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Abstract: Sampling efficiency is important for simulation-based design optimization. 

While Bayesian optimization (BO) has been successfully applied in engineering problems, 

the cost associated with large-scale simulations has not been fully addressed. Extending 

the standard BO approaches to multi-fidelity optimization can utilize the information of 

low-fidelity models to further reduce the optimization cost. In this work, a multi-fidelity 

Bayesian optimization approach is proposed, in which hierarchical Kriging is used for 

constructing the multi-fidelity metamodel. The proposed approach quantifies the effect of 

HF and LF samples in multi-fidelity optimization based on a new concept of expected 

further improvement. A novel acquisition function is proposed to determine both the 

location and fidelity level of the next sample simultaneously, with the consideration of 

balance between the value of information provided by the new sample and the associated 

sampling cost. The proposed approach is compared with some state-of-the-art methods for 

multi-fidelity global optimization with numerical examples and an engineering case. The 

results show that the proposed approach can obtain global optimal solutions with reduced 

computational costs. 

 

Keywords: Bayesian optimization, efficient global optimization, multi-fidelity 

optimization, hierarchical Kriging model, sequential sampling, constrained optimization 

 

1. Introduction 

Bayesian optimization (BO) is a metamodel based global optimization approach, 

where the search process is assisted by constructing and updating a metamodel iteratively, 

and the sequential sampling is guided by an acquisition function to incorporate uncertainty 

(Ghoreishi and Allaire 2019; Tran et al. 2019b). The construction of metamodels helps 

improve the search efficiency, while the sequential sampling guided by the acquisition 

function reduces the overall number of samples. The sequential sampling strategy is 

particularly helpful when high-cost simulations or physical experiments are involved. 

Different definitions of acquisition functions have been developed to balance between 

exploration and exploitation, such as expected improvement (EI), probability of 

improvement, and lower confidence bound. BO with the EI acquisition function is also 

called efficient global optimization (EGO) by some researchers. 
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Similar to other metamodel based global optimization methods (Queipo et al. 2005; 

Wang and Shan 2007), the computational challenge for BO to solve large-scale problems 

still exist. Because the number of samples to cover the search space grows exponentially 

as the dimension of the space increases. Multi-fidelity (MF) surrogate modeling is one 

approach to reduce the cost by combining sample points predicted by high-fidelity (HF) 

and low-fidelity (LF) models to construct the surrogates, since running LF models is less 

costly (Huang et al. 2006; Jones 2001; Shu et al. 2019a; Xiong et al. 2008; Zhou et al. 

2017). The existing MF metamodels can be categorized as three types. The first type is the 

scaling function based MF metamodeling, which tunes the LF model according to the HF 

model responses (Chang et al. 1993; Zhou et al. 2015). The second type is space-mapping 

MF metamodels, in which a transformation operator is applied to map the LF design space 

to the HF space and the optimal sample point in the HF space can be estimated (Bakr et al. 

2001; Bandler et al. 1994; Koziel et al. 2006). The third type is MF Kriging models, such 

as co-Kriging model (Kennedy and O'Hagan 2000) and hierarchical Kriging model (Han 

and Görtz 2012). Co-kriging models are constructed with the information of covariance 

between the LF and HF samples. However, they are constructed based on the nested HF 

sample points, which adds limitations in their applications. In hierarchical Kriging models, 

the LF Kriging model is directly used as the trend of the MF metamodel, without the 

requirement of nested sample points (Han and Görtz 2012; Zhang et al. 2018). Hierarchical 

Kriging allows designers to choose sample points more freely in the optimization process. 

Because of its flexibility in sampling, hierarchical Kriging received much more attentions 

in engineering design optimization (Courrier et al. 2016; Palar and Shimoyama 2017; 

Zhang et al. 2015). MF metamodels for multi-objective optimization (Shu et al. 2019b; 

Zhou et al. 2016), incorporating gradient information (Song et al. 2017; Ulaganathan et al. 

2015), and adaptive hybrid scaling method (Gano et al. 2005) have also been developed.  

