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Abstract. Current parametric CAD systems require geometric parameters to have fixed values.
Specifying fixed parameter values implicitly adds rigid constraints on the geometry, which have
the potential to introduce conflicts during the design process. This paper presents a soft constraint
representation scheme based on nominal interval. Interval geometric parameters capture inexactness
of conceptual and embodiment design, uncertainty in detail design, as well as boundary information
for design optimization. To accommodate under-constrained and over-constrained design problems, a
double-loopGauss-Seidelmethod is developed to solve linear constraints. A symbolic preconditioning
procedure transforms nonlinear equations to separable form. Inequalities are also transformed and
integrated with equalities. Nonlinear constraints can be bounded by piecewise linear enclosures and
solved by linear methods iteratively. A sensitivity analysis method that differentiates active and
inactive constraints is presented for design refinement.

1. Introduction

During the process of design, various design variables are specified, which include
geometric variables (e.g. dimension, volume, and tolerance) and non-geometric
ones (e.g. functional characteristics, tooling speed, and expected life). When design
is realized by geometric form, these design variables are finalized and implemented
as geometric parameters in parametric Computer-Aided Design (CAD) systems.
Current CAD systems only allow geometric parameters to have fixed values, such
as the position of a point in 3D space, the direction of a line, and the distance
between two axes. Instead of simply assigning real values to design variables and
the derived geometric parameters in CAD models, there are some advantages to
give interval values to variables and parameters, which means that a variable or
parameter can take any valid value between the lower and upper bounds of the
interval.
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Fixed-value design variables and geometric parameters in CAD generate some
problems. First, fixed values bring up conflicts easily in the design process. Spec-
ifying determined values of design variables and thereby geometric parameters
implicitly adds rigid constraints of value range on geometric parameters at the very
beginning of design implementation. The rigid constraints reduce the freedom of
geometric entities in a CADmodel to the minimal level. These dominant constraints
may become the sources of conflicts at later stages. To resolve the conflicts, the
values of some design variables have to be changed. This trial-and-error cycle will
continue until no conflicts occur. If an interval instead of a fixed value is assigned
to a design variable or a geometric parameter in CAD systems so that any real
value within the interval is valid, the degrees of freedom of geometric shape are
increased. As more constraints are imposed onto the designed object during the
process, the freedom of geometric entities will be restricted gradually. The allow-
able interval values of design variables and thus geometric parameters are reduced
by stages. There would be fewer chances that conflicts occur, and several cycles of
modification can be saved.
Second, the requirement of fixed values for geometric parameters makes the

development of Computer-Aided Conceptual Design (CACD) tools difficult. At the
conceptual and embodiment design stages, actual values of design variables may
not be known. Usually it is not important to specify fixed values of certain variables
at the earlier design stages yet. Current CAD systems require that parameter values
be fully specified and fixed, thus they are not effective tools for conceptual and
embodiment design. It is quite challenging to develop a practically usable CACD
tool based on the current schemeof fixed parameter values.Nevertheless, if the value
of a parameter is specified as a range, the problem of parameter partial integrity
can be solved, i.e., it is not necessary to fix all values of parameters. This increases
the flexibility of geometric modeling. Inexactness of preference and specification
is represented, and CACD is possible based on interval values.
Third, the specifications of valid value range are not captured by fixed-value

variables. Current design optimization process usually occurs after all variables are
specified at the detail design stage, while the original intention of feasible ranges
of variables from upstream design activities is not transferable with the fixed-value
scheme. Bounds have to be added separately for optimization purpose. However,
with the interval representation, the inherent range information is directly applicable
for optimization. Intervals appropriately represent design intent of feasibility, thus
integrating the process from conceptual sketching to parameter optimization.
Variable and parameter intervals capture the uncertainty characteristics of

design. In real-world situations, there are many uncertainty factors in CAD mod-
eling. The dimensions and shape of the designed objects are computed and stored
digitally in CAD systems. Representing an infinite number of real numbers by a
finite number of bits requires approximation. Not all decimal numbers can be rep-
resented in binary format exactly. Rounding errors come from the approximation.
Cancellation errors occur because of catastrophic and benign cancellation. The
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precision of numbers in a computer depends on the word size and floating-point
representation. Variation exists among different systems with different architec-
tures. Uncertainty also comes from measurement as well as tolerance of human
perception during the parameter specification.
In this paper, a nominal interval constraint representation (NICR) scheme based

