
Noname manuscript No.
(will be inserted by the editor)

Constrained mixed-integer Gaussian mixture1

Bayesian optimization and its applications in2

designing fractal and auxetic metamaterials3

Anh Tran · Minh Tran · Yan Wang4

5

Received: date / Accepted: date6

Abstract Bayesian optimization (BO) is a global optimization method that7

has the potential for design optimization. However, in classical BO algorithm,8

the variables are considered as continuous. In real-world engineering problems,9

both continuous and discrete variables are present. In this work, an efficient10

approach to incorporate discrete variables to BO is proposed. In the proposed11

constrained mixed-integer BO method, the sample set is decomposed into12

smaller clusters during sequential sampling, where each cluster corresponds13

to a unique ordered set of discrete variables, and a Gaussian process regres-14

sion (GP) metamodel is constructed for each cluster. The model prediction15

is formed as the Gaussian mixture model, where the weights are computed16

based on the pair-wise Wasserstein distance between clusters, and gradually17

converge to an independent GP as the optimization process advances. The18

definition of neighborhood can be flexibly and manually defined to account19

for independence between clusters, such as in the case of categorical variables.20

Theoretical results are provided in concert with two numerical and engineer-21

ing examples, and two examples for metamaterial developments, including one22

fractal and one auxetic metamaterials, where the effective properties depends23

on both the geometry and the bulk material properties.24

Keywords Bayesian optimization · Gaussian process · constrained ·25

mixed-integer · metamaterials26

1 Introduction27

Designing materials is to identify structures at micro- and nano-scales to28

achieve the desirable properties. The major process of design is to establish29
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structure-property relationships, based on which design optimization can be30

performed. Simulation tools at multiple scales (from atomistic to continuum)31

have been developed to accelerate this process. Nevertheless, the major tech-32

nical challenges of efficiency and accuracy still exist. The first one is searching33

in high-dimensional design space to find the global optimum of material com-34

positions and structural configurations. The second one is the uncertainty as-35

sociated with the high-dimensional structure-property relationships, which are36

usually constructed as surrogate models or metamodels. Particularly, aleatory37

uncertainty can be linked to natural randomness of materials (e.g. grain sizes38

and grain shapes in polycrystalline materials). Epistemic uncertainty is mainly39

due to approximations and numerical treatments in surrogates and simulation40

models. Methods of searching globally for optimal and robust solutions are41

needed.42

Bayesian optimization (BO) is a metamodel-based methodology to seek43

for the global optimal solution under uncertainty in the search space with44

sequential sampling. Compared to other bio-inspired global optimization al-45

gorithms, such as ant colony systems, particle swarm, and genetic algorithm46

(GA), it has the advantage of maintaining the global search history by con-47

structing a metamodel to approximate the objective function. Typically the48

metamodel is based on the Gaussian process (GP) method, and actively up-49

dated as more samples are collected. However, in current formulation of GP,50

input variables are restricted to be continuous. In real-world engineering prob-51

lems, input design variables and parameters can be categorical or discrete. For52

example, binary variables can be used to enable or disable a design feature.53

The number of features has integer values. Therefore extending BO method54

to accommodate discrete variables is an important topic for solving real-world55

problems.56

Another major issue that prohibits the BO and GP framework is its lack of57

scalability in searching the high-dimensional space when the number of input58

variables is large. The required number of sample points grows exponentially as59

O(sd) with respect to the dimension of search space d, where s is the number of60

sampling point for each dimension. The phenomenon is referred to as the curse-61

of-dimensionality in literature. As a result, the size of the covariance matrix in62

GP also grows exponentially with respect to the dimensionality, creating the63

computational bottleneck in computing the inverse of the covariance matrix.64

In this paper, a new BO method is proposed for constrained mixed-integer65

optimization problems to incorporate discrete design variables into the BO66

algorithm. In the proposed method, the large dataset of samples is decomposed67

into smaller clusters, where each cluster corresponds to a unique combination68

of discrete variable values, which is referred to as a discrete tuple. A GP is69

then constructed within each cluster. During the search and metamodel update70

processes, the mean and variance predictions are formulated as a Gaussian71

mixture model, where the weighted average predictions are combined from72

those of neighboring clusters, based on the pair-wise distance between the main73

and the neighboring clusters. The neighborhood of each cluster is constructed74

only once during the initialization.75
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Because of the decomposition approach, the number of sampling points to76

construct each cluster is significantly reduced compared to the whole dataset,77

and the GP thus is faster to construct for each cluster. This approach, however,78

leads to an undesirable effect of sparsity within each GP cluster. As a result, the79

posterior variance might be slightly overestimated. To circumvent the sparsity80

effect of the decomposition approach, a weighted average scheme is adapted81

to ”borrow” the sampling points from neighboring clusters, where the discrete82

tuples of the neighbors slightly differ from the discrete tuple of the original83

cluster. The definition of neighborhood is completely controlled by users, and84

neighbors can be added or removed accordingly. The unique advantage of the85

proposed method is that the optimization problem of both continuous and86

discrete variables and the acceleration of GP for high-dimensional problems87

are solved simultaneously. Theoretical results are provided and discussed in88

concert with computational metamaterials design applications.89

In the remainder of the paper, Section 2 provides a literature review for BO90

methodology, its extension, such as constrained and mix-integer optimization91

problems, and its applications. Section 3 describes the proposed constrained92

mixed-integer BO algorithm using Gaussian mixture model, including theoret-93

ical analysis of algorithmic complexity as well as lower and upper bounds of94

the predictions. The methodology is demonstrated with applications in com-95

putational design of metamaterials. Metamaterials are an emerging class of96

engineered materials that exhibit interesting and desirable macroscopic prop-97

erties, which can be tailored, because of their engineered geometric structures98

rather than the material composition. In Section 4, the proposed method is99

verified using an analytical function that is modified based on a discrete version100

of Rastrigin function, an engineering example of welded beam design, where101

the discrete variables encode the material selection and design configuration of102

the beam. In the first engineering example of Section 5.1, we focus on design-103

ing high-strength and low-weight fractal metamaterials, where the effective104

material properties, such as effective Young’s modulus is obtained using finite105

element method (FEM). In the second engineering example of Section 5.2, the106

method is demonstrated using an auxetic metamaterials for polymers, where107

the effective negative Poisson’s ratio is optimized. Section 6 includes the dis-108

cussion of the limitations in the proposed approach, and Section 7 concludes109

the paper, respectively.110

2 Related work111

Here, we conduct a literature review on related BO work and its design ap-112

plications. In Section 2.1, the widely used acquisition functions for BO are113

introduced. The constrained optimization problem in BO is reviewed in sec-114

tion 2.2. In Section 2.3, the mixed-integer optimization problem in BO and115

its relate work is discussed. In Section 2.4, the applications of GP in design116

optimization is provided.117
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2.1 Acquisition function118

BO is a metamodel-based optimization framework that uses GP as the meta-119

model. The major difference between BO and GP based optimization is the120

sampling strategy to construct the metamodel. The significant extension of121

BO is the implementation of a so-called acquisition function that dictates the122

location of the next sampling design site. This acquisition function reconciles123

the trade-off between exploration (navigating to the most uncertain region)124

and exploitation (driving the solution to the optimum) in the optimization125

process.126

Given the objective function y = f(x), the acquisition function a(x; {xi, yi}Ni=1, θ)127

depends on previous N observations or samples {xi, yi}Ni=1 and GP hyperpa-128

rameters θ, and must be defined to strike a balance between exploration and129

exploitation. In exploration, the acquisition function a would lead to the next130

sampling point in an unknown region where the posterior variance σ2(x) is131

large. In exploitation, the acquisition function a would result in the next sam-132

pling point where posterior mean µ(x) is large for a maximization problem133

(or small for minimization). There are mainly three types of acquisition func-134

tions: probability of improvement (PI), expected improvement (EI), and upper135

confidence bound (UCB). They are defined as follows.136

Let xbest = arg max
xi

f(xi) be the best sample achieved so far during se-137

quential sampling for a maximization problem, φ(·) and Φ(·) be the probability138

density function and cumulative distribution function of the standard normal139

distribution respectively. The PI acquisition function [33] is defined as140

aPI(x; {xi, yi}Ni=1, θ) = Φ(γ(x)), (1)

where141

γ(x) =
µ(x; {xi, yi}Ni=1, θ)− f(xbest)

σ(x; {xi, yi}Ni=1, θ)
, (2)

indicates the deviation away from the best sample. The EI acquisition function142

[32][21] is mathematically expressed as143

aEI(x; {xi, yi}Ni=1, θ) = σ(x; {xi, yi}Ni=1, θ) · (γ(x)Φ(γ(x)) + φ(γ(x)) (3)

Recently, Srinivas et al. [52][53] proposed a new form of UCB acquisition func-144

tion,145

aUCB(x; {xi, yi}Ni=1, θ) = µ(x; {xi, yi}Ni=1, θ) + κσ(x; {xi, yi}Ni=1, θ), (4)

where κ is a hyperparameter describing the exploitation-exploration balance.146

2.2 Constrained BO147

Constrained BO is a natural and important extension of the classical BO148

method. Constrained optimization problems based on engineering model and149
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simulation can be classified as two types: known and unknown constraints. The150

known constraints, or a priori constraints, are the ones known before the simu-151

lation, and thus can be evaluated independently without running simulations.152

On the other hand, the unknown constraints are the ones that are unpre-153

dictable without running the simulation, and thus can be only incorporated154

once the simulation is over, e.g. no solution because of numerical divergence.155