The acquisition guided sequential sampling has been applied in MF metamodel based 

design optimization. For instance, Xiong et al. (Xiong et al. 2008) applied the lower 

confidence bound in sequential sampling to construct MF metamodels. Kim et al. (Kim et 

al. 2017) used the EI acquisition function for hierarchical Kriging model. However, these 

methods merely adopt the high-fidelity simulation data to update the MF metamodels. The 

acquisition functions were only applied to determine the locations of new samples, while 
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the different costs associated with LF and HF samplings are not considered. To solve this 

problem, Huang et al. (Huang et al. 2006) developed an augmented EI acquisition function 

for co-kriging, in which EI is augmented by the correlation of predictions between different 

fidelity models and a ratio of sampling costs so that both the sample location and the fidelity 

level can be determined by maximizing the acquisition. Liu et al. (Liu et al. 2018) improved 

the augmented EI criterion with the consideration of the sample cluster issue to reduce the 

computational cost of the co-kriging. Ghoreishi et al. (Ghoreishi et al. 2018) proposed to 

identify the next best fidelity information source and the best location in the input space 

via a value-gradient policy. Then they considered more information sources with different 

fidelity levels and explicitly account for the computational cost associated with individual 

sources (Ghoreishi et al. 2019). Zhang et al. (Zhang et al. 2018) proposed a multi-fidelity 

global optimization approach based on hierarchical Kriging model, in which an MFEI 

acquisition function is extended from EI with different uncertainty levels corresponding to 

the samples of low and high fidelities. Tran et al. (Tran et al. 2020)  proposed to combine 

the overall posterior variance reduction and computational cost ratio to select the fidelity 

level. 

In this paper, a new MF Bayesian optimization (MFBO) approach with the 

hierarchical Kriging model is developed. A MF acquisition function based on a new 

concept of expected further improvement is proposed, which enables the simultaneous 

selections of both location and fidelity level for the next sample. The different costs of HF 

and LF samples as well as the extra information of HF samples are considered altogether. 

A constrained MF acquisition function for unknown constraints is also introduced. The 

proposed MFBO approach is compared with the standard EGO method and the MFEI 

method (Zhang et al. 2018) using five numerical examples and one engineering case. 

The remainder of this paper is organized as follows. In Section 2, the hierarchical 

Kriging model and standard EGO method are reviewed. In Section 3, the proposed MFBO 

approach and the new acquisition function are described in details. Five numerical 

examples and one engineering case study with the comparisons of results are presented in 

Section 4, followed by concluding remarks in Section 5. 

 

2. Background 
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2.1 Hierarchical Kriging 

Hierarchical Kriging is a MF metamodeling method, in which the LF Kriging model 

is taken to predict the overall trend whereas the HF samples are used to correct the LF 

model. The metamodel can be expressed as 

0
ˆ( ) ( ) ( )lY y Z x x x  (1) 

where ˆ ( )ly x  is the predicted mean of the LF Kriging model, which is constructed based 

on LF sample points, 
0  is a scaling factor, and ( )Z x  is a stationary random process with 

zero mean and a covariance of  

2[ ( ), ( )] ( , )Cov Z Z ' R 'x x x x  (2) 

where 2  is the process variance. ( , )R 'x x  is the spatial correlation function which only 

depends on the distance between two design sites, x  and 'x . Given HF sample points 

,1 ,2 ,{ , ,..., }h h h h nX x x x  and their responses ,1 ,2 ,( ) { ( ), ( ),..., ( )}h h h h h nf f ff X x x x , the 

predicted mean and variance of the hierarchical Kriging model at an unobserved point can 

be calculated as 

T -1

0 0
ˆ ˆ( ) ( ) ( ) [ ( ) ]l h hy y    Fx x r x R f X  (3) 

and 

 T -1

0 0
ˆ ˆMSE ( ) ( ) ( ) [ ( ) ]l h hy y    Fx x r x R f X  (4) 

respectively, where ( )r x  is the correlation vector with elements 
i

( ) ( , ),
i i hr R x x x x X . R  

is the correlation matrix with elements 
i j i j

(i, j) = ( , ), , hR R x x x x X . F  is the vector of 

predictions by the LF Kriging model at the locations of HF samples. The Gaussian 

correlation function  

2

1 1

( , ) ( , ) exp( )
m m

k k k k

k k

R R x x x x 
 

     
' '

x x  (5) 

is used in this paper. The hyper-parameters of hierarchical Kriging can be trained by 

maximizing the likelihood function 

0 0

0

1

2

22

( ( ) ) ( ( ) )1 1
( , , ) exp( )

2(2 )

T

h h h h

n
L

 
 




 

 
F R F

R

f X f X
  (6) 

More details of hierarchical Kriging can be found in (Han and Görtz 2012). 
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2.2 Efficient global optimization approach 

The EGO is a Bayesian optimization method where the EI acquisition function is used. 

