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Interval-based Representations of Imprecise Probabilities

Dempster-Shafer evidence theory (Dempster, 1967; Shafer,

1976)

Behavioral imprecise probability theory (Walley, 1991)

Possibility theory (Zadeh, 1978; Dubois and Prade, 1988)

Random set (Molchanov, 2005)

Probability bound analysis (Ferson et al., 2002)

F-probability (Weichselberger, 2000)

Fuzzy probability (Möller and Beer, 2004)

Cloud (Neumaier, 2004)



Engineering Applications of Imprecise Probabilities

Sensor data fusion (Guede and Girardi, 1997; Elouedi et al.,

2004)

Reliability assessment (Kozine and Filimonov, 2000; Berleant

and Zhang, 2004; Coolen, 2004)

Reliability-based design optimization (Mourelatos and Zhou,

2006; Du et al., 2006)

Design decision making under uncertainty (Nikolaidis et al.,

2004; Aughenbaugh and Paredis, 2006)



Generalized Intervals

Modal interval analysis (MIA) (Gardenes et al., 2001; Markov,

2001; Shary, 2002; Popova, 2001; Armengol et al., 2001) is an

algebraic and semantic extension of interval analysis (IA)

(Moore, 1966).

A modal interval or generalized interval x := [x ,x ] ∈KR is

called

proper when x ≤ x . The set of proper intervals is
IR = {[x ,x ] | x ≤ x}.
improper when x ≥ x . The set of improper interval is
IR = {[x ,x ] | x ≥ x}.
Operations are de�ned in Kaucher arithmetic (Kaucher, 1980).

Not only for outer range estimations, generalized intervals are

also convenient for inner range estimations (Kupriyanova,

1995; Kreinovich et al., 1996; Goldsztejn, 2005).
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Generalized/Modal Interval Analysis

Two operators pro and imp return proper and improper values

respectively, de�ned as

prox := [min(x ,x),max(x ,x)] (1)

impx := [max(x ,x),min(x ,x)] (2)

The relationship between proper and improper intervals is

established with the operator dual:

dualx := [x ,x ] (3)

The inclusion relation between generalized intervals x = [x ,x ]
and y = [y ,y ] is de�ned as

[x ,x ]⊆ [y ,y ] ⇐⇒ x ≥ y ∧ x ≤ y

[x ,x ]⊇ [y ,y ] ⇐⇒ x ≤ y ∧ x ≥ y
(4)

The less-than-or-equal-to and greater-than-or-equal-to

relations are de�ned as

[x ,x ]≤ [y ,y ] ⇐⇒ x ≤ y ∧ x ≤ y

[x ,x ]≥ [y ,y ] ⇐⇒ x ≥ y ∧ x ≥ y
(5)
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Inf-Sup Diagram



Di�erences between MIA and Tranditional IA

Interval Analysis Modal Interval Analysis

Validity [3,2] is invalid Both [3,2] and [3,2] are valid intervals

Semantics

richness

[2,3] + [2,4] = [4,7] is

the only valid relation for

+, and it only means

�stack-up� and worst-

case�. −,×,÷ are simi-

lar.

[2,3] + [2,4] = [4,7],
[2,3] + [4,2] = [6,5],
[3,2] + [2,4] = [5,6],
[3,2] + [4,2] = [7,4]
are all valid. The respective meanings are

(∀a ∈ [2,3])(∀b ∈ [2,4])(∃c ∈ [4,7])(a+b = c)

(∀a ∈ [2,3])(∀c ∈ [5,6])(∃b ∈ [2,4])(a+b = c)

(∀b ∈ [2,4])(∃a ∈ [2,3])(∃c ∈ [5,6])(a+b = c)

(∀c ∈ [4,7])(∃a ∈ [2,3])(∃b ∈ [2,4])(a+b = c)

.−,×,÷ are similar.

Algebraic

closure of

arithmetic

a+x = b, but x 6= b−a.

[2,3] + [2,4] = [4,7], but

[2,4] 6= [4,7]− [2,3]

a×x = b, but x 6= b÷a.

[2,3] × [3,4] = [6,12],
but

[3,4] 6= [6,12]÷ [2,3]

x−x 6= 0

[2,3]− [2,3] = [−1,1] 6= 0

a+x = b, and x = b−duala.
[2,3] + [2,4] = [4,7], and

[2,4] = [4,7]− [3,2]

a×x = b, and x = b÷duala.
[2,3]× [3,4] = [6,12], and

[3,4] = [6,12]÷ [3,2]

x−dualx = 0

[2,3]− [3,2] = 0



Interval Probability

De�nition

Given a sample space Ω and a σ -algebra A of random events

over Ω,

The generalized interval probability p : A 7→ [0,1]× [0,1]
obeys the axioms of Kolmogorov:

p(Ω) = [1,1] = 1;
0≤ p(E )≤ 1 (∀E ∈A );
For any countable mutually disjoint events Ei ∩Ej = /0 (i 6= j),
p(
⋃n

i=1
Ei ) = ∑

n
i=1

p(Ei ).