Generally speaking, the unknown constraints are more difficult to assess be-156

cause it involves handling the classification problem, satisfied or violated, with157

respect to the optimization problem.158

Digabel and Wild [9] summarized and provided a systematic classification159

and taxonomy for constrained optimization problem. Gardner et al. [11] pro-160

posed a penalized acquisition function approach to limit the searching space161

for the next sampling location. Gelbart et al. [12] suggested an entropy search162

criterion to search for the next sampling point under the formulation of the EI163

acquisition function. Hernández-Lobato et al. [19] [20] introduced a predictive164

entropy search and predictive entropy search with constraints, respectively,165

which maximizes the expected information gained with respect to the global166

maximum. Rehman and Langelaar [46] modeled constraints as a simple model167

and incorporated probability of feasibility measure to alternate the EI acquisi-168

tion function. Li et al. [26] proposed a sequential Monte Carlo approach with169

radial basis function as surrogate model to solve for the constrained optimiza-170

tion problem.171

2.3 Mixed-integer Bayesian optimization172

The BO extension to mixed-integer problems is rather limited, partly because173

mixed-integer problems carry difficulties from both discrete and continuous174

optimization problems. Another approach is that the discrete optimization175

can be converted to continuous optimization, using simple rounding opera-176

tion. The approach is not mathematically rigorous, but is still widely accepted177

in practice. Here we review several contributions in term of methodology to178

incorporate discrete variables.179

Davis and Ierapetritou [7] combined a branch-and-bound approach with180

BO method to solve the mixed-integer optimization problems. Müller et al.181

[35,36,34] introduced three algorithms, which are Surrogate Optimization-182

Mixed Integer [35], Surrogate Optimization-Integer [36], and Mixed-Integer183

Surrogate Optimization [34], which differ in the perturbation sampling strate-184

gies and utilize GP as the surrogate model, to solve for the mixed-integer185

nonlinear problems. Hemker et al. [18] compared the performance of a GA,186

the implicit filtering algorithm, and a branch-and-bound approach formulated187

on BO algorithm to solve for a set of constrained mix-integer problems in188

groundwater management.189

For mixed-integer extension for GP, van Stein et al. [54] proposed a dis-190

tributed kriging approach, where the dataset is decomposed for continuous191

variables using k-mean algorithm, and the optimal weights are computed based192



6 Anh Tran, Minh Tran, Yan Wang

on the inverse posterior variance of each cluster. Gramacy et al. [15] [14] [16]193

developed a treed GP that is naturally extensible to handle discrete variables.194

In the case of discrete variables, the GP is one-hot encoded by the binary195

combination of the discrete variables. Storlie et al. [55] developed the adap-196

tive component selection shrinkage operato method (ACOSSO) extended from197

Lin and Zhang [28] [27], which uses the smoothing spline ANOVA decompo-198

sition to decompose the total variance to multivariate functions. Qian et al.199

[42] [61] approached the mixed-integer problem from the covariance kernel of200

GP, proposing the exchange correlation, the multiplicative correlation, and the201

unrestricted correlation functions to handle discrete variable that is reminis-202

cent of categorical regression. Swiler et al. [56] compared three above methods203

and concluded that GP with special correlation kernel [42] [61] performs most204

consistently among the test functions.205

2.4 GP-based design optimization206

GP, also known as kriging, has been widely applied in constructing surrogates207

or metamodels for design optimization. Simpson et al. [49], Queipo et al. [43],208

Martins and Lambe [30], Sóbester et al. [50], and Viana et al. [59] provided209

comprehensive reviews on the use of kriging and other surrogate models for210

multi-disciplinary design optimization. More recently, Li et al. [25] proposed211

a kriging metamodel assisted multi-objective GA to solve multi-objective op-212

timization problems. Jang et al. [22] used dynamic kriging to solve a design213

optimization in fluid-solid interaction. Zhang et al. [60] also used kriging to214

approximate the pump performance and optimize two objective functions with215

respect to four design variables. Kim et al. [23] optimized and verified a fluid216

dynamic bearings simulation using kriging approach. Kim et al. [24] applied217

multi-fidelity kriging and optimized film-cooling hole arrangement. Liu et al.218

[29] employed surrogate-based parallel optimization method to reduce the com-219

putational time for a computational fluid dynamics problem with six design220

variables. Song et al. [51] used a gradient-enhanced hierarchical kriging to221

optimize drag on airfoils at a specified angle of attack. Zhou et al. [62][63]222

developed a multi-fidelity kriging scheme to approximate the lift coefficient as223

a function of Mach number and angle of attack in airfoils with computational224

fluid dynamics analysis.225

In the above work, design variables are all continuous. Compared to these226

GP-based optimization, BO formulation provides a more generic and robust227

searching procedure.228

3 Proposed mixed-integer Bayesian optimization229

The proposed mixed-integer BO based on distributed GP provides an efficient230

searching method for large scale design problems, where design variables can231

be either continuous or discrete. The discrete variables include both categorical232
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and integer variables, regardless of the existence of order relations. Let x =233

(x(d),x(c)) be the design variables, where x(d) ∈ D are discrete variables in234

n-dimensional space D and x(c) ∈ Rm−n are continuous variables in (m− n)-235

dimensional space Rm−n. Together, they form a vector of design variables in236

the m-dimensional space X . Let f(x) be the objective function. The design237

optimization problem solves the maximization problem238

x∗ = arg max
x∈X

f(x), (5)

subject to some inequality constraints239

gi(x) ≤ 0, i = 1, · · · , ic (6)

where ic is the number of inequality constraints.240

Here the notation for the rest of the paper is as follows. µl(x) is used to241

denote the posterior mean of the lth-cluster at the query point x. µ̂ is the242

prediction formed by Gaussian mixture model of all the clusters. µ̄l is the243

mean of the lth-cluster.244

In the proposed mixed-integer BO, the large dataset of observations is de-245

composed into smaller local clusters, where each cluster is used to construct246

a local GP. Because the large dataset has been decomposed and the number247

of data points has reduced, the prediction within each cluster is not as ac-248

curate, and can be improved by ”borrowing” from neighboring dataset under249

a weighted average scheme. The large dataset with continuous and discrete250

variables can be decomposed to finitely many clusters, according to the tuple251

of discrete variables. In each cluster, the data points share the same discrete252

variable values. The classical GP approach is then applied to the dataset in253

each cluster to construct a GP model.254

Because of the decomposition scheme, the number of data points within255

each cluster is reduced, compared to the number of data points of the whole256

dataset. This leads to a sparser dataset within a cluster, and the posterior257

variance is enlarged. To improve the prediction, the datasets from neighbor-258

ing clusters are initially ”borrowed” to improve the prediction on the tuple259

of continuous variables x(c) ∈ Rm−n, where the ”borrowed” data points are260

gradually eliminated as the optimization process converges via the weight com-261

putation algorithm. On the other hand, the sparsity induced by the decom-262

position scheme reduces the cost of computing the inverse of the covariance263

matrix. In this weighted average scheme, the weights are computed and pe-264

nalized based on the pair-wise Wasserstein distance between clusters, as well265

as the posterior variance of the cluster to obtain a more accurate predictions266

to aid in the convergence of the optimization process.267

Figure 1 presents an overview of the workflow for the proposed mixed-268

integer BO method in this paper. First, initial samples, typically obtained269

from Monte Carlo or Latin hypercube sampling, are used to construct the270

metamodel, where a local GP is associated with each individual cluster. Next,271

a next sampling point is located within each cluster according to its acquisition272

functional value. Then, a global sampling point for all clusters is determined273
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among the collection of all the next sampling points from each cluster. The274

objective function is then called to evaluate at the global sampling location. A275

local GP is updated at the cluster corresponding to the global sampling point.276

A new local sampling point is located within the same cluster, and the process277

repeats until some optimization criteria are met.278

Fig. 1: Overall workflow of the proposed mixed-integer Bayesian optimization.

The following subsections are organized as follows. Section 3.1 briefly re-279

views the GP formulation. Section 3.2 discusses the enumeration algorithm280

for clusters and the discrete tuple. Section 3.3 describes the definition of clus-281

ter neighborhood that is used to form a Gaussian mixture model. Section 3.4282

details the weight computations for each individual cluster in the Gaussian283

mixture model. Section 3.5 presents the computation of posterior mean and284

posterior variance of the Gaussian mixture model. Section 3.6 describes the pe-285

nalized scheme to incorporate constraints into the acquisition function. Section286

3.7 analyzes the theoretical bounds and computational cost of the proposed287

mixed-integer BO method.288
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3.1 Gaussian process289

We follow the notation introduced by Shahriari et al. [47] to briefly introduce290

GP formulation for continuous variables. GP(µ0, k) is a nonparametric model291

that is characterized by its prior mean µ0 : X 7→ R and its covariance kernel292

k : X × X 7→ R. Define fi = f(xi) and y1:N as the unknown function values293

and noisy observations, respectively. In the GP formulation, it is assumed that294

the f = f1:N are jointly Gaussian and y = y1:N are normally distributed given295

f , then the prior distribution induced by the GP can be described as296

f |X ∼ N (m,K), y|f , σ2 ∼ N (f , σ2I), (7)

where the elements of mean vector and covariance matrix are described by297

mi := µ0(xi) and Ki,j := k(xi,xj).298

Equation 7 describes the prior distribution induced by the GP, where X is299

the sampling location, and f is the objective function. In the GP formulation, y300

is the noise-corrupted stochastic output of f(x) with the variance of σ2, at the301

sampling location X. The objective function f is assumed to be a multivariate302

normal distribution function with mean m(x) and covariance K(x).303

Let N be the number of sampling locations, and DN = {xi, yi}Ni=1 be the304

set of observations. The covariance kernel k is a choice of modeling the cor-305

relation between input locations xi. Covariance functions where length-scale306

parameters can be inferred through maximum likelihood function is known307

as automatic relevance determination kernels. One of the most widely used308

kernels in this kernel family is the squared-exponential kernel,309

Ki,j = k(xi,xj) = θ2
0 exp

(
−r

2

2

)
, (8)

where r2 = (x− x′)Γ (x− x′), Γ is a diagonal matrix of (m− n)× (m− n),310

and θi is the length scale parameter.311

The posterior Gaussian for the sequential BO is characterized by the mean312

µN+1(x) = µ0(x) + k(x)T (K + σ2I)−1(y −m), (9)

and the variance313

σ2
N+1(x) = k(x,x)− k(x)T (K + σ2I)−1k(x), (10)

where k(x) is the vector of covariance terms between x and x1:N .314

3.2 Clustering and enumeration algorithm315

Assuming that the discrete variables are independent of each other, a clustering316

and enumeration algorithm is devised to automatically decompose the large317

dataset to smaller clusters based on the discrete tuple and tag a cluster with a318

unique index from the enumeration scheme. For the case when some discrete319

variables are dependent on others, the neighborhood can be manually changed320
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to reflect the knowledge. The set of discrete variables for each cluster are321

represented as a discrete tuple where each element is a positive integer.322

For an integer variable where order relation exists, the discrete variable can323

simply be represented as a positive integer, e.g. 1 ≤ 2. For a categorical vari-324

able where order relation does not exist, such as type of cross section (square325

or circular), colors (red or blue), type of materials (aluminum or copper), con-326

figuration settings, positive integers can still be used. The choice of using tuple327

of positive integers as a general representation does not affect the clustering328

and enumeration scheme, but would affect the construction of neighborhood329

for each cluster, depending on the nature of discrete variables.330

Suppose that the input x = (x(d),x(c)) = (x1, · · · , xn, xn+1, · · · , xm) in-331

cludes n discrete and m− n continuous variables. If pi is denoted as the total332

number of possible values for discrete variable xi, 1 ≤ i ≤ n, then the num-333

ber of clusters is L =

n∏
i=1

pi. Due to the complexity of possible combinations,334

each cluster is assigned a unique index in such a way that the map between335

their discrete variables and cluster index is one-to-one. The index is calculated336

based on the total ordering of tuples. Without loss of generality, assume that337

each discrete variable xi is bounded by 1 ≤ xi ≤ pi, i.e. xi ∈ {1, · · · , pi} for338