The standard EGO method was originally proposed by Jones et al. (Jones et al. 1998) for 

expensive black-box problems. For Kriging and hierarchical Kriging models, the 

prediction at an unsampled point x  can be regarded as a random variable and obeys a 

normal distribution 2
ˆ( ) ~ ( ), ( )( )Y yN x x x , where ˆ ( )y x  and 2

( ) x  are the predicted mean 

and variance. The improvement at x  for a minimization problem is 

min( ) max( ( ),0)I f Y x x  (7) 

where 
minf  is the best solution in the current sample set. The expected improvement is 

min( ) [max( ( ),0)]EI E f Y x x  (8) 

By expressing the right-hand side of Eq. (8) as an integral, one can obtain the EI in the 

closed form as 

min min
min

ˆ ˆ( ) ( )
ˆ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

y y
y

f f
EI f  

 

 
   

x x
x x x

x x
 (9) 

where ( )   and ( )   are the probability density function and cumulative distribution 

function of the standard normal distribution, respectively. The EGO method helps obtain 

the next sample point by maximizing the EI function expressed in Eq. (9). Then the new 

sample point is used to update the metamodel. The iteration continues until the algorithm 

converges. More details of EGO can be found in (Jones et al. 1998). 

 

3. The Proposed MFBO Approach 

The standard EGO method provides a way to select a new sample point in single-

fidelity optimization. However, in MF optimization, the decision of choosing the next 

sample at either HF or LF level needs to be made to update the MF metamodel. In the 

proposed MFBO, a new acquisition function is developed to support the sequential 

sampling strategy for selecting sample points of different fidelity levels adaptively in MF 

optimization. 

3.1 Acquisition function based on the expected further improvement 

In general, HF sample points are more expensive to obtain but can provide more 

precise information, whereas LF sample points are less costly but less reliable. In MF 
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optimization, the sample points in both HF and LF levels are chosen to update the MF 

metamodel. Here, a new acquisition function is defined so that the choice of fidelity level 

incorporates the considerations of both cost and benefit in LF and HF samples. 

With the sequential sampling, the maximum EI gradually decreases as the BO 

algorithm converges to the optimal solution. If a sample point x  is selected to update the 

metamodel, the EI will decrease from ( )EI 
x  calculated from Eq. (9) to zero. Therefore, 

the reduction of the EI value can be equivalently used to guide the sequential sampling. In 

the proposed MFBO, the reduction of EI value incorporates the different effects of LF and 

HF samples. If a HF sample is chosen at x , the HF effect on reducing the EI is 

hΔ ( ) ( ) -0 = ( )EI EI EI  
=x x x  (10) 

where 𝐸𝐼(⋅) is the EI function of hierarchical Kriging based on the existing HF samples 

and LF samples. If a LF sample at this location *

lx  is chosen instead, the LF effect on 

reducing the EI, which is named further improvement given that *

lx  is taken, is calculated 

as 

* *Δ ( ( )) ( ) - ( ( ))l l l l lEI Y EI EI Y  =x x x x x  (11) 

where ( )lY  is the LF metamodel with predicted mean ˆ ( )ly  and variance 2
( )

l



x , 

*( ( ))l lEI Yx x  represents the EI if calculated by HF sample x  given that a LF sample *

lx  

was taken instead at the same location of x  with the predicted LF response *( )l lY x . Note 

that *( )l lY x  is a random variable which follows a Gaussian distribution. Therefore, both the 

conditional expected value *( ( ))l lEI Yx x  and the conditional further improvement in 

Eq.(11) vary according to *( )l lY x . The overall expected value of *( ( ))l lEI Yx x  is obtained 

as 

* * * *

*
* *

]

ˆ ( )

( )

[ ( ( ))] [ ( ) ( ( )) ( )

( )
( ) ( ( )) ( )

l l l l l l l l

l l l
l l l l

l

y

E EI Y P Y EI Y dY

Y
EI Y dY



 














x

x

x x x x x x

x
x x x

 (12) 