The lower and upper probabilities here do not have the

traditional meanings of lower and upper envelopes:

P∗(E ) = inf
P∈P

P(E ) P∗(E ) = sup
P∈P

P(E )

Rather, they provide the algebraic closure and logical

interpretation.
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Operations

De�nition

p(E1∪E2) := p(E1) +p(E2)−dualp(E1∩E2) (6)

From Eq.(6), we have

p(E1∪E2) +p(E1∩E2) = p(E1) +p(E2) (7)

Eq.(7) indicates the generalized interval probabilities are

2-monotone (and 2-alternating) in the sense of Choquet's

capacities, but stronger than 2-monotonicity.

Since p(E1∩E2)≥ 0,

p(E1∪E2)≤ p(E1) +p(E2) (8)

The equality of Eq.(8) occurs when p(E1∩E2) = 0.

For three events,

p(E1∪E2∪E3) = p(E1) +p(E2) +p(E3)−dualp(E1∩E2)

−dualp(E2∩E3)−dualp(E1∩E3) +p(E1∩E2∩E3)
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Complement

De�nition

p(E c) := 1−dualp(E ) (9)

which is equivalent to

p(E ) +p(E c) = 1 (10)

p(E c) := 1−p(E ) (11)

p(E c) := 1−p(E ) (12)



Logic Coherence Constraint

Logic Coherence Constraint

For a mutually disjoint event partition
⋃n
i=1Ei = Ω, we have

n

∑
i=1

p(Ei ) = 1 (13)

Suppose p(Ei ) ∈ IR (for i = 1, . . . ,k) and p(Ei ) ∈ IR
(for i = k +1, . . . ,n). Based on the interpretability principles of

MIA (Gardenes et al., 2001), Eq.(13) can be interpreted as

∀p1 ∈ p′(E1), . . . ,∀pk ∈ p′(Ek)

∃pk+1 ∈ p′(Ek+1), . . . ,∃pn ∈ p′(En)
n

∑
i=1

pi = 1



Focal and Non-Focal Events

De�nition

An event E is a focal event if its associated semantics is

universal (Qp(E) = ∀).
Otherwise it is a non-focal event if the semantics is existential

(Qp(E) = ∃).

A focal event is an event of interest.

The uncertainties associated with focal events are critical.

In contrast, the uncertainties associated with non-focal events

are �complementary� and �balancing�.

The uncertainties of non-focal events are derived from those of

the corresponding focal events.
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Relationships and Interpretations

De�nition

Event E1 is said to be less likely to occur than event E2,

denoted as E1 � E2, de�ned as

E1 � E2 ⇐⇒ p(E1)≤ p(E2) (14)

Event E1 is said to be less focused than event E2, denoted as

E1 v E2, de�ned as

E1 v E2 ⇐⇒ p(E1)⊆ p(E2) (15)

E1 ⊆ E2⇒ E1 � E2.

If E1∩E3 = /0 and E2∩E3 = /0, E1 � E2⇔ E1∪E3 � E2∪E3,

E1 v E2⇔ E1∪E3 v E2∪E3.
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Relationships between a Focal Event and Its Complement

A focal event E is less likely to occur than its complement if

p(E )≤ 0.5; E is more likely to occur than its complement if

p(E )≥ 0.5; otherwise, E is more focused than its complement.

Figure: inf-sup diagrams for di�erent relationships between p(E ) and
p(E c) when p(E ) ∈ IR



Conditional Interval Probabilities

De�nition

The conditional interval probability p(E |C ) for ∀E ,C ∈A is

de�ned as

p(E |C ) :=
p(E ∩C )

dualp(C )
=

[
p(E ∩C )

p(C )
,
p(E ∩C )

p(C )

]
(16)

when p(C ) > 0.

The de�nition is based on marginal probabilities.

It ensures the algebraic closure of the interval probability

calculus.