1 ≤ i ≤ n. Then the relation of lexicographical order, denoted as ≺, can be339

defined for a pair of tuples on the set of all tuples as340

(a1, · · · , an) ≺ (b1, · · · , bn), (11)

if and only if ∃k : 1 ≤ k ≤ n : (∀j : 1 ≤ j < k : ai = bi) and ak < bk, and341

1 ≤ ai, bi ≤ pi for all i. With the definition of lexicographical order ≺, the342

cluster index l for the tuple (a1, · · · , an) can now be calculated as343

l =

n−1∑
i=1

(ai − 1)

n∏
j=i+1

pj + an. (12)

Because the index of cluster is uniquely defined based on the tuple of discrete344

variables, the tuple describing the set of discrete variables can be reconstructed345

using the index of the cluster, with the quotient and remainder algorithm346

recursively shown in Algorithm 1. It describes how to construct the set of347

discrete variables from the cluster index l.348

The implementation of Algorithm 1 can be based on existing functions such349

as MATLAB function ind2sub(). Equation 12, which is a reverse operation of350

Algorithm 1, can also be implemented using MATLAB function sub2ind().351

3.3 Construction of neighborhood352

Consider a cluster with index l, with the tuple of discrete variables (a1, · · · , an),353

the neighbors of the l-th cluster B(l) is the collection of clusters that share354

most of similarity with the original cluster. Intuitively, the neighborhood is355
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Algorithm 1 Reconstruct the tuple of discrete variables (x1, · · · , xn) from
cluster index l.
Input: cluster index l, tuple (p1, · · · , pn).
Output: tuple (a1, · · · , an) of discrete variables

1: for i← 1, n do
2: if i 6= n then

3: q

n∏
j=i+1

pj + r = l . find quotient q, remainder r

4: l← r
5: ai ← q + 1 . assign discrete variable in order
6: else
7: an ← r . assign last discrete variable
8: end if
9: end for

10: for i← n,−1, 1 do . exception if ai = 0
11: if ai = 0 then
12: ai ← pi, ai−1 ← ai−1 − 1
13: end if

14: end for

constructed based on the belief of whether there exists a relationship between356

two clusters.357

For example, for integer variables, the discrete tuples of the neighboring358

clusters may differ in one or a few different integer variables compared to359

that of the original cluster. In the same manner, for categorical variables, the360

discrete tuples of the neighboring clusters may differ in one or a few categorical361

variables compared to that of the original cluster. Based on this description,362

a possible choice to define the neighborhood B(l) of the l-th cluster can be363

mathematically expressed as364

B(l) = {(a∗1, · · · , a∗n)
∣∣∣ d((a∗1, · · · , a∗n), (a1, · · · , an)

)
≤ dth}, (13)

where d
(

(a)ni=1, (a
∗)ni=1

)
is some metric on a discrete topological space D,365

and dth is a user-defined threshold. The metric d(·, ·) can be any lp-norm, for366

example, Manhattan distance (l1-norm), or a counting metric of how many367

discrete (integer and categorical) variables are different between two tuples.368

It is noted that the metric d(·, ·) does not have to strictly obey the definition369

of mathematical norm. In the special case when this metric is set to zero, i.e.370

d
(

(a)ni=1, (a
∗)ni=1

)
= 0, it means that all the clusters are considered to be371

completely independent of each other. The construction of neighborhood only372

occurs once during the initialization.373

Furthermore, it should be emphasized that the neighboring list can be374

manually changed to reflect the physics-based knowledge from the users, or375

manually constructed to reflect the dependency of the discrete variables. In the376

case of categorical variables where independence is usually observed, one can377

simply remove the neighboring cluster from the corresponding categorical vari-378



12 Anh Tran, Minh Tran, Yan Wang

able, as the neighborhood can be manually changed during the initialization379

phase of the optimization process.380

It is recommended to define the neighborhood carefully, as the neighbor-381

hood definition has an impact on both convergence rate, and whether the382

optimization would be trapped at local optimum. The safest setting is to as-383

sign dth = 0, where clusters are assumed to be completely independent of384

each other. Small values of dth, e.g. dth = 1 or dth = 2, might be beneficial,385

depending on the specific applications. Large value is not recommended.386

Figure 2 shows an example of constructing clusters for two discrete vari-387

ables (x1, x2), where 1 ≤ x1 ≤ 4 and 1 ≤ x2 ≤ 3. According to Algorithm 1,388

the tuple p is (4, 3), cluster 1 is associated with (1,1), cluster 2 is associated389

with (1,2), cluster 4 is associated with (2,1), etc. The cluster index is denoted390

as an italic number on the top right corner of the square. Consider cluster 8,391

which is associated with the discrete tuple (3,2). If the Manhattan distance392

is chosen to define the neighborhood, then the choice of dth = 0 in Equation393

13 would make every cluster the only neighbor of itself, e.g. the neighbor of394

cluster 8 is cluster 8. The choice of dth = 1 would include clusters 5, 7, 8, 9,395

11 in cluster 8’s neighborhood. Similarly, the choice of dth = 2 would include396

clusters 2, 4, 5, 6, 7, 8, 9, 10, 11, 12 in cluster 8’s neighborhood.

Fig. 2: An example of cluster enumeration and neighborhood definition.

397

3.4 Weight computation398

The weight of each cluster’s prediction is determined by the Wasserstein dis-399

tance between the Gaussian posterior of the main cluster with that of the400

neighboring clusters. Combined together, they form a Gaussian mixture model401

to predict a response at a query point x.402
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Consider a query point x in the l-th cluster, which has the continuous403

tuple x(c) = (xn+1, · · · , xm). Denote the neighborhood of the l-th cluster as404

B(l) = {l∗}, where the cardinality of |B(l)| = k, i.e. there are k neighbors405

in the l-th cluster neighborhood. Each of the neighboring cluster l∗ can form406

its own prediction N (µl∗ , σ
2
l∗) from the continuous tuple, including N (µl, σ

2
l )407

for l-th cluster. However, the prediction must be adjusted by accounting for408

the bias, i.e. Biasl∗ [µl∗ ] = E[µl∗ − µl] = µ̄l∗ − µ̄l as the difference between the409

posterior means of two clusters, and the variance σ2
l∗ .410

The weight wl∗ associated with the prediction from the l∗ cluster should411

be larger with smaller bias (µ̄l∗ − µ̄l) and smaller posterior variance σ2
l∗ . The412

necessity of bias correction is explained later in Theorem 4. Wasserstein dis-413

tance between two univariate Gaussian N (µl∗ , σ
2
l∗) and N (µl, σ

2
l ) is provided414

by Givens et al. [13] as415

W2

(
N (µl∗ , σ

2
l∗),N (µl, σ

2
l )
)

= ‖µl − µl∗‖2 +

∥∥∥∥√σ2
l −

√
σ2
l∗

∥∥∥∥2

(14)

Here we propose a deterministic way to compute the numerical weights416

based on the pair-wise Wasserstein distance, which eventually converges to an417

independent GP as the optimization process advances. It is easy to see that418

the W2-distance of the l-th cluster’s prediction to itself is zero, as W2 is a419

distance. The weights are computed according to an inverse W2-distance with420

a term σ2
l from the l-th cluster, as421

wl∗ ∝
[
σ2
l +W2

(
N (µl∗ , σ

2
l∗),N (µl, σ

2
l )
)]−1

. (15)

In Equation 15, wl∗ are computed based on two factors, the W2-distance, and422

the σ2
l prediction of the l-th cluster. As the optimization process advances, the423

posterior variance approaches zero, i.e. σ2
l → 0. As a result, the weight scheme424

converges to a single GP prediction of the corresponding l-th cluster.425

3.5 Prediction using weighted average of k-nearest neighboring clusters426

We model the prediction of a query point using a Gaussian mixture distribu-427

tion, where the weights are computed on the statistical Wasserstein distance.428

To predict an unknown query point x = (xd,xc) = (x1, · · · , xn, xn+1, · · · , xm),429

we first find the cluster in which x belongs to, and its neighboring clusters.430

Assume that x belongs to the l-th cluster, and there are k-neighboring clusters.431

The principle for weight computation is as follows. As the bias increases,432

the contributed weight of the prediction wl∗ from the l∗-th cluster to l-th433

cluster is reduced to a smaller value. As the bias or the pair-wise distance434

between clusters increases, the contributed weights also decrease. The weight435

vector is normalized at every step, and eventually converges to a single GP436

prediction with the weight vector of [0, · · · , 1, · · · , 0], where 1 is located as the437

l-th cluster.438
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Since x is located within the l-th cluster, the weight from the l-th cluster439

is the highest, i.e. if l∗ = l, then µl∗ + µ̄l− µ̄l∗ = µl, which is the GP prediction440

for the l-th cluster. The posterior mean of the proposed method is written as441

µ̂ =
∑

l∗∈B(l)

wl∗ (µl∗ + µ̄l − µ̄l∗) , (16)

where the sum is taken over the list of neighboring cluster from the main cluster442

lth. µ̄l and µ̄l∗ denote the means of the l-th and l∗-th clusters, respectively.443

w∗ denotes the weight corresponding to the l∗-th cluster, which is computed444

once the discrete tuple x(d) of the query point x = (x(d),x(c)) is determined.445