Note that *( ( ))l lEI Yx x  in Eq.(12) is calculated based on the HF metamodel with HF 

sample x . Thus the expected further improvement is 
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*

*

E[Δ ( )] E[ ( ) - ( ( ))]

( ) [ ( ( ))]

l l l

l l

EI EI EI Y

EI E EI Y

  

  

=x x x x

x x x
 (13) 

Considering the different costs of HF and LF samples and assuming that the cost ratio 

of a HF sample to a LF sample is T, we define a new acquisition function as 

h

*

1
Δ ( ) 2

( , )

E[Δ ( )] 1

1
EI( ) ( 1) EI( ) ( 2) [ ( ( ))]

l

l l

EI if fidelity
a fidelity T

EI if fidelity

T
fidelity fidelity E EI Y

T






 
 


    

,

,

x
x

x

x x x x

 (14) 

to decide both the sample location and the fidelity level, where fidelity equals 1 for LF level 

and fidelity equals 2 for HF level. The location and fidelity level can be obtained by 

maximizing the acquisition function.  

The proposed approach can be further extended to problems with multiple fidelity 

levels. The expected value of *( ( ))j jEI Y
x x  at the j-th fidelity level can be calculated 

similarly as in Eq.(12), whereas *( ( ))j jEI Y
x x  itself is calculated based on metamodel 

1 j
ˆ( ) = ( ) ( )j+ j jY y Z x x x  that is similar to Eq.(1). The acquisition function in Eq.(14) can 

be adjusted to include all fidelity levels with different cost ratios accordingly.  

Because of the multiple integral in Eq. (12), direct calculation of the acquisition 

function in Eq. (14) can be computationally expensive. An alternative approach can be 

taken here to search the maximum of the acquisition function. From Eq. (11), it is seen that 

Δ ( )
l

EI


x  tends to be large when ( )EI


x  is large. Δ ( )
l

EI


x  has a similar trend as ( )EI


x . 

Thus the location of the new LF sample point tends to be selected near the location where 

a large EI is obtained. Therefore, the EI function for HF sampling can be used in the 

searching of maximum, which approximates the true location of the maximum expected 

further improvement. From the sample location, the acquisition function in Eq. (14) can be 

evaluated based on the surrogates at both fidelity levels, and the fidelity level which leads 

to a larger acquisition value is selected. The worst-case scenario of this heuristic searching 

approach is that its searching efficiency is the same as the standard EGO.  

3.2 Constrained acquisition function 
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In general, the constraints in engineering optimization can be divided into two 

categories: known constraints and unknown constraints. Known constraints can be 

evaluated easily and analytically without running a simulation. In contrast, unknown 

constraints are much more complex and usually related to design performance. Whether 

they are satisfied or not can only be determined after running a simulation. In this work, 

the penalty function approach (Coello 2000; Shu et al. 2017) is used to handle known 

constraints where the objective function is penalized. Researchers have proposed different 

approaches to hand unknown constraints such as constrained EI (Schonlau et al. 1998) and 

surrogates of constraints (Gardner et al. 2014; Gelbart et al. 2014; Tran et al. 2019a). Here, 

unknown constraints are incorporated in the new acquisition function.  

For an unknown constraint ( )g x ≤0, we define an indication function ( )F x  as 

1, ( ) 0
( )

0, ( ) 0

if g
F

if g

 
 

 

x
x

x
 (15) 

Since ( )g x  cannot be evaluated without running a simulation, we can also construct a 

hierarchical Kriging model and assume that the prediction of ( )g x  obeys a normal 

distribution 
2ˆ( ) ~ ( ( ), ( ))gg N g x x x . Then the constrained acquisition function is defined 

as 

( , ) [ ( ) ( , )]

[ ( )] [ ( , )]+cov[ ( ), ( , )]

[ ( )] ( , )+cov[ ( ), ( , )]

Ca fidelity E F a fidelity

E F E a fidelity F a fidelity

E F a fidelity F a fidelity







x x x

x x x x

x x x x

 (16) 

In general, the correlation between ( )F x  and ( , )a fidelityx  can be ignored. Thus 

cov[ ( ), ( , )] 0F a fidelity x x . According to the definition of ( )F x , [ ( )]E F x  can be 

calculated as 

g

ˆ( )
[ ( )] [ ( ) 0] ( )

