulation results. Thus, the uncertainties
associated with the interarrival times of the entities at the
bays are incorporated. For instance, we report the response
time for bay 1 as [76.35, 131.33] s as opposed to the detailed
real-valued simulations that only give an estimate of 81.64 s.
The interval estimations of the performance measures are
considered more reliable as it provides a range of solutions that
enclose the detailed simulation results incorporating uncertain-
ties in the interarrival times. The gap between the interval
bounds and the detailed simulation results is due to modeling
the uncertainty component in simulation, which is expected
and desired. From the results, we notice that the differences
between the bounds and the detailed simulation results are
consistent for the different bays in the system.

One might ask how these intervals differ from the standard
confidence intervals. We answer this concern by referring to
these traditional methods as statistical measures that incor-
porate only the variability component in their estimates. For
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Fig. 7. Standard deviation of response time to move requests for OLCV:
eight vehicles.

instance, the traditional confidence interval limits represent a
lower and upper bounds of the estimates based on a marginal
error in the readings with a certain level of confidence. The
interval limits are calculated as the mean value of the outputs
of multiple simulation runs +/- a quantity that represents the
standard deviation in these outputs. The standard deviation
is attained within these readings because of the different
random number streams used in the simulation runs. Given
that all simulation runs use a fixed value of the parameters,
the interpretation of this interval is that the average mean of the
performance measure is included between these interval limits
with a certain level of confidence. They do not represent the
uncertainty in their bounds. However, our interval estimates
incorporate the variability and the uncertainty components
explicitly in each single simulation run. The input distributions
with imprecise parameters provide interval estimates to the
performance measures of interest from each simulation run.
Because the uncertainty is propagated in the simulation runs,
our intervals are not a result of running multiple simulation
runs. Instead, they are obtained from running the IBS with
imprecise parameters where uncertainty is incorporated within
one single run. In addition, in traditional simulation output
analysis, confidence intervals are indicators of the confounded
effect of variability and uncertainty. In IBS, the effects of
the two components are quantified separately and can be
treated in different ways in decision making. Therefore, the
IBS intervals results are considered more reliable than the
traditional confidence intervals.

Furthermore, the standard deviations of the lower bound
response times are collected and compared with those from the
detailed simulation. Fig. 7 depicts the difference in the stan-
dard deviations for the detailed and IBS metamodel with eight
vehicles. The standard deviations from the detailed simulation
are larger than the ones obtained from the IBS metamodel.
However, they both follow the same pattern for different bays.
The lower standard deviation of the IBS metamodel is less than
that from the detailed simulation model because it is calculated
from the lower response times. Because of the equal values of
mean and standard deviation in an exponential distribution, the
lower response times resulted from the simulation of entities
arriving at the system have a lower variability.

In addition, the average utilization of the eight vehicles is
reported as 56.66% for the detailed simulation, and 48.70% for
the IBS metamodel. The difference is due to that the vehicle
traveling times in the IBS metamodel are averages of the actual
ones in the detailed model without variations.

Fig. 8. Response time to move requests for OLCV: ten vehicles.

Fig. 9. Standard deviation in response time to move requests for OLCV: ten
vehicles.

Fig. 8 presents the response times to move requests with ten
vehicles. In this setting, the system becomes more saturated
with more vehicles and the response time decreases as the
availability of the vehicles increases. The increase in avail-
ability of the vehicles reduces the uncertainty in the response
times to move requests. In other words, the response times
to move requests in such scenarios are less uncertain because
there are more vehicles to serve the entities whether they arrive
at their lower or upper arrival times. Therefore, the differences
between the response times from the detailed simulation and
the lower or upper bounds from the metamodel are small. The
response times of the detailed simulation for all bays except
bays 1, 8, 11, 14, and 24 are enclosed by the corresponding
intervals from the IBS metamodel. When order r = 100 was
selected, we were aiming a 10% of enclosure for each bay
separately not for all the bays together. This is interpreted
as follows: the intervals means at each bay includes at least
90% of real-point means obtained from traditional simulation.
Again, the lack of complete enclosure using ten vehicles
in simulation is because the system is more saturated with
vehicles than it is needed.

The standard deviations associated with the response times
using ten vehicles are illustrated in Fig. 9. The standard
deviations for response times in the detailed simulations are
slightly greater than the standard deviations of lower bounds
from the IBS metamodel. Again, both estimates follow the
same pattern. The utilization of the ten vehicles from the
detailed simulation is given as 43.38% down to 39.94% for
IBS metamodel.