The posterior variance of the proposed method is calculated as446

σ̂2 =
∑

l∗∈B(l)

w2
l∗σ

2
l∗ , (17)

where σ2
l∗ denotes the posterior variance associated with the continuous tuple447

x(c) of the query point x = (x(d),x(c)).448

The prediction scheme for mean µ̂(x) and variance σ̂2(x) for an arbitrary449

location x using Gaussian mixture model can be summarized in Algorithm 2.450

Algorithm 2 Prediction using weighted average GP from nearest neighboring
clusters.
Input: location x = (x1, · · · , xn, xn+1, · · · , xm), mean output of each cluster µ̄(·)
Output: Gaussian mixture posterior mean µ̂ and posterior variance σ2

1: Find cluster index l corresponding to x(d) = (x1, · · · , xn) . locate the l-th cluster
2: Construct a neighborhood B(·) for each cluster . query x in all neighboring clusters
3: for l∗ ∈ B(l) do
4: Compute GP posterior of the l∗-th cluster: µ̂l∗ , σ

2
l∗

5: end for
6: Compute weight wl∗ ∝

[
σ2
l +W2

(
N (µl∗ , σ

2
l∗ ),N (µl, σ

2
l )
)]−1

. pair-wise Wasserstein
distance

7: wl∗ ←
wl∗∑

l∗∈B(l) wl∗
. weight normalization

8: µ̂←
∑

l∗∈B(l)
wl∗ (µl∗ + µ̄l − µ̄l∗ ) . Gaussian mixture posterior mean

9: σ̂2 ←
∑

l∗∈B(l)
w2

l∗σ
2
l∗ . Gaussian mixture posterior variance

10: Update the average mean of the l-th cluster µ̄l

3.6 Constrained acquisition function in mixed-integer Bayesian optimization451

The acquisition function is adopted from Gardner et al. [11] for inequality452

constraints, and further extended to accommodate discrete and continuous453

variables to solve for the constrained mixed-integer optimization problems.454



Title Suppressed Due to Excessive Length 15

First, the constraint is checked using an indicator function I(x) for all ic455

constrained inequalities, as456

I(x) =

{
1 if ∀1 ≤ i ≤ ic : gi(x) ≤ 0,

0 if ∃1 ≤ i ≤ ic : 0 ≤ gi(x).
(18)

The constrained acquisition function can be considered as the product of the457

classical acquisition function. As a result, the acquisition function is assigned458

to have zero value for infeasible region. The penalized approach can be imple-459

mented directly into the auxiliary optimizer, which is used to maximize the460

acquisition function in BO.461

In distributed GP, an input xnext = (x1, · · · , xn, xn+1, · · · , xm) is com-462

prised of both discrete and continuous variables. For each cluster correspond-463

ing to a unique set of discrete tuple (x1, · · · , xn), a distinct next sampling point464

associated with each cluster is located by maximizing the acquisition function465

on the tuple of continuous variables (xn+1, · · · , xm) for each iteration, in the466

same manner as classical BO. These next sampling points are retained within467

the respective clusters. However, only the sampling point corresponding to the468

maximal value of acquisition function among all clusters is chosen, and a new469

sampling point within that cluster is located and updated for the correspond-470

ing cluster. The sampling procedure repeats until the optimization criterion is471

met. In other words, the next sampling point is chosen as472

xnext = arg max
l∗

arg max
(xn,xn+1,··· ,xm)

al∗(x; {xi, yi}Ni=1, θ) · I(x), (19)

where the l∗-th cluster corresponds to the tuple of discrete variables (x1, · · · , xn),473

and I(x) is the constraint indicator function.474

Equation 19, which describes the searching procedure for the next sam-475

pling point by maximizing the penalized acquisition function, is explained as476

follows. Two loops are constructed to search for the global sampling point. In477

the inner loop which searches for the local sampling point within each clus-478

ter, the penalized acquisition function is the objective function. Maximizing479

this penalized acquisition function using an auxiliary optimizer yields the lo-480

cal sampling point for each cluster. In the outer loop, the cluster with the481

maximized acquisition function value is determined. The discrete tuple cor-482

responding to the cluster index, which contains the sampling point with the483

maximum value for the acquisition function, is reconstructed using Algorithm484

1. In other words, the sampling location x is decomposed to two parts: the485

inner loop searches for the continuous tuple, whereas the outer loop yields the486

discrete tuple. Theoretically, once the functional evaluation is over, only the487

cluster that contains the last sampling location needs to be updated. Practi-488

cally, all the clusters need to update their corresponding sampling locations489

xnext after certain number of iterations, in order to avoid trapping in local490

optimum.491

The tuple of continuous variables is found by maximizing the acquisition492

function, whereas the tuple of discrete variables is assigned according to the493
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cluster index. For the EI and PI acquisition functions, xbest is modified to494

be the best point achieved so far among all clusters. For the UCB acquisi-495

tion function, no modification is needed, assuming the hyperparameter κ is496

uniform for all clusters. It is noted that the balance between exploration and497

exploitation is preserved locally within each cluster, and thus is also preserved498

globally for all the clusters.499

3.7 Theoretical bounds and computational cost500

Here we provide the theoretical lower and upper bounds for predictions and501

algorithm complexity under the formulation of Gaussian mixture model in502

Theorem 1 and Theorem 2. Theorem 3 proves that under the formulation of503

the proposed method, the largest weight is associated with the main cluster.504

Theorem 4 explains the necessity of translation in mean prediction so that the505

expected value of the mean is the same with the expected mean in the main506

cluster.507

Theorem 1 The Gaussian mixture posterior mean µ̂ =
∑

l∗∈B(l)

wl∗ (µl∗ + µ̄l − µ̄l∗)508

is bounded by509

min
l∗

(µ̂l∗ + µ̄l − µ̄l∗) ≤ µ̂ ≤ max
l∗

(µ̂l∗ + µ̄l − µ̄l∗) (20)

Proof The proof for the posterior mean is straightforward, noting that wl∗ ≥510

0,∀l∗ and
∑

wl∗ = 1.511

Theorem 2 The Gaussian mixture posterior variance σ̂2 =
∑

l∗∈B(l)

w2
l∗σ

2
l∗ is512

bounded by513

(
∑
l∗

w2
l∗σl∗)2 ≤ σ̂2 ≤ max

l∗
σ2
l∗ (21)

Proof For the right-hand side of the variance inequality, observe that514

σ̂2 =
∑
l∗

w2
l∗σ

2
l∗ ≤

∑
l∗

wl∗σ
2
l∗ ( because w2

l∗ ≤ wl∗)

≤ (
∑
l∗

wl∗) max
l∗

σ2
l∗ ≤ max

l∗
σ2
l∗ ( because

∑
l∗

wl∗ = 1)
(22)

For the left-hand side of the variance inequality, recall the Jensen’s inequality:515

ρ

(∑
i aixi∑
i ai

)
≤
∑
i aiρ(xi)∑

i ai
, where ρ(·) is a convex function. Substitute w2

l∗ →516

ai, σl∗ → xi, and ρ(x) = x2 into the Jensen’s inequality, we have517 (∑
l∗ w

2
l∗σ∑

l∗ w
2
l∗

)2

≤
∑
l∗ w

2
l∗σ

2
l∗∑

l∗ w
2
l∗

or

(∑
l∗

w2
l∗σl∗

)2

≤

(∑
l∗

w2
l∗

)(∑
l∗

w2
l∗σ

2
l∗

)
(23)
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Now, note that
∑
l∗

w2
l∗ ≤

∑
l∗

wl∗ = 1. We obtain the left-hand side of the518

inequality.519

Theorem 3 The largest weight is associated with the l-th cluster.520

Proof Based on the weight formula,521

wl∗ ∝
[
σ2
l +W2

(
N (µl∗ , σ

2
l∗),N (µl, σ

2
l )
)]−1

, (24)

it is easy to see that the Wasserstein distance between a cluster with itself is522

zero. Thus, the right-hand side is always less than σ2
l , i.e.523

σ2
l +W2

(
N (µl∗ , σ

2
l∗),N (µl, σ

2
l )
)
≥ σ2

l . (25)

Inversing the last inequality completes the proof. The equality occurs when524

l∗ = l.525

Theorem 4 The expectation of the posterior mean µ̂ =
∑

l∗∈B(l)

wl∗ (µl∗ + µ̄l − µ̄l∗)526

is µ̄l, i.e. E[µ̂] = µ̄l.527

Proof Take the expectation of Equation 9 for any l-th cluster over the con-528

tinuous domain, and note that E[y −m] = 0, the mean of the posterior is529

recovered to the mean of the cluster, i.e.530

E[µl(x)] = µ0(x) = µ̄l(x). (26)

Equation 26 holds for any l-th under the GP formulation. In the similar man-531

ner, taking the expectation of the posterior mean µ̂ from the proposed method532

over the continuous domain, we arrive at533

E[µ̂] =
∑

l∗∈B(l)

wl∗E [µl∗ + µ̄l − µ̄l∗ ]

=
∑

l∗∈B(l)

wl∗ [E[µl∗ ] + E[µ̄l]− E[µ̄l∗ ]]

=
∑

l∗∈B(l)

wl∗ [µ̄l∗ + E[µ̄l]− µ̄l∗ ]

=
∑

l∗∈B(l)

wl∗ [µ̄l]

= µ̄l,

(27)

where the second equality is formed by distributing the expectation operator534

under linear combination rule. The third equality follows Equation 26 as de-535

scribed above. The fourth equality is formed by canceling two identical terms536

µ̄l∗ .537
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A major problem of GP is its scalability, which originates from the com-538

putation of the inverse of correlation matrices. The dataset decomposition has539

a favorable computational aspect in which the scalability is alleviated. Here540

we analyze the computational cost based on the assumption that the size of541

each cluster is roughly equal. Denote the number of data points for the whole542

dataset as N , and the number of clusters as k. The computational cost to543

compute all covariance matrices is reduced by a factor of k2, as k covariance544

matrices are involved, and each covariance matrix has the computational com-545

plexity O
(
N

k

)3

, thus resulting in the total cost of kO
(
N

k

)3

=
1

k2
O
(
N3
)
.546

Similarly, the cost of storing covariance matrices is also reduced by a factor547

of k, since kO
(
N

k

)2

=
1

k
O(N2). However, the computational cost of pre-548

dicting the posterior mean µ and posterior variance σ2 stays the same, since549

kO
(
N

k

)
= O(N). The decomposition approach in the proposed mixed-550

integer BO has a computational advantage to mitigate the scalability problem551

in GP, even though it is not completely eliminated.552

4 Analytical examples553

In this section, the proposed mixed-integer BO is compared with the genetic554

algorithm (GA) with various settings. The settings for the GA are described as555

follows. To verify the robustness of the proposed method, three GA settings are556

chosen. In the first setting, the population size and the elite count parameters557

are set to be 50 and 3, respectively. In the second setting, the population size558

and the elite count parameters are set to be 150 and 10, respectively. In the559

third setting, they are 1500 and 10, respectively. Other parameters are left to560

be the default values in MATLAB function ga().561

In Section 4.1, a discrete modification of multi-modal Rastrigin function is562

used as a benchmark function, where two variables are discrete and the other563

two are continuous. In Section 4.2, a welded beam design optimization with564

two discrete and four continuous variables is used to evaluate the performance565

of the proposed mixed-integer BO method where discrete variables come from566

the configuration and material of the beam. In Section 4.3, a pressure vessel567

design optimization with four continuous variables is benchmarked. In Section568

4.4, a speed reducer design optimization function with one discrete and six569

continuous variables is utilized. In Section 4.5, a modification of discrete sphere570

function is devised to demonstrate the proposed mixed-integer BO method571

on high-dimensional optimization problems, with 5 discrete and 50 and 100572

continuous variables.573
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4.1 Discrete Rastrigin function574