( )

g
E F P g x




  

x
x

x
 (17) 

Then Eq. (16) can be expressed as 

g

ˆ( )
( , ) ( ) ( , )

( )
C

g
a fidelity a fidelity




 

x
x x

x
 (18) 

 

4. Examples and Results 
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In this section, five numerical examples and one engineering case study are used to 

demonstrate the applicability and performance of the proposed approach. The formulations 

of the five numerical examples and the respective optimal solutions (Cai et al. 2016; Zhang 

et al. 2018; Zhou et al. 2016) are listed in Table 1. ( )hf x  and ( )lf x  represent the HF and 

LF models, respectively. ( )hg x and ( )lg x  represent the HF and LF constraints, 

respectively. 
bestx  is the optimal solution and ( )h bestf x  is the corresponding response. 

The proposed approach is compared with the standard EGO (Jones et al. 1998) and 

the MFEI method (Zhang et al. 2018). Note that the cost difference between HF and LF 

samples is not considered in the MFEI method, in contrast to our approach. The 

computational cost is calculated as 

cost = + l
h

n
n

T
 (19) 

where 
hn  and 

ln are the numbers of HF and LF samples, respectively. T  is the cost ratio. 

 

4.1 The one-dimensional example 

The first numerical example in Table 1 is used for the illustration of the proposed 

approach as well as a detailed comparison between different approaches. Here we assume 

that the cost of a HF sample point is 4 times of a LF sample point (T=4).  

The initial hierarchical Kriging model is constructed based on six LF sample points 

{0.0, 0.2, 0.4, 0.6, 0.8,1.0}lS   and three HF sample points {0.0, 0.5,1.0}hS  . The initial 

samples are uniformly distributed in the design space. The initial sample points, the 

constructed HF and LF models, the initial hierarchical Kriging model, and the EI function 

are shown in Figure 1(a). The maximum value of EI function is at 
1

0.9093x  . At this 

location, 
h 1

1
Δ ( ) = 1.8598EI x

T
 and 

1
E[Δ ( )] = 6.7459

l
EI x . Hence, a LF sample point is added 

at this location.  

The updated hierarchical Kriging model and EI function are shown in Figure 1(b). 

Similarly, a LF sample point is added at 
2

0.8232x   in the second iteration, where 

h 2

1
Δ ( ) = 1.7698EI x

T
 and 

2
E[Δ ( )] = 5.7174

l
EI x . The updated hierarchical Kriging model and 
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EI function are shown in Figure 1(c). The maximum value of EI function in this iteration 

is at 
3 0.7211x  . At this location, 

h 3

1
Δ ( ) = 0.8018EI x

T
 and 

3
E[Δ ( )] = -1.8252

l
EI x . Hence, a 

HF sample point is added in the third iteration. 

The searching process of the proposed approach in the first numerical example is 

listed in Table 2. The proposed approach requires three LF samples and three HF samples 

to find the optimal solution. The termination criterion for this numerical example is set as 

min ( )h bestf f x    (20) 

where 
minf  is the best observed objective function, and   is set to be 0.01.   
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Figure 1. The hierarchical Kriging model and EI function of the one-dimensional 

function 
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Table 1. Formulations and solutions for five numerical examples. 

Case Formulation Optimal solution 

Case 1 

2( ) (6 2) sin(12 4)

( ) 0.5 ( ) 10( 0.5) 5

[0,1]

h

l h

f x x x

f x f x x

x

  

   



 

0.7573

( ) 6.0207

best

h best

x

f x



 
 

Case 2 

2 3

1 2 1 2

1 2

2 3

1 2 1 2

1 2

1 2

( ) 4

( ) 1 / 1 / 2

( ) 4( 0.1) ( 0.1) 0.1

( ) 1 / 1 / ( 0.1) 2 0.001

, [0.1,10]

h

h

l

l

f x x x x

g x x

f x x x x

g x x

x x

  

  

     

    



x

x

x

x

 
[0.8846,1.1500]

( ) 5.6684

best

h best
f





x

x
 

Case 3 

2 4 2 4

1 1 1 2 2 2

2 3

1 2 1 2

1 2

( ) 4 2.1 4 4

( ) 4( 0.1) ( 0.1) 0.1

, [ 2, 2]

h

l

f x x x x x x

f x x x x

x x

    