2) Closest-Load Closest-Vehicle Rule: We also model the
AMHS using the CLCV dispatching rule for eight and ten
vehicles. Fig. 10 presents the average response times for eight
vehicles and the standard deviation of the response times
for each bay. The average response times obtained from the
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Fig. 10. Response time to move requests for CLCV: eight vehicles.

Fig. 11. Standard deviation in response time to move requests for CLCV:
eight vehicles.

Fig. 12. Response time to move requests for CLCV: ten vehicles.

detailed simulation are well-enclosed between the lower and
the upper bounds obtained from the IBS metamodel.

Fig. 11 compares the standard deviations of the lower
bounds from the metamodel and the ones from the detailed
simulation. The average utilization of the vehicles for this
scenario is reported as 54.60% for the detailed simulation and
as 48.26% for the IBS metamodel.

As for ten vehicles, the simulation results are summarized
in Figs. 12 and 13. The average response times obtained from
the detailed simulation model are not well enclosed within the
bounds of IBS metamodel. As mentioned above, the reason is
due to the increased number of vehicles. Hence, the average
response time is comprised mostly of travel times of empty
vehicles to the waiting entities. Vehicles are mostly available
when a request is issued. In addition, the standard deviations
of the two simulations are quite close to each other with at
most 16.28% of relative differences. The average utilizations
of vehicles are 41.47% for the detailed simulation and 35.62%
for IBS metamodel. There is no relationship noticed between
the selected dispatching rule and the enclosure of the IBS
results to the detailed simulations outputs. The enclosure of
the IBS to the detailed simulation is shown for most of the
bays regardless of the dispatching rule.

In summary, the IBS metamodel offers interval estimations
for average response times enclosing the detailed simulations

Fig. 13. Standard deviation in response time to move requests for CLCV:
ten vehicles.

with certain level of confidence. Moreover, the interval esti-
mations model input uncertainties in the interarrival times of
entities. The input uncertainties come from unknown depen-
dency between bays, machine breakdown, and vehicle con-
gestion. The standard deviations obtained from lower bounds
follow the same pattern as the detailed simulation variations.
However, the IBS standard deviations are less than the corre-
sponding results obtained from the detailed simulations. The
vehicles’ utilizations calculated from IBS are also smaller than
the detailed simulation estimates.

The simulation time based on the metamodel is significantly
reduced. On a dual-processor workstation, one run of the IBS
model takes less than 2 min, whereas the detailed simulation
requires 30 min on average.

V. Conclusion

In this paper, we proposed an AMHS metamodel to simulate
a 300 mm wafer fab. It was based on a new interval-based
discrete-event simulation. The parameters of probability distri-
butions for the interarrival times in the simulation are intervals
instead of traditional precise numbers. We implemented the
metamodel in a java-based object-oriented simulation package.
The obtained interval estimates to the mean response time
are considered more reliable compared to the real-valued
estimates, since they incorporate the total uncertainty in sim-
ulation. The IBS enables logical interpretation of its solutions
where the completeness and soundness of the results can be
verified with respect to uncertainty. More research is needed to
quantify the enclosure probability of the complete and sound
solutions obtained from the IBS.

Experimental comparisons indicated that the IBS meta-
model performs very well for estimating the average and
standard deviation of response times at each bay. They are crit-
ical performance measures when evaluating the AMHS. Our
numerical results also showed that the metamodel enclosure
of the detailed simulation results deteriorates as the servers
(vehicles in this case) are under-utilized. This is expected
because as the AMHS becomes less congested, uncertainty
in its performance reduces and the advantage of interval
performance measures becomes less obvious.

It has been noted earlier that the significance of the
metamodel is the simplification of simulation models but
still incorporating the effects of uncertain factors, such as
vehicle congestion and blocking, and vehicles and equipment
breakdowns. There is also substantial room for improvement in
our metamodel. For example, we can model the specifics of the
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path layout design in order to allow for its uncertainties prop-
agation through our model and obtain more reliable results.

Further research is needed to study the dispersion associated
with the interval data obtained from the IBS. Currently, we
use the standard deviation of lower bounds to measure the
dispersion of intervals. New interval-based statistics will be
more reliable. More investigation of the logical interpretations
from the interval results is also needed. This can help us
to understand more simulation details thus support robust
decision making in layout selection.
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