In this example, the proposed method is applied on the discrete version of575

the Rastrigin function, which is an analytical function for testing different576

optimization methods. To evaluate the effectiveness of the proposed mixed-577

integer BO method, the optimization performance is compared against GA578

optimization performance.579

4.1.1 Problem statement580

The DACE toolbox [41] for classical GP is extended to include the pro-581

posed distributed GP and Bayesian optimization. In this section, the hy-582

brid Bayesian optimization is to find the global minimum on a tiled ver-583

sion of Rastrigin function on 25 clusters, where each cluster corresponds to584

two discrete variables. The input x = (i, j, x, y) is comprised of four vari-585

ables, in which the first two are discrete, and the last two are continuous,586

as illustrated in Figure 3. The original two-dimensional Rastrigin function is587

f(x, y) = 20+[x2−10 cos (2πx)+y2−10 cos (2πy)], where −5.12 ≤ x, y ≤ 5.12.588

The tiled Rastrigin function is constructed based on a tiled domain of Rast-589

rigin function, where each domain is characterized by a discrete tuple (i, j),590

and the continuous domain is translated to −0.75 ≤ xtiled, ytiled ≤ 0.75 for all591

clusters. Figure 3 illustrates the construction of tiled Rastrigin function, and592

its relationship with the original Rastrigin function. The relationship between593

the tiled and original Rastrigin can simply be described by an affine function,594

xorig = −3.50 + 1.75(i− 1) +xtiled; yorig = −3.50 + 1.75(j− 1) + ytiled, (28)

where −0.75 ≤ xtiled, ytiled ≤ 0.75.595

4.1.2 Numerical results596

In this example, to find the minimum of Rastrigin function, we flip the sign of597

tiled Rastrigin and use the UCB acquisition function to locate the maximum598

of the negative tiled Rastrigin function. The covariance matrix adaptation evo-599

lution strategy (CMA-ES) [17] method is employed to find the next sampling600

point within each cluster by locating the point with the maximum acquisi-601

tion function. The parameters are set as follows: κ = 5, dpenalty = 10−4,602

Nshuffle = 15, where Nshuffle is the number of steps which CMA-ES is reacti-603

vated with different initial position to search for the next sampling point on604

each local GP in order to avoid trapping in the local minima. To construct605

the initial GP response surface, 5 random data points are sampled from each606

cluster.607

Because the global minimum of the original Rastrigin function is at (x =608

0, y = 0) with the functional evaluation f(0, 0) = 0, the hybrid Bayesian609

optimizer on the tiled Rastrigin function is expected to converge to cluster 13,610

as illustrated in Figure 3. The neighbor list of cluster 13 includes clusters 8,611
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Fig. 3: Tiled Rastrigin function comprising of 25 clusters, where each cluster
correspond to a square of dimension 1.50 × 1.50 and a tuple (i, j). The cluster
index is denoted within the square bracket [·], whereas the tuple is within the
parenthesis (·, ·) in each square.

12, 13, 14, and 18. Figure 4 compares the numerical performance between the612

proposed mixed integer BO and the GA with three different settings.613

Figure 4 presents the performance of the proposed method (solid line)614

with five different settings, and the GA method (dash line) with three dif-615

ferent settings. For the proposed mixed integer BO, the threshold distance616

dth is changed. The proposed mixed integer BO performs best with small dth617

parameter, which measures the dissimilarity between discrete tuples.618

4.2 Welded beam design problem619

To verify the result of the proposed method, an analytical engineering model620

for welded beam design is adapted from Deb and Goyal [8], Gandomi and621

Yang [10], Rao [44], Datta and Figueira [6], as shown in Figure 5, with some622

slight modifications.623
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Fig. 4: Performance comparison between the GA and the proposed mixed-
integer BO for the tiled Rastrigin function.

Fig. 5: Welded beam design problem [6].

4.2.1 Problem statement624

The low-carbon steel (C-1010) beam is welded to a rigid base to support a des-625

ignated load F . The thickness of the weld h, the length of the welded joint l, the626

width of the beam t and the thickness of the beam b are the design continuous627

variables. Two different welding configurations can be used, four-sided welding628

and two-side welding [8]. The bulk material of the beam can be steel, cast iron,629

aluminum, or brass, which is associated with different material properties. The630

stress, deflection, and buckling conditions are derived from Ravindran et al.631

[45], where the constant parameters are as follows. L = 14inch, δmax = 0.25632

inch, and F = 6, 000lb. The input x is comprised of (w,m, h, l, t, b), where633

w and m are discrete variables, and h, l, t, b are continuous variables. We634

note that h, t, b are commonly considered as discrete variables in multiples of635

0.0625 in, as well as continuous variables, bounded between lower and upper636

bounds.637
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Under this formulation, the objective is to minimize638

f(w,m, h, l, t, b) = (1 + C1)(wt+ l)h2 + C2tb(L+ l) (29)

subject to the five inequality constraints:639

shear stress(τ) : g1 = 0.577σd − τ(x) ≥ 0 (30a)

bending stress in the beam(σ) : g2 = σd − σ(x) ≥ 0 (30b)

buckling load on the bar(Pc) : g3 = b− h ≥ 0 (30c)

deflection of the beam : g4 = Pc(x)− F ≥ 0 (30d)

side constraints : g5 = δmax − δ(x) ≥ 0 (30e)

where640

σ(x) =
6FL

t2b
, δ(x) =

4FL3

Et3b
, Pc(x) =

4.013tb3
√
EG

6L2

(
1− t

4L

√
E

G

)
(31a)

τ =
√

(τ ′)2 + (τ ′′)2 + 2τ ′τ ′′ cos θ, τ ′ =
F

A
, τ ′′ =

F (L+ 0.5l)R

J
(31b)

w = 0 :



A =
√

2hl

J =
√

2hl

[
(h+ t)2

4
+
l2

12

]
R =

1

2

√
l2 + (h+ t)2

cos θ =
l

2R

, (31c)

w = 1 :



A =
√

2h(t+ l)

J =
√

2hl

[
(h+ t)2

4
+
l2

12

]
+
√

2ht

[
(h+ l)2

4
+
t2

12

]
R = max

{
1

2

√
l2 + (h+ t)2,

1

2

√
t2 + (h+ l)2

}
cos θ =

l

2R

(31d)

where w is the binary variable to model the type of weld, w = 0 is used for two-641

sided welding and w = 1 is used for four-sided welding. C1(m), C2(m), σd(m),642

E(m), G(m) are material-dependent parameters [8][10] listed in Table 1. The643

lower and upper bounds of the problem are 0.0625 ≤ h ≤ 2, 0.1 ≤ l ≤ 10,644

2.0 ≤ t ≤ 20.0, and 0.0625 ≤ b ≤ 2.0 [6].645

4.2.2 Numerical results646

Here, the input vector is encoded as x = (w,m, h, l, t, b), where w ∈ {0, 1},647

where w = 0 and w = 1 correspond to the two-sided and four-sided welding,648

respectively; m ∈ {1, 2, 3, 4} corresponds to steel, cast iron, aluminum, and649

brass, respectively.650
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Table 1: Material-dependent parameters and constants in the welded beam
design problem.

Constants Description steel cast iron aluminum brass

C1 cost per volume of the welded material ($/in
3
) 0.1047 0.0489 0.5235 0.5584

C2 cost per volume of the bar stock ($/in
3
) 0.0481 0.0224 0.2405 0.2566

σd design normal stress of the bar material (psi) 30 · 10
3

8 · 10
3

5 · 10
3

8 · 10
3

E Young’s modulus of bar stock (psi) 30 · 10
6

14 · 10
6

10 · 10
6

16 · 10
6

G shear modulus of bar stock (psi) 12 · 10
6

6 · 10
6

4 · 10
6

6 · 10
6

In this example, there are 8 clusters, because there are two choices for w651

and four choices for m. The neighborhood B(·) is considered as universal, i.e.652

the neighborhood for each cluster includes all clusters, such that they are all653

aware of others. The bounds for hyper-parameters θ for the GP in each cluster654

are set as follows. θ = (0.1, 0.1, 0.1, 0.1). θ = (20.0, 20.0, 20.0, 20.0). Every four655

iterations, the sampling point location in each cluster is computed again to656

avoid trapping in local minima. CMA-ES [17] is used as an auxiliary optimizer657

for maximizing the acquisition function. There are two random sampling points658

in each cluster to initialize the GP construction. The EI acquisition function659

is used.660

Figure 6 shows the convergence plot of the cost function in the welded beam661

design, where the circle, cross, triangle, and square corresponds to steel, cast662

iron, aluminum, brass, respectively. The optimal cost value f(x) evolves at it-663

erations 0, 1, 2, 3, 5, and 132, with the values of 20.1995, 5.0605, 3.7949, 3.2436,664