on nominal interval values is described to represent inexactness, uncertainty, and
feasibility boundary of design information for CAD. It represents soft constraints,
thus reducing the chances of conflicts during constraint imposition. It provides
a generic numerical parameter scheme for different design phases. A piecewise
linear enclosure is developed to transform nonlinear interval constraint systems
and solved by a double-loop Gauss-Seidel iteration method, which accommodates
under-constrained and over-constrained parametric design problems.
The paper is organized as follows. Section 2 reviews constraint-driven para-

metric design mechanisms, interval analysis in engineering design applications, as
well as existing interval constraint solving methods. Section 3 introduces the NICR
representation and notations. Section 4 describes the methods to solve under- and
over-determined linear equations and the linearization method for nonlinear equa-
tions. Symbolic preconditioning is introduced to incorporate inseparable functions
and inequalities. Section 5 describes a sensitivity analysis method to refine design.
Finally, Section 6 gives a comprehensive example for these methods.

2. Background

2.1. CONSTRAINT-DRIVEN DESIGN IN PARAMETRIC CAD

Geometric constraints are fundamental constraints to be captured in engineering
design. The study of geometric constraint representation can be traced back to the
origin of CAD systems. Constrained geometries are sets of loci that satisfy certain
constraints, thus they can be constructed systematically by computer systems. Dif-
ferent types of geometric constraint solving methods and associated representation
for CAD have been proposed. Generally, there are four approaches. The numerical
approach [27], [38], [66], [70], [87], [94] translates geometric constraints into a
system of mathematical equations. These equations then can be solved numeri-
cally by Newton-Raphson or Homotopy methods directly, or by minimizing the
total errors for all equations indirectly. The artificial intelligence approach [1], [2],
[62], [69], [101], [111], [118] represents geometric constraints by facts and rules.
Constraint problems are solved by the aid of geometric reasoning. The symbolic
approach [14], [25], [60], [61] translates geometric constraints into a system of easi-
ly solvable nonlinear equations with symbolic algebraic methods, such as Gr̈obner’s
bases or the Wu-Ritt method, before numerically solving them. The constructive
approach [8], [13], [19], [24], [28], [39], [40], [42], [62], [67], [68], [93], [109]
represents constraints as graphs internally. Constraint system is solved by either
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top-down decomposition or bottom-up clustering of the constraint graphs with the
aid of degrees of freedom analysis.
From a different perspective, the NICR presented here allows all numerical

values of parameters including coordinates, dimensions, and others to be nominal
interval numbers. Thus, soft constraints compared to traditional fixed-value rigid
constraints can be represented.

2.2. INTERVAL ANALYSIS IN ENGINEERING DESIGN

Interval mathematics [5], [36], [46], [51], [79], [80], [89], [98] is a generalization
in which interval numbers replace real numbers, interval arithmetic replaces real
arithmetic, and interval analysis replaces real analysis. An interval A = [aL, aU] is
defined by a pair of real numbers, aL and aU , for lower and upper bounds.
Interval analysis has been applied in computer graphics, including rasterizing

parametric surfaces [83], ray tracing of parametric surfaces [112] and implicit
surfaces [47], collision detection of polyhedral objects [78] and surface models
[22], [107], [108], [114].
In engineering design applications, Finch andWard [23] applied interval analysis

to eliminate infeasible design in set-based modeling. Rao and Berke [95] used inter-
val arithmetic for imprecise structural analysis. Rao and Cao [96] applied interval
analysis in design optimization of mechanical systems. Muhanna and Mullen [84]–
[86] developed an element-by-element interval finite-element formulation method
for uncertainty in solid and structural mechanics. Sharp enclosures on structural
displacement and forces can be obtained with the consideration of interval depen-
dency. Modares et al. [77] extended the method to analyze structural stability under
uncertainty. Related to interval representation, probabilistic modeling, and fuzzy
logic are also applied in engineering design.
In CAD applications, Sederberg and Farouki [104] used interval arithmetic in

approximating Bezier curves. Maekawa and Patrikalakis [72], [73] used interval
Bezier curves to solve shape interrogation problems. Hu et al. [43], [44] used
rounded-interval arithmetic to ensure numerical robustness in Boolean operations
and boundary evaluation. Tuohy et al. [113] applied interval methods for interpo-
lating measured data with B-spline curves and surfaces. Wallner et al. [115] used
intervals to bound errors in geometric construction. Chen and Lou [16] proposed
methods to bound interval Bezier curve with lower degree interval Bezier curve.
Lin et al. [71] investigated the boundary evaluation of interval Bezier curve. The
above research concentrates on the improvement of geometric model’s robustness,
in which intervals embody rounding and cancellation errors during floating-point
computation. In this paper, we propose soft constraint representation with intervals
for conceptual and embodiment design. Newmethods of solving interval constraints
are developed.
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2.3. SOLVING INTERVAL CONSTRAINTS