     

 

x

x  
[ 0.0898,0.7127]

( ) 1.0316

best

h bestf

 

 

x

x
 

Case 4 

4 3

1 1

( ) exp[ ( )]

( ) ( ) 7.6MA3( )

3 10 30 1

0.1 10 35 1.2
, ,

3 10 30 3

0.1 10 35 3.2

0.3689 0.1170 0.2673

0.4699 0.4387 0.7470

0.1091 0.8732 0.5547

0.03815 0.5743 0.8828

h i ij j ij

i j

l h

f C A x P

f f

where A C

P

 

   

 

 



   
   
   
   
   
   



 x

x x x

1 2 3 1 2

2 2 2

1 3 2 3 1 2 3

MA3( ) 0.585 0.324 0.379 0.431 0.208

0.326 0.193 0.225 0.263 0.274

0 1, 1, 2,3;
i

x x x x x

x x x x x x x

x for i

    

    

  


 
 
 
 
 

x

 

[0.114,0.556,0.852]

( ) 3.8627

best

h bestf





x

x
 

Case 5 

10 10

1 1

10 10

1 1

( )

( ) exp( )( ( ) ln( exp( )))

[ 6.089, 17.164, 34.054, 5.914, 24.721,

14.986, 24.100, 10.708, 26.662, 22.179]

exp( )( ( ) ln( exp( )))

[ 5, 10, 30, 5, 25, 15, 2

h i i k

l i i k

i k

i k

f x x x

f x B i x x

A

A i

B

 

 



  

     

    

 

       

 

 x

x

[ 5, 5], 1, 2, ,10

0, 10, 25, 20]

i
x i  

  

…

 
[1,1,1,1,1,1,1,1,1,1]

( ) 0

best

h best
f





x

x
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 Table 2. The searching process of the proposed approach 

No.  Location Fidelity level 
The best observed 

objective function 

1 0.8712 1 0.9093 

2 0.8232 1 0.9093 

3 0.7211 2 -5.4033 

4 0.7283 2 -5.6147 

5 0.2953 1 -5.6147 

6 0.7565 2 -6.0204 

 

 

Figure 2. The convergence curves of the three approaches for the one-dimensional 

example 

The convergences of the three approaches for the first numerical example are 

compared in Figure 2. The numbers of total HF and LF sample points, including the initial 

samples, and the computational costs of the three approaches are listed in Table 3. Note 

that the initial samples also need to be included in estimating the overall costs. For the 

standard EGO which itself is for single-fidelity optimization, the same numbers of initial 

LF and HF samples are recorded for comparison. After the initial model is constructed, the 

sample points added in the following iterations are counted as HF samples. It is seen from 

Table 3 that the proposed approach requires the least computational cost to find the optimal 

solution for the first example. The convergence criterion in Eq.(20) is applied in all three 

approaches. 
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Table 3. The number of sample points and computational cost in different approaches for 

Case 1 

 
Number of HF 

sample points 

Number of LF 

sample points 

Computational 

cost 

MFEI 9 9 11.25 

Standard EGO 10 6 11.5 

Proposed approach 6 9 8.25 

 

4.2 Numerical Examples for Cases 2 to 4  

For numerical examples of Cases 2 to 4, Latin hypercube sampling (LHS) (Park 1994; 

Wang 2003) is used to generate the initial HF and LF sample sets. The sizes of the initial 

HF and LF sample sets are set to be 3 times and 6 times of the dimensions of the problems 

respectively. To account for the influence of randomness, each of these cases is solved 30 

times with each of the three approaches. The results for the average numbers of LF and HF 

sample points are compared in Table 4. The same convergence criterion in Eq. (20) is 

applied for all cases. To illustrate the effect of the cost ratio on the proposed approach, two 

different cost ratios (T=4 and T=10) are tested for the proposed approach. Based on the 

acquisition functions in Eqs. (14) and (18), the proposed approach tends to select more LF 

sample points if the cost of LF sampling is lower (i.e., a higher cost ratio). 