1.7420, 1.6297, respectively, with the last one being four-sided welded. Com-665

pared to Datta and Figureira [6], where the optimal value is f(x) = 1.9553,666

our obtained result f(x) = 1.6297 is smaller, because in our formulation h, t,667

and b are continuous variables, in contrast to Datta and Figureira [6] with h, t,668

b as discrete variables. Furthermore, the convergence occurs relatively fast, as669

the optimization algorithm exploits the most promising cluster by maximizing670

the acquisition function. This behavior can be explained by the fact that in671

this welded beam design example, different materials have significantly differ-672

ent cost objective functional value, which aids the optimization convergence.673

674

To further demonstrate the effectiveness of the proposed method, we com-675

pare with GA. Two versions of the proposed method are used. In the first676

version, every cluster are considered as independent, leaving no neighbor in677

the neighborhood, whereas in the second version, all the clusters are considered678

as neighbors.679

The performance comparison is presented in Figure 7, showing that both680

variants of the mixed-integer BO clearly outperforms the GA in the welded681

beam design problem. The solution obtained from the GA is [0, 1, 0.24920115,682

5.30060037, 7.12520087, 0.25345267], where the objective function is evaluated683

at 2.04016262. On the other hand, from the first variant (none is neighbor)684

of the proposed method, the solution obtained is [1, 1, 0.16934934, 5.61720010,685

4.90884889, 0.27985016], where the objective function is evaluated at 1.68206763.686

From the second variant (all are neighbors) of the proposed method, the solu-687
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Fig. 6: Convergence plot of the cost function in the welded beam design, with
all clusters are neighbors, showing different combinatorial of discrete and cat-
egorical variables are attempted.

tion obtained is [1, 1, 0.16934934, 5.61720010, 4.90884889, 0.27985016], where688

the objective function is evaluated at 1.66457625. The convergence plots of689

these two variants are very similar. The asymptotic value using the second690

variant is slightly better than that using the first variant. However, we note691

that as the optimization process advances, the prediction converges to a sin-692

gle GP prediction, and thus both variants are similar at the later stage of693

search. The proposed mixed integer method clearly outperforms the GA in all694

settings.695

4.3 Pressure vessel design problem696

Here, the proposed mixed-integer BO method is applied to solve the pres-697

sure vessel design optimization problem. The objective of this problem is to698

minimize the cost of a storage tank with 3·103 psi internal pressure shown in699

Figure 8, where the minimum volume is 750 ft3. The shell is made by joining700

two hemispheres and forming the longitudinal cylinder with another weld. The701

design variables are listed as follows. x1 is the thickness of the hemisphere. x2702

is the shell thickness. x3 is the inner radius of the hemisphere. x4 is the length703

of the cylinder.704

The objective function that accounts for the cost is705

f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3, (32)

where the imposed constraints are706

g1(x) = −x1 + 0.0193x3 ≤ 0, g2(x) = −x2 + 0.009541x3 ≤ 0, (33a)

g3(x) = −πx2
3x

2
4 −

4

3
x3

3 + 1296000 ≤ 0, g4(x) = x4 − 240 ≤ 0, (33b)
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Fig. 7: Performance comparison between the GA and the proposed mixed-
integer BO for the welded beam design.

Fig. 8: Pressure vessel design optimization problem [4].

and 0.00625 ≤ x1, x2 ≤ 0.61875, 10.0 ≤ x3, x4 ≤ 200.0. All variables are707

considered as continuous in this example.708

Figure 9 shows the performance comparison between the proposed mixed-709

integer BO and the GA with various settings in terms of number of func-710

tional evaluations. Again, the BO clearly shows its advantage in term of con-711

vergence speed for continuous variables. The optimal input is [0.193114320,712

0.0954997100, 10, 76.2478356], where the corresponding objective functional713

value is 125.02822748.714

4.4 Speed reducer design problem715

Figure 10 shows the design optimization problem of a speed reducer [4].716

Seven design variables are described as follows. x1 is the face width. x2 is717

the module of teeth. x3 is the number of teeth on pinion. x4 is the length718

of the first shaft between bearings. x5 is the length of the second shaft be-719

tween bearings. x6 is the diameter of the first shaft. x7 is the diameter of720
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Fig. 9: Performance comparison between the GA and the proposed mixed-
integer BO for the pressure vessel design.

the second shaft. x3 is the discrete variable, whereas the rest of the variables721

are continuous. The problem is 7-dimensional, one discrete and six contin-722

uous. With the formulation of the problem, there are 12 local GPs corre-723

sponding to 12 discrete values of x3. In iteration 148, the mixed-integer BO

Fig. 10: Speed reducer design optimization problem [4] from NASA.

724

converges to the global minimum of f(x∗) = 2996.29614837, where x∗ =725

[3.50000447, 0.7, 17, 7.30566156, 7.8, 3.35022572, 5.28668406]. The result is com-726

parable with Cagina et al. [4], where particle swarm optimization is employed,727

yielding the optimal f(x∗) = 2996.348165, where x∗ = 3.5, 0.7, 17, 7.3, 7.8, 3.350214, 5.286683].728

729
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To evaluate the effect of initial sample size, the mixed-integer BO is per-730

formed with different number of initial samples. Figure 11 shows the conver-731

gence plot of the GA and the mixed-integer BO, each with various settings. In732

terms of the number of functional evaluations, the mixed-integer BO clearly733

shows the advantages with faster convergence, compared to the GA. The effect734

of initial samples is also shown in Figure 11. It is observed that the proposed735

mixed-integer BO converges relatively fast after the initial sampling stage.736

Thus, for low-dimensional problems, it may not be necessary to sample ex-737

tensively at the initial sampling stage. The balance between exploration and738

exploitation is well-tuned by the acquisition function, which is GP-UCB [53]739

in this case.

Fig. 11: Performance comparison between the GA and the proposed mixed-
integer BO with different initial samples for the speed reducer design.

740

4.5 High-dimensional discrete sphere function741

To evaluate the performance of the proposed mixed-integer BO in high-dimensional742

problems, two discrete sphere functions with 5-dimensional discrete variables743

and 50-dimensional and 100-dimensional continuous variables, respectively, are744

used to benchmark. The discrete sphere function is745

f(x(d),x(c)) = f(x1, · · · , xn, xn+1, · · · , xm) =

n∏
i=1

|xi|

 m∑
j=n+1

x2
j

 (34)

where 1 ≤ xi ≤ 2(1 ≤ i ≤ n) are n integer variables and −5.12 ≤ xj ≤746

5.12(n + 1 ≤ j ≤ m) are m − n continuous variables. Again, GA is used to747
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compare against the proposed mixed-integer BO method. The global optimal748

of this function is f(x∗) = 0, where x∗ = [1, 1, 1, 1, 1, 0, . . . , 0]. The number of749

clusters in this example is 2×2×2×2×2 = 32, where each cluster corresponds750

to a local GP. Figure 12 shows the convergence plot of the proposed mixed-751

integer BO with different number of initial samples and GA with different752

settings for the (50+5)D discrete spherical function, where 5 variables are753

discrete and 50 variables are continuous.754

As seen in Figure 12, the proposed mixed-integer BO quickly identifies the755

discrete tuple (1, 1, 1, 1, 1) that corresponds to the minimal response, with re-756

spect to the discrete tuple. The rest of the convergence plot focuses on the757

optimization of the continuous variables. The GA with population size of 50758

and elite count of 3 performs on par with the proposed mixed-integer BO,759

whereas other GA settings converge much slower. The mixed-integer BO with760

2 initial samples converges relatively fast at the beginning. However, the con-761

vergence at the later stage stagnates over a long period. On the contrary, the762

mixed-integer with 20 initial samples converge very fast right after the initial763

sampling stage. One of the reasons is that the local GP is able to approximate764

the objective function more accurately with more initial samples, compared765

to the one with less initial samples.

Fig. 12: Performance comparison between the GA and the proposed mixed-
integer BO with different initial samples for (50+5)D discrete spherical func-
tion.

766

Similarly, Figure 13 shows the convergence plot of the proposed mixed-767

integer BO with a different number of initial samples and GA with different768

settings for (100+5)D discrete spherical function, where 5 variables are dis-769

crete. The mixed-integer with 2 initial samples converges poorly, whereas other770
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variants perform better. One of the reasons is that with the low initial sample771

size, the discrete tuple is incorrectly identified as (1,1,1,1,2), as opposed to772

(1,1,1,1,1). The other variants of the proposed mixed-integer BO are able to773

identify the correct tuple immediately after the initial sampling stage. Thus,774

it may be beneficial to have sufficient number of initial samples.

Fig. 13: Performance comparison between the GA and the proposed mixed-
integer BO with different initial samples for (100+5)D discrete spherical func-
tion.

775

5 Metamaterials design examples776

In this section, we demonstrate the applicability of the proposed method to the777

design of metamaterials, in which properties can be tailored depending on the778

geometric design of the structures. In Section 5.1, a mechanical metamaterial779

is considered, where the objective is to design a low-weight and high-strength780

unit cell. In Section 5.2, an auxetic metamaterial unit cell is considered. The781

proposed BO method is applied to minimize the negative Poisson’s ratio.782

5.1 An example of designing high-strength low-weight fractal metamaterials783

Motivated by the recent experimental work of Meza et al. [31] in designing784

high-strength and low-weight metamaterials at nano-scale for ceramic systems785

where the effective mechanical strength can be enhanced by hierarchical struc-786

ture. We demonstrate the proposed methodology in searching for high-strength787
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and low-weight metamaterials for multiple classes of materials. Particularly,788

our metamaterials are constructed with fractal geometry. Fractal geometry has789

the special property of self-similarity at different length scales. A parametric790

design and optimization approach for fractal metamaterials is demonstrated791

here. In this example, the goal is to maximize the effective strength of the792

structure. The effective strength is defined as the ratio between the effective793

Young modulus and the volume of material with the assumption of homoge-794

nized material for the bulk properties. The material selection, including Ashby795

chart, is formulated as an inequality constraint to limit the searching space of796

materials.797

5.1.1 Parametric design of fractal truss structures798

Mathematically, fractals can be constructed iteratively using the so-called it-799

erated function systems (IFSs). An IFS is a finite set of contraction mappings800

{fi}Ni=1 on a complete metric space X [1]. Starting from an initial set P0, the801

fractal can be constructed iteratively as Pk+1 = ∪Ni=1fi(Pk). Geometrically,802

the IFSs fi can be expressed in terms of rotation, translation, scaling, and803

other set topological operations, such as complement, union or intersect.804

In this example, the fractal truss structures are constructed from the 2D805

profiles shown in Figure 14c. They are based on the square shape, even though806

in principle they can be constructed from any arbitrary polygon such as trian-807

gle and hexagon. Figure 14c presents the first three levels of IFS construction.808

The IFSs are inspired by the projection of Keplerian 3D fractals onto its cor-809

responding 2D plane. Here, the IFS operators include the translation matrix810

T = diag {±d/2,±d/2, 1} and the scaling matrix S = diag {1/2, 1/2, 1}. The811

rotation is not considered. Physically, the first four IFSs simply scale the design812

of previous fractal level by 1/2, and translate them to the northwest, north-813

east, southwest, and southeast, respectively. The fifth IFS scales the design814

of previous fractal level by one half, and deletes other features that overlaps815

within the region.816

(a) Level 0. (b) Level 1. (c) Level 2. (d) Truss node enu-
meration.