It is a generalization of the canonical conditional probability in

F-probabilities.
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Conditioning Example

Example

p′(E1) = [0.10,0.25] p′(E2) = [0.20,0.40] p′(E3) = [0.40,0.60]
p′(E2 ∪E3) = [0.75,0.90] p′(E1 ∪E3) = [0.60,0.80] p′(E1 ∪E2) = [0.40,0.60]

A partition of Ω = E1 ∪E2 ∪E3 is C = {C1,C2} where C1 = E1 ∪E2 and C2 = E3.

p(C1) = [0.40,0.60],p(C2) = [0.60,0.40]

Suppose p(E1) = [0.10,0.25] and p(C1) = [0.60,0.40], we have a complete estimation

p(E1|C1) =
[0.10,0.25]

[0.40,0.60]
= [0.1666,0.6250]

∀pE1 ∈ [0.10,0.25],∀pC1 ∈ [0.40,0.60],∃pE1 |C1 ∈ [0.1666,0.6250],pE1 |C1 =
pE1
pC1

Suppose p(E1) = [0.25,0.10] and p(C1) = [0.40,0.60], we have a sound estimation

p(E1|C1) =
[0.25,0.10]

[0.60,0.40]
= [0.6250,0.1666]

∀pE1 |C1 ∈ [0.1666,0.6250],∃pE1 ∈ [0.10,0.25],∃pC1 ∈ [0.40,0.60],pE1 |C1 =
pE1
pC1



Conditioning Example - cont'd

Example

Suppose p(E1) = [0.25,0.10], p(E2) = [0.20,0.40], and p(C1) = [0.60,0.40], we
have

p(E1|C1) =
[0.25,0.10]

[0.40,0.60]
= [0.4166,0.25]

p(E2|C1) =
[0.20,0.40]

[0.40,0.60]
= [0.3333,1.0]

The interpretations are

∀pE1|C1
∈ [0.25,0.4166],∀pC1

∈ [0.40,0.60],∃pE1 ∈ [0.10,0.25],pE1|C1
=
pE1
pC1

∀pE2 ∈ [0.20,0.40],∀pC1
∈ [0.40,0.60],∃pE2|C1

∈ [0.3333,1.0],pE2|C1
=
pE2
pC1

respectively. Combining the two, we can have the interpretation of

∀pE2 ∈ [0.20,0.40],∀pC1
∈ [0.40,0.60],∀pE1|C1

∈ [0.25,0.4166],

∃pE1 ∈ [0.10,0.25]∃pE2|C1
∈ [0.3333,1.0],

pE1|C1
=

pE1
pC1

,pE2|C1
=

pE2
pC1



Properties of Conditioning

Independence

If events A and B are independent, then

p(A|B) =
p(A)p(B)

dualp(B)
= p(A) (17)

Mutual Exclusion

For a mutually disjoint event partition
⋃n
i=1Ei = Ω, we have

p(A) =
n

∑
i=1

p(A|Ei )p(Ei ) (18)
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Properties of Conditioning

Value of Contradictory Information

If B ∩C = /0, p(A|C )⊆ p(A|B) ⇔ p(A|B ∪C )⊆ p(A|B).

⇒ If there are two pieces of evidence (B and C ), and one (C )

may provide a more precise estimation about a focal event (A)

than the other (B) may, then the new estimation of probability

about the focal event (A) based on the disjunctively combined

evidence can be more precise than the one based on only one

of them (B), even though the two pieces of information are

contradictory to each other.

⇐ If the precision of the focal event estimation with the newly

introduced evidence (C ) is improved, the new evidence (C )

must be more informative than the old one (B) although these

two are controdictory.
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two are controdictory.



Properties of Conditioning

Value of Accumulative Information

If B ∩C = /0, p(A|B ∪C )⊇ p(A|B) ⇔ p(A|C )⊇ p(A|B).

⇒ If the estimation about a focal event (A) becomes more

precise if some new evidence (B) excludes some possibilities

(C ) from the original evidence (B ∪C ), then the estimation of

probability about the focal event (A) based on the new

evidence (B) must be more precise than the one based on the

excluded one (C ) along.

⇐ If the precision of the focal event estimation with a

contradictory evidence (C ) is not improved compared to the

old one with another evidence (B), then the new evidence

(B ∪C ) does not improve the estimation of the focal event

(A).
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Bayes' Rule with Generalized Intervals

De�nition

The Bayes' rule with generalized intervals (GIBR) is de�ned as

p(Ei |A) =
p(A|Ei )p(Ei )

∑
n
j=1 dualp(A|Ej)dualp(Ej)

(19)

where Ei (i = 1, . . . ,n) are mutually disjoint event partitions of Ω
and ∑

n
j=1p(Ej) = 1.