For Case 2, the EGO and proposed approach require almost the same number of LF 

and HF sample points, while the MFEI method samples much more LF sample points than 

the other two approaches. However, this does not reduce the number of HF samples 

required in the MFEI method. For Case 3 and Case 4, the MFEI method and the proposed 

approach require fewer HF sample points than the EGO by supplementing with LF sample 

points. One key difference between the MFEI method and the proposed approach is that 

the cost ratio is not considered in the MFEI method. The proposed approach tends to sample 

more LF sample points and fewer HF sample points as the cost ratio increases. 

The computational costs of different approaches for T=4 and T=10 according to Eq. 

(18) are listed in Table 5. For Case 2, the EGO and the proposed approach have the similar 

computational costs, which are lower than that of the MFEI method. For Case 3 and Case 

4, the MFEI method is more efficient than EGO, and the proposed approach has the lowest 

cost among the three approaches. 
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Table 4. The average numbers of sample points in different approaches for Cases 2, 3 

and 4 

 

Case 2 Case 3 Case 4 

Number of 

LF samples 

Number of 

HF samples 

Number of 

LF samples 

Number of 

HF samples 

Number of 

LF samples 

Number of 

HF samples 

Standard 

EGO 
12.00 44.86 12.00 25.40 18.00 19.10 

MFEI 38.50 44.76 19.63 23.97 27.00 15.90 

Proposed 

approach 

(T=4) 

12.26 45.77 21.63 20.47 24.20 15.77 

Proposed 

approach 

(T=10) 

12.63 44.50 26.43 19.93 29.00 14.87 

 

Table 5. Computational costs of different approaches for Cases 2, 3, and 4 

 
T=4 T=10 

Case 2 Case 3 Case 4 Case 2 Case 3 Case 4 

Standard EGO 48.67 29.77 23.60 46.87 27.97 20.90 

MFEI 54.39 28.88 22.65 48.61 25.93 18.60 

Proposed approach 48.84 25.88 21.82 45.76 22.58 17.77 

 

4.3 Case 5: A high-dimensional example 

The fifth numerical example is used to test the ability of the different approaches to 

solve high-dimensional optimization problems. LHS is applied to generate the 40 initial 

HF samples and 100 initial LF samples. In this example, we set the maximum number of 

iterations to 200 to observe the convergence process of different optimization approaches. 

The convergences of the objective values along with the computational costs for the 

three different approaches are compared in Figure 3. The best observed objectives, the 

numbers of LF and HF sample points, and the corresponding computational costs (T=4) 

for the three approaches after convergence are listed in Table 6. 
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Table 6. Comparing results of the three approaches 

 
Best observed 

objective 

Number of LF 

samples 

Number of 

HF samples 

Computational 

cost 

Standard EGO 8.36 100 210 235 

MFEI 5.57 204 49 100 

Proposed approach 4.85 160 100 140 

 

From Figure 3 and Table 6, it is seen that the Standard EGO and the proposed approach 

can obtain a better optimal solution than the MFEI approach. Compared to the EGO, the 

proposed approach has a lower computational cost to converge to the optimal solution. 

After 200 iterations, the cost of MFEI is the least, since the MFEI approach added the most 

LF samples and the fewest HF samples. The overreliance on LF samples led to the missing 

out on the opportunities to reach a better solution. 

 
Figure 3. The convergence curves of the three approaches for the high-dimensional 

example 

 

4.4 Engineering case study: Impedance optimization of the long base 

As an engineering case study, the proposed approach is applied to optimize the long 

base of a ship. The simulation model of the problem consists of a cylindrical shell and a 

long base, which is shown in Figure 4. The optimization objective is to maximize the 

minimum impedance of the pedestal while keeping the weight below 3.4 tons. The 

mechanical impedance of a vibrating system is the complex ratio of a harmonic excitation 
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to its response. In this example, the impedance is the origin impedance, which is the 

complex ratio of a harmonic excitation to its response at the same location. To calculate 

the impedance, two unit harmonic forces are loaded in the Y-axis direction at point A and 

point B of the long base in Figure 4. The frequency of the unit harmonic forces ranges from 

0 to 350 Hz. The displacements at the ends of the cylindrical shell and the part of the base 

connected to the bulkhead are fixed to zeros. The six design variables shown in Figure 4 

are listed in Table 7. Other fixed parameters related to materials and geometry are shown 

in Table 8. 