Fig. 14: Truss design parameters on the unit square: (a) (b) (c) Iterated func-
tion systems of truss designs on unit square, level 0-2, respectively. (d) Truss
options on fractal level 0 unit square.
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(a) 2D fractal face (b) The unit cube

Fig. 15: Design of fractal unit cube. (a) The 2D fractal profile with a fractal
level of 2 and only inner square truss option enabled. (b) The unit cube is
composed of six identical fractal faces, and each face is designed by truss
options, thickness, and extrusion depth

Figure 14 illustrates the square basis with three design options: (1) diagonal817

truss, (2) inner square truss, and (3) perpendicular truss. The diagonal truss818

option enables edges connecting nodes 4, 8, 12, 16, 20 and nodes 0, 6, 12, 18,819

24. The inner square truss option enables edges connecting nodes 2, 6, 10, 15,820

22, 18, 14, 8. The perpendicular truss option enables edges connecting nodes 2,821

7, 12, 17, 22 and nodes 10, 11, 12, 13, 14. In the example of Figure 14c, only the822

inner square truss option is enabled. In the construction process, the options823

are enabled by setting the truss control parameters to 0 or 1, respectively. The824

fundamental adjacency matrix of fractal level 0 is built to indicate whether a825

pair of nodes are connected. With the design of level 0 unit cell, the IFSs are826

applied recursively to create the more complicated geometry at the desired827

level. Once the profile is constructed, additional offset operations are applied828

to generate thickness of the 2D truss elements for a full 3D structure. Figure829

15a shows a complete 2D fractal face. With the square face defined, a complete830

3D fractal unit cell is built with six of the faces, as shown in Figure 15b.831

5.1.2 Constitutive material model and the finite element analysis832

A general anisotropic material has 21 independent elastic constants to de-833

scribe the stress-strain (σ-ε) relationship. To simplify the materials constitu-834

tive model, we assume isotropic and linear elastic materials behavior at small835

strain regime, where σ-ε relationship for bulk material properties can be ob-836

tained via Young’s modulus E and Poisson’s ratio ν, i.e.837

σij =
E

1 + ν

(
εij +

ν

1− 2ν
εkkδij

)
, (35)

where i, j can be either x, y, or z, and δij is the Kronecker delta of i and j.838

The material properties E and ν, as well as materials ρ, are taken as inputs839

to describe the linear elastic regime in the FEM simulation to obtain stress.840
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In simulations, we are concerned with an uniaxial compression. Therefore,841

to simplify the terminology, we refer to the component of effective stiffness842

tensor in the loading direction as effective Young’s modulus. It is noteworthy843

that the effective stiffness tensor of the designed fractal truss structure is not844

the same as the bulk material stiffness tensor. Two displacement boundary845

conditions are imposed on the unit cube. One is the fixed boundary condition846

for both translation and rotation, and the other is the constant displacement847

on the opposite side of the cube. The stress is obtained by taking the maximum848

nodal stress in the active direction. The effective Young’s modulus is calculated849

as the ratio of the maximal nodal stress σ33 at the designated engineering strain850

ε = 0.01. The quadratic tetrahedral element (C3D10 in ABAQUS) is utilized851

for the FEM simulation. The total number of elements is between 5,000 and852

10,000. The exact number varies with respect to the finite element simulation.853

The size of the cube is around 1mm (10−3m).854

The dimension of the design space is 9, in which 4 discrete and 5 continuous855

variables are combined to create an input x = (x1, x2, x3, x4, x5, x6, x7, x8, x9).856

The discrete variables include fractal level, the diagonal, inner square, and857

perpendicular truss options. The fractal level x1 is an integer of either 0, 1, or858

2, whereas each of the truss options x2, x3, x4 is a binary variable from design859

space, taking a value of 0 or 1. The continuous variables include thickness860

x5 = t of the truss, the extrusion depth x6 = et of the unit face, the materials861

bulk density x7 = ρ, bulk elastic Young’s modulus x8 = E, and bulk Poisson’s862

ratio x9 = ν.863

Three constraints are imposed as follows. Thickness and extrusion depth864

are limited to a constant that is related to the fractal level to preserve the865

fractal geometry of the structure. The higher the fractal level is, the smaller866

is the constant. Similarly, the material bulk density, Young’s modulus, and867

Poisson’s ratio are bounded within a physical limit, where values are taken868

from Table 3.1 of Bower [3] for woods, copper, tungsten carbide, silica glass,869

and alloys. As a result, the imposed constraints are870

T ≤ x5 ≤ T , x6 ≥ T , (36a)

x5 ≤ 7 · x6, x6 ≤ 7 · x5, (36b)

where T = 10−6 is the threshold for manufacturability, and T is the threshold871

for the truss thickness as872

T =


1

2 · 2x1+1
, if x3 = x4 = 2,

1

2 · 2x1
, otherwise.

(37)

We expect the simulations to converge on the high-strength and low-density873

type of materials. However, Ashby chart indicates a high correlation between874

compressive strength and density among all types of materials. To circumvent875

this problem, another constraint is introduced to limit the search region, based876

on the upper bound of longitudinal wave speed as
√
E/ρ =

√
x8/x7 ≤ 104.25

877

m/s.878
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5.1.3 Simulation and results879

Figure 16 shows an example of von Mises stress during the uniaxial compres-880

sion of the architected metamaterial cell, as described in Section 5.1.2. In the881

simulation settings and its post-process, only σzz is concerned.882

Fig. 16: An example of von Mises stress of the structure under loading condi-
tion.

The lower bounds of continuous variables (x5, x6, x7, x8, x9) are (2 ·10−6, 2 ·883

10−6, 0.4 ·10+3, 9 ·10+9, 0.16). The lower bounds of x7, x8, x9 correspond to the884

density of wood, bulk Young’s modulus of wood, and Poisson’s ratio of silica885

glass, respectively. The upper bounds of continuous variables (x5, x6, x7, x8, x9)886

are (0.5 · 10−3, 0.5 · 10−3, 8.9 · 10+3, 650 · 10+9, 0.35). The upper bounds of887

x7, x8, x9 correspond to the density of copper, bulk Young’s modulus of tung-888

sten carbide, and Poisson’s ratio of a general alloy, respectively.889

To initialize the optimization process, two random inputs are sampled to890

construct the GP model for each cluster. The number of clusters in this exam-891

ple is 2×2×2×3 = 24. The EI acquisition is used to locate the next sampling892

location x. The CMA-ES [17] is used as an auxiliary optimizer to maximize893

the penalized acquisition function. The optimization process is carried out for894

170 iterations, as shown in Figure 17. At iteration 0, 1, 2, 11, 14, 26, 148, better895

objective function values of 1.9723, 2.7827, 10.4725, 12.1207, 22.1071, 23.3766,896

36.8316 ·106GPa/kg, are identified, respectively. The relatively fast conver-897

gence plot demonstrates the effectiveness of the proposed BO method for the898
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Fig. 17: Convergence plot of the objective function, which is the ratio between
the effective Young’s modulus and the weight of the cell, i.e. Eeff/m.

mix-integer optimization problems. Due to the expensive computational cost899

of the FEM simulation, the number of iterations is limited to 200.900

5.2 Design optimization of fractal auxetic metamaterials901

In the second example, we study the auxetic metamaterial with application902

in flexible and stretchable devices. Inspired by the experimental work of Cho903

et al. [5] in designing auxetic metamaterials using fractal cut, and its sub-904

sequent numerical and experimental work by Tang et al. [57] in developing905

shape-programmable materials, we use auxetic metamaterials to demonstrate906

the proposed BO methodology. The goal of this example is to minimize the907

effective Poisson’s ratio, which is negative and evaluated through a FEM sim-908

ulation.909

5.2.1 Parametric design of auxetic metamaterials910

Here, a parametric design of the unit cell, where the fractal level is fixed at 2,911

is devised. The cut motif α and β for one level of the auxetic cell is shown in912

Figure 18. Basically, this cut motif controls the free rotational hinges of the913

architected structure, such that the deformation energy dissipates through914

rotational motion, rather than translational motion. The principle of cut de-915

sign is based on the connectivity of the rotating units, where the connectivity916

depends on the cut patterns, which in turn determines the maximum stretch-917

ability of the designed specimen. For further details about the fractal cut and918
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Fig. 18: Cut motif α and β in designing auxetic metamaterials by fractal cuts.

its rotating mechanisms, readers are referred to the work of Cho et al. [5] and919

Tang et al. [57]. To create a fractal cut, a simple IFS is imposed on the cut to920

create subsequent level, with the scaling ratio of 1/2, and is then translated921

to four corners.922

To tailor the negative Poisson’s ratio, the shape of the cut is modeled as923

splines, where the coordinates of the control points are considered as inputs.924

The choice of α and β cut is formulated using discrete variables. The dimension925

of this problem is 18, in which 2 discrete and 16 continuous variables are used.926

The parametric input x includes x1, x2 as discrete variables, which takes value927

of either 1 (α-motif) or 2 (β-motif) for level 1 and level 2 cuts, respectively.928

The first 4 continuous variables x3, x4, x5, x6 are used to describe the shape of929

the large center cut of level 1. The next 4 continuous variables x7, x8, x9, x10930

describe the shape of two small side cuts of level 1. In the same manner,931

the last 8 continuous variables are used to model the large center cut and932

two small side cuts of level 2. Figure 19 shows an example of the parametric933

design implementation of the designed auxetic metamaterials in the ABAQUS934

environment. The solid dots represent the control points of the cut. (Color935

is available on the electronic version. The blue solid dots denote the level 1936

control points, whereas the red solid dots denote the level 2 control points.)937