[
p(Ei |A),p(Ei |A)

]
=

[
p(A|Ei )p(Ei )

∑
n
j=1

p(A|Ej )p(Ej )
,

p(A|Ei )p(Ei )
∑
n
j=1

p(A|Ej )p(Ej )

]
(20)

Algebraically consistent with the conditional de�nition in

Eq.(16)

n

∑
j=1

dualp(A|Ej )dualp(Ej )=
n

∑
j=1

dual
[
p(A|Ej )p(Ej )

]
= dual

n

∑
j=1

p(A∩Ej )= dualp(A)



2-Monotone Tight Envelope Equivalency

When n = 2, p(E ) +p(E c) = 1. Let p(E c) ∈ IR. Eq.(19) becomes

p(E |A) =
p(A|E )p(E )

p(A|E )p(E ) +p(A|E c)p(E c)
=

p(A∩E )

p(A∩E ) +p(A∩E c)
(21)

p(E |A) =
p(A|E )p(E )

p(A|E )p(E ) +p(A|E c)p(E c)
=

p(A∩E )

p(A∩E ) +p(A∩E c)
(22)

When p(A∩E ) ∈ IR and p(A∩E c) ∈ IR, the relation is equivalent

to the well-known 2-monotone tight envelope (Fagin and Halpern,

1991; de Campos et al., 1990; Wasserman and Kadan, 1990;

Ja�ray, 1992; Chrisman, 1995), given as:

P∗(E |A) =
P∗(A∩E )

P∗(A∩E ) +P∗(A∩E c)
(23)

P∗(E |A) =
P∗(A∩E )

P∗(A∩E ) +P∗(A∩E c)
(24)

where P∗ and P∗ are the lower and upper probability bounds

de�ned in the traditional interval probabilities.
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Properties of Updating

p(A|E )⊆ p(A|E c) ⇔ p(E |A)⊆ p(E ).
p(A|E )⊇ p(A|E c) ⇔ p(E |A)⊇ p(E ).

Suppose the likelyhood functions p(A|E ) and p(A|E c) as well as

prior and posterior probabilities are proper intervals. If the

likelyhood estimation of event A given E occurs is more accurate

than that of event A given event E does not occur, then the extra

information A can reduce the ambiguity of the prior estimation.



Properties of Updating

p(A|E )≥ p(A|E c) ⇔ p(E |A)≥ p(E ).
p(A|E )≤ p(A|E c) ⇔ p(E |A)≤ p(E ).

If the occurance of event E increases the likelyhood estimation of

event A compared to the one without the occurance of event E ,

then the extra information A will increase the probability of

knowing that event E occurs.



Properties of Updating

p(A|E ) = p(A|E c) ⇔ p(E |A) = p(E ).

The extra information A does not add much value to the

assessment of event E if we have very similar likelyhood ratios,

p(A|E ) and p(A|E c).



Properties of Updating

Sequence-Independence

p(E |A∩B) = p(E ∩B|A)/dualp(B|A)

p(A∩B) = p(B|A)p(A)

The posterior lower and upper bounds obtained by applying a series

of evidences sequencially agree with the bounds obtained by

conditioning the prior with all of the evidences in a single step.



Soundness of Posterior Probability Estimation

p(Ei |A) =
p(A|Ei )p(Ei )

∑
n
j=1 dualp(A|Ej)dualp(Ej)

Soundness can be veri�ed when p(A|Ei ) ∈ IR, p(Ei ) ∈ IR,

p(A|Ej) ∈ IR(j = 1, . . . ,n, j 6= i),
p(Ej) ∈ IR(j = 1, . . . ,n, j 6= i), and p(Ei |A) ∈ IR

∀j 6=ipA|Ej ∈ p
′(A|Ej),∀j 6=ipEj ∈ p′(Ej),∀pEi |A ∈ p

′(Ei |A),

∃pA|Ei ∈ p
′(A|Ei ),∃pEi ∈ p′(Ei ),

pEi |A =
pA|Ei pEi

∑
n
j=1 pA|Ej pEj

(25)



Summary

We di�erentiate focal events from non-focal events by the

modalities and semantics of interval probabilities. An event is

focal when the semantics associated with its interval

probability is universal, whereas it is non-focal when the

semantics is existential.

This di�erentiation allows us to have a simple and uni�ed

representation based on a logic coherence constraint, which is

a stronger restriction than the regular 2-monotoniciy.

Algebraic closure of the new interval form simpli�es the

calculus.

It is also shown that the new Bayes' updating rule is a

generalization of the 2-monotone tight envelope updating rule

under the new representation.

Logic interpretation helps to verify completeness and

soundness of range estimations.
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