 

 

Figure 4. The geometric model of the cylindrical shell and the long base 

 

For the HF model, the step size of frequency calculation is chosen to be 2.5 Hz. For 

the LF model, the step size of calculation is 10 Hz. The computational cost of the HF model 

is 4 times of the LF model (T=4). The convergence of the objective values along with the 

computational costs for the three approaches are plotted in Figure 5. The best observed 

objectives, the numbers of LF and HF sample points, and the corresponding computational 

costs for the three approaches after convergence are listed in Table 9. For further 

comparison, the simulation resolution is further reduced to the step size of 25Hz and 

applied as the LF model (T=10). The results are also listed in Table 9. 
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Table 7. The ranges of the design variables 

Design variables Range 

The first half of the base 

Thickness of the panel 1t  40-90 mm 

Thickness of the web 2t  12-40 mm 

Thickness of the rib 3t  10-60 mm 

The second half of the base 

Thickness of the panel 4t  40-90 mm 

Thickness of the web 5t  12-40 mm 

Thickness of the rib 6t  10-60 mm 

 

Table 8. The fixed parameters related to materials and geometries 

Parameters Values 

Young’s modulus 2.09 × 105 MPa 

Density 7850 kg/𝑚3 

Poisson’s ratio 0.3 

Length of the shell 12000 mm 

Radius of the shell 3300 mm 

Spacing of ribs 600 mm 

Radius of the hole in the web 75 mm 

Width of the hole in the web 210 mm 

 

 

 

 
Figure 5. The convergence curves of the three approaches 
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Table 9. Comparing results of the three approaches 

 
Best observed 

objective 

number of LF 

samples 

number of HF 

samples 

computational 

cost 

Standard EGO 5.2696 36 40 51 

MFEI 5.2782 43 49 59.75 

Proposed approach (T=4) 5.2763 40 37 47.75 

Proposed approach (T=10) 5.2774 46 29 40.5 

 

From Figure 5 and Table 9, it is seen that the MFEI method and the proposed approach 

can obtain a better optimal solution than the standard EGO. Compared to the EGO and 

MFEI, the proposed approach has a lower computational cost to converge to the optimal 

solution. The proposed approach can rely more on LF sample points when the LF model is 

cheaper. This indicates that the proposed approach can adjust the sampling process 

adaptively according to the cost of obtaining extra information. 

 

5. Concluding Remarks 

In this paper, a MFBO approach for global optimization is proposed based on the 

hierarchical Kriging model and a new acquisition function. In the new acquisition function, 

the value of LF sample points is quantified as the expected further improvement and the 

cost ratio between HF and LF sampling is considered. Both the location and fidelity level 

of the next sample point are determined simultaneously by maximizing the acquisition 

function. For constrained problems, the acquisition function can be further generalized with 

the surrogates of constraints. The proposed approach has been demonstrated with five 

numerical problems and one engineering design case. Compared to single-fidelity BO and 

an existing multi-fidelity BO method, the new approach incorporates the sampling cost 

differences in the sequential process and shows a higher level of efficiency.  

The major limitation of the proposed acquisition function is the cost of direct 

computation. In this paper, a heuristic approach is taken in searching the maximum of 

acquisition based on the EI of HF model. The search efficiency is usually better than or at 

least not worse than the standard EGO. In future work, efficient computational methods for 

the new acquisition function with the expected further improvement will be investigated. 

Numerical integration methods such as quadrature and importance sampling can be helpful.  
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In the proposed acquisition function, the cost ratio of HF to LF samples plays a major 

role. In all examples of this paper, the ratios were assumed to be known a priori. When the 

costs of HF and LF simulations are not previously known in simulation-based design 

optimization, an initial ratio can be estimated. During the sequential sampling process, the 

cost ratio can be updated on the fly once the simulations are run and actual costs become 

available. Thus the acquisition function can be adjusted adaptively. Nevertheless, the 

overall sampling cost proposed in Eq.(19) to evaluate the performance of MFBO 

approaches requires further study for its fairness in comparisons.  

Scalability has been a major issue for Kriging based metamodeling. The number of 

samples increases exponentially as the dimension of the searching space increases. 

Approaches such as batch parallelization (Tran et al. 2019a, 2019b) and sparse Gaussian 

process (McIntire et al. 2016; Zhang et al. 2019) have been applied in Bayesian 

optimization to alleviate the dimensionality challenge of Kriging. Yet much work of 

Bayesian optimization for high-dimensional problems remains. 
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