2.3.1. Linear Equality Systems

Interval linear equation systems AX = B, where A is interval matrix and B and X
are interval vectors, can be solved by interval version of Gaussian elimination and
Gauss-Seidel iteration [5], [36], [51], [89]. Hansen [30], [35] introduced a precon-
dition procedure by multiplying both sides of the equations with an approximate
inverse matrix of the center of A to reduce the effect of dependence in Gaussian
elimination. Hansen [29] and Bliek [12] developed an explicit bounding method to
find interval hull of solution set. Rohn [99] gave a rigorous proof of the interval hull
method. Ning and Kearfott [92] extended the interval hull method with a general
formula for H-matrix coefficient linear systems, as also proved by Neumaier [88].
Shary [105], [106] introduced an algebraic approach to estimate outer and inner
bounds of solution sets with the extension of Kaucher complete interval arithmetic
[48]. Neumaier [90] unified the algebraic approach with fixed-point inverse method.
Chiu and Lee [18] developed an incremental preconditioned interval Gauss-Seidel
method.

2.3.2. Nonlinear Equality Systems

Interval nonlinear equation systems can be solved by different methods. The inter-
val Newton method [4], [5], [79], [89] searches the roots of f(X) = 0 based on
range estimation of the derivative f (X). Fixed-point contraction [6], [76], [102]
solve f(X) = X by iterative substitution of X with epsilon inflation. The Krawczyk
operator [63], [64] removes the interval matrix inverse operation and improves
on the feasibility problem of interval Newton method if intervals are not narrow.
Wolfe [116] introduced inner iterations into the Krawczyk method to reduce the
number of times to compute derivatives. Alefeld and Platzoder [7] modified the
Krawczyk operator with the linear Gaussian algorithm. Hansen operator [33], [34]
integrates preconditioning and Gauss-Seidel iteration into nonlinear equation solv-
ing. Kearfott [36], [50] proposed a linear programming approach for precondition-
ing to minimize interval widths. Hansen [32] developed symbolic preconditioning
with cancellation of common algebraic terms. Kearfott and Walster [54] developed
symbolic preconditioning with Taylor models. Chen [17] generalized the Krawczyk
operator to non-smooth equations by using the mean-value theorem for non-smooth
functions. Benhamou and Granvilliers [9] proposed a symbolic and numeric hybrid
approach to accelerate convergence of the Newton’s method based on Gr̈obner
bases. Sufficient conditions for the existence and uniqueness of solutions for the
Newton alike linearization operators were developed [36], [51], [82] with nonsin-
gular linearization. Kearfott et al. extended the existence and uniqueness test to
problems with singular Jacobi matrices [52], [53] and non-smooth functions [49]
by computation of topological degrees in complex space. Recently, Moore [81]
proposed preprocessing to reduce dimension of sparse systems in fixed point form.



216 YAN WANG AND BARTHOLOMEW O. NNAJI

Hansen and Walster [37] developed an algorithm to compute sharp bounds on the
real roots of polynomials with interval coefficients. Zhang et al. [120] extended
the Krawczyk operator for under constrained problems with generalized inverse
operation for non-square matrices. Wolfe [117] applied generalized inverse matrix
operation to extended Krawczyk operator with second derivatives. Kolev [55], [56]
developed a top-down decomposition method to bound interval factorable functions
with linear interval enclosures. This method is further extended with a bottom-up
linear enclosure construction [57] and an initialization method to narrow the linear
bound [59].

2.3.3. Polynomial Enclosure

Different polynomial forms have been proposed for interval functions to enclose
the range of a function. Mean-value form [5], [79], [89] represents value ranges by
estimate of interval derivatives. Slope form [3], [31], [58], [65], [103], [121] replaces
interval derivatives with interval slope. Taylor form [91], [98] extends mean-value
form to high-order derivatives. Horner form [15], [110] reduces overestimation of
interval polynomial evaluation. Bernstein form [26], [41], [45], [97], [100] bounds
polynomials by ranges of Bernstein coefficients. Taylor model [10], [11], [74], [75]
changes coefficients of Taylor form from intervals to real numbers. Motivated by
Taylor model and Kolev’s work [55], we propose a piecewise linear enclosure for
polynomials to solve interval geometric constraints.

3. Nominal Interval Constraints

In NICR, we define interval number X as X = [xL, xN , xU] which contains lower
bound value xL, nominal value xN , and upper bound value xU . The nominal value
is usually corresponding to the specified fixed value in current CAD systems.
The introduction of the nominal value into an interval is necessary for CADmod-

eling. The nominal value represents user preference and the actual user specification
if the parameter is fixed. It allows current CAD modeling system to adopt interval
parameters so that intervals can be integrated with current fixed-value schemes and
visualization methods. Furthermore, the nominal value is allowed to change within
the range, allows more user interaction and captures the preference information. For
example, a 2D point P([1, 2, 3], [4, 5, 6]) can be displayed at (2, 5). When P is fixed,
its coordinates are ([2, 2, 2], [5, 5, 5]). A real number is a degenerated interval.