5.2.2 Constitutive material model and the finite element analysis938

The study of Tang et al. [57] has demonstrated that the effective Poisson’s ra-939

tio νeff is indeed a function of strain ε. In this work, we assume that the base940

material is natural rubber reinforced by carbon-black. Mooney-Rivlin consti-941

tutive model is used to describe the hyperelastic material behavior, where the942

suitable energy function W is expressed as943

W = C10(I1 − 3) + C01(I2 − 3) +
1

D1
(J − 1)2, (38)
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Fig. 19: An implemented example of auxetic metamaterials by fractal cuts.
The solid dots present the control points of the cut. (Color is available on the
electronic version. Blue dots correspond to level 1, whereas red dots correspond
to level 2.)

where J is the elastic volume ratio, I1, I2, I3 are the three invariants of Green944

deformation tensor defined in term of principal stretch ratios λ1, λ2, λ3, i.e.945

I1 =

3∑
i=1

λ2
i , I2 =

∑
i,j=1;i 6=j

λiλj , I3 =

3∏
i=1

λi, (39)

and I1 = I1J
−2/3, I2 = I2J

−4/3. The materials parameter is adopted from946

Shahzad et al. [48], where C10 = 0.3339MPa, C01 = −3.37 · 10−4, and D1 =947

1.5828 · 10−3.948

The initial size of the square is 20 cm × 20 cm, and the thickness of949

the specimen is 1mm. The specimen is then deformed in a uniaxial tension950

configuration in y-direction, where the displacement is fixed at 10 cm in one951

direction. The configuration for the simulation is plane-strain configuration,952

where displacement in the extrusion direction (z-direction) is fixed as zero.953

In the deformed configuration, we extract the displacement in x-direction954

to infer the engineering transverse strain, and compute the effective Poisson’s955

ratio as the ratio between transverse and longitudinal engineering strain.956

The element used in this FEM simulation is the eight-node brick element957

(C3D8R, C3D6, and C3D4). The FEM is developed in the ABAQUS environ-958

ment. The number of elements for each simulation is approximately 5,000.959

In this example, several constraints are imposed on the design variables,960

which are961

x5 ≤ 0.010− t, x8 ≤ x4 − t, x16 ≤ x12 − t (40a)

0 ≤ x6 ≤ x8, 0 ≤ x7 ≤ x5, x4 ≤ x2 ≤ 0.010, 0 ≤ x3 ≤ x1 (40b)
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where t = 0.0015 m is the smallest thickness of the specimen. Two other962

constraints include the implementation of convexity for the large center cut of963

level 1 and level 2. Figure 20 presents an example of deformed configuration964

after the simulation converges.965

Fig. 20: An example of uniaxial tension simulation of plane-strain configuration
in designing auxetic metamaterials using fractal cut.

5.2.3 Simulation and results966

The lower bounds of the continuous variables are (0.25; 3.5; 0.50; 1.75; 8.0;967

0.25; 4.0; 0.50; 0.25; 3.5; 0.50; 1.75; 4.0; 0.25; 3.0; 0.50)·10−3. The upper bounds968

of the continuous variables are (2.00; 6.5; 1.75; 3.00; 9.5; 1.50; 8.0; 1.75; 2.00;969

6.5; 1.75; 3.00; 5.5; 1.50; 4.0; 1.75)·10−3.970

Two random initial sampling points are created within each cluster. Be-971

cause the fractal level is fixed at 2, where each fractal level corresponds to one972

cut motif α or β, 4 clusters are created during the initialization. The initial973

hyper-parameters θi for all i are set at 0.2. The lower and upper bounds for974

the hyper-parameters θi for all i are (0.01, 20).975

The optimization process is carried out for 790 iterations. Figure 21 shows976

the convergence plot of the optimization process, where the best objective977

function value νeff is updated in iterations 0, 4, 24, 26, 30, 45, 63, 66, 69,978

78, 81, 84, 513, 582, 647, with the value of -0.6603, -0.6605, -0.6628, -0.6628,979

-0.6902, -0.6941, -0.7143, -0.7410, -0.7517, -0.7576, -0.7627, -0.7784, -0.7785,980

-0.7802, -0.7804, respectively. The proposed BO shows relatively fast conver-981

gence for mid-level dimensionality d = 16, thus demonstrating the effectiveness982

in tackling mix-integer nonlinear optimization problems.983
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Fig. 21: Convergence plot of the objective function, which is the effective Pois-
son’s ratio νeff. The best objective function value is updated at iterations 0, 4,
24, 26, 30, 45, 63, 66, 69, 78, 81, 84, 513, 582, 647, sequentially.

6 Discussion984

One of the advantages of the proposed BO algorithm is its extension to incor-985

porate discrete variables for nonlinear mixed-integer optimization problems.986

The discrete variables include both categorical and integer variables, thus can987

be applied with or without the notion of order. The neighborhood of each988

cluster is built once during the initialization of the process, and can be cus-989

tomized to adapt to specific user-defined requirements. Additionally, because990

the neighborhood can be modified and/or defined manually, the independence991

between clusters can be achieved by removing the corresponding clusters. Such992

independence is quite common in the case of categorical variables. However,993

the optimization performance of the proposed method does not depend on the994

enumeration of the clusters. We emphasize that if the cluster is ceased to exist,995

then it can be manually removed, and the cluster indices can be reenumerated996

manually by a slight modification of Equation 12 and Algorithm 1.997

The weight computation scheme is devised in such a way that asymptoti-998

cally, the weight prediction converges to a single GP prediction, by imposing999

a weight vector which has 0 everywhere, except for a single 1 that corresponds1000

to the corresponding cluster. It is recommended to choose the neighbors care-1001

fully. One way to do so is to set a small threshold discrete distance dth, which1002

measures the dissimilarity between clusters based on the discrete tuples, e.g.1003

dth ≤ 1, and manually remove clusters that are known to be independent1004

beforehand at the end of initialization. The safest setting is dth = 0, which1005
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assumes clusters are completely independent of each other. This setting has1006

some negative effect on the convergence rate, but would eventually reach the1007

global optimal solution, and would not be trapped at local optima.1008

The initial sample size plays a role in the performance of the proposed1009

mixed-integer BO method. It has been shown that for some low-dimensional1010

problems, the initial sample size does not affect the optimization performance.1011

However, for high-dimensional problems, the initial sample size does impact1012

the optimization performance. Too many initial samples at the beginning1013

would prevent the optimization from quick convergence. However, with mod-1014

erate amount of initial samples, and thus a more accurate local GP, the mixed-1015

integer BO converges faster, compared with fewer initial samples. As a general1016

rule of thumb, the total initial sample size is recommended at between 5d and1017

10d, where d is the dimension of the problem, including both discrete and1018

continuous variables.1019

Here the scalability of GP for high-dimensional problems is alleviated, but1020

not completely eliminated. It is noted that the decomposition and weighted1021

average approach has been adopted [37,39,38,40,54,58] for continuous vari-1022

ables. The decomposition method for continuous variables is typically referred1023

to as local GP. This approach is promising in tackling the scalability problem.1024

Particularly, in one of our previous studies [58], we have shown that the local1025

GP is computationally one-order cheaper, compared to the classical GP, while1026

maintaining a reasonable approximation error. Nevertheless, further research1027

is required to develop an efficient and robust decomposition scheme for both1028

discrete and continuous variables.1029

One of the limitations in the proposed approach is the scalability with re-1030

spect to discrete variables. Because of the decomposition scheme, the number1031

of the clusters is the number of the combinatorial possibilities, i.e. the product1032

of the number of choices for each discrete variable, and thus resulting in the1033

sparsity problem in each cluster. To mitigate the undesirable sparsity effect,1034

a Gaussian mixture model that combines all the predictions from neighboring1035

clusters is used to exploit some useful information from the neighborhood.1036

As mentioned previously, the mixed-integer optimization problem, in general,1037

is difficult, because it combines the difficulties for both discrete and continu-1038

ous optimization. Particularly, some discrete and combinatorial optimization1039

problems are NP-complete, such as the traveling salesman problem, knapsack1040

problem, and graph coloring problem, to name a few. Another extension is to1041

model the weights as stochastic variables, so that the metaheuristic method-1042

ologies can be applied [2].1043

The clustering and enumeration algorithm described in Algorithm 1 is1044

based on the assumption of the independence of discrete variables. Algorithm1045

1 does not work if the discrete variables are dependent. However, in the case1046

that discrete variables are dependent on each other, manual neighborhood1047

definition of clusters can be introduced manually, and the proposed BO algo-1048

rithm is functional with the demonstrated efficiency. However, the users must1049

declare the neighborhood of each cluster manually. Strictly speaking, the com-1050

putational efficiency of the proposed algorithm only depends on the number1051
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of clusters, not the number of discrete variables. If all discrete variables are1052

completely independent of each other, as demonstrated in the above examples,1053

then the number of clusters is equal to the product of the number of choices1054

for each discrete variable, i.e. L =
∏

pi.1055

Another practical limitation for the proposed BO algorithm for engineering1056

models and simulations is its sequential nature of sampling and search. Each1057

run of simulations usually demands a considerable amount of computational1058

time. In practice, for high-fidelity and dedicated simulations, one should resort1059

to multi-fidelity or batch-parallel BO for further improvement.1060

7 Conclusion and Future Work1061

In this paper, we propose a new BO algorithm to solve the nonlinear con-1062

strained mixed-integer design optimization problems. In this algorithm, the1063

large dataset is decomposed according to the discrete tuples, in which each1064

discrete tuple corresponds to a unique GP model. The prediction for mean1065

and variance is formulated as a Gaussian mixture model, in which the weights1066

are computed based on the pair-wise Wasserstein distance between clusters.1067

Constraints, which are formulated as a set of inequalities, are included dur-1068

ing the optimization process. Theoretical bounds and algorithmic complexity1069

are provided to demonstrate the computational efficiency compared to the1070

classical GP.1071

The proposed algorithm is demonstrated with two fractal metamaterials1072

design examples, where the mechanical properties are tailored by the hierarchi-1073

cally designed architect. In the first example, the algorithm is used to search1074

for the fractal metamaterial with high-strength and low-density properties,1075

where material selection is considered. In the second example, the algorithm1076

is utilized to design an auxetic metamaterial for flexible and stretchable de-1077

vices, where the effective Poisson’s ratio is chosen as the objective function.1078

For both computational materials design examples, constraints are imposed1079

to limit the design space. The proposed algorithm shows a promising perfor-1080

mance in solving engineering problems, where high dimensionality is often an1081

issue.1082

While several limitations exist, such as scalability for discrete and continu-1083

ous variables, further research extensions can be made to improve the current1084

methodology, including metaheuristic methodologies for stochastic combina-1085

torial optimization.1086
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