3.1. NOMINAL INTERVAL DEFINITIONS AND NOTATIONS

An n-dimensional real number space is denoted as Rn. An n-dimensional inter-
val number space is denoted as IRn. X = [xL, xN , xU] = {x | xL ≤ x ≤ xU ,
xL ≤ xN ≤ xU}, where xL R, xN R, xU R, and X IR.
Given that A = [aL, aN , aU], B = [bL, bN , bU], and is logical and, we have the

following relations:
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  A: 

  B: 

                A ~> B                       A ~≥ B                       A ~< B                      A ~≤ B         

  A: 

  B: 

                A = B                        A := B                        A ⊂ B                       A ⊃ B 

  A: 

  B: 

                A ⊃ B                        A ⊂ B                         A ⊇ B                       A ⊆ B        

  *Notation:  

                 xL   xN   xU

Figure 1. Relations between intervals.

• equivalence: A = B (aL = bL) (aU = bU).

• nominal equivalence: A := B (aL = bL) (aN = bN) (aU = bU).

• strictly greater than or equal to: A ≥ B aL ≥ bU .

• strictly greater than: A > B aL > bU .

• strictly less than or equal to: A ≤ B aU ≤ bL.

• strictly less than: A < B aU < bL.

• inclusion: A B (aU ≤ bU) (aL ≥ bL), A B (aU < bU) (aL > bL).

The relations of intervals are illustrated in Figure 1. 0 = [0, 0, 0] is zero interval.
Interval A is positive (negative), iff A > 0 (A < 0). If the nominal value of
A = [aL, aN , aU] is not of concern, A can simply be denoted as [aL, aU].
Interval A = [aL, aN , aU] is empty, denoted as A = ∅, iff aL > aU . A is invalid

when aN > aU , or aL > aN , or A is empty. The basic arithmetic and set operations
are:

• A B = {x | x A and x B, x R}. If A B �= ∅, it can be derived by
A B = [max{aL, bL}, (max{aL, bL} + min{aU , bU}) / 2, min{aU , bU}].

• A B = {x | x A or x B, x R}. If A B �= ∅, it can be derived by
A B = [min{aL, bL}, (min{aL, bL} + max{aU , bU}) / 2, max{aU , bU}].

• A\B = {x | x A and x � B, x R}.
• A + B = [aL + bL, aN + bN , aU + bU].

• A− B = [aL − bU , aN − bN , aU − bL].

• A B = [min{aLbL, aLbU , aUbL, aUbU}, aNbN , max{aLbL, aLbU , aUbL, aUbU}].
•
1
B
=
{
1
y
| y B, 0 � B

}
.
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•
A
B
=




A
1
B
, (0 � B)

[− , 0,+ ], (B = 0)[
aU
bL

,
aU
bL

,+
]
, (aU ≤ 0, bL < 0, bU = 0)[

− ,
aU
bU

,
aU
bU

] [
aU
bL

,
aU
bL

,+
]
, (aU ≤ 0, bL < 0, bU > 0)[

− ,
aU
bU

,
aU
bU

]
, (aU ≤ 0, bL = 0, bU > 0)

[− , 0,+ ], (aL < 0, aU > 0, bL ≤ 0, bU ≥ 0)[
− ,

aL
bL
,
aL
bL

]
, (aL ≥ 0, bL < 0, bU = 0)[

− ,
aL
bL
,
aL
bL

] [
aL
bU

,
aL
bU

,+
]
, (aL ≥ 0, bL < 0, bU > 0)[

aL
bU

,
aL
bU

,+
]
. (aL ≥ 0, bL = 0, bU > 0)

The width of an interval is wid(A) = aU − aL. wid(∅) = 0. Some other notations
are ubd(A) = aU , lbd(A) = aL, and nom(A) = aN .

3.2. SAMPLING RELATION BETWEEN REAL GEOMETRY AND INTERVAL
GEOMETRY

The intervals capture uncertainty of design. The value of a parameter, which is
generated by computer or selected by human designer, is a sample of the corre-
sponding set of values within the interval. One CAD interval model is allowed to
generate different shapes because of parameter intervals. Implicitly, a CAD interval
model defines a set of geometric shapes that automatically accommodate geometry
variation.
Some strict relationsR’s exist among intervals, which are related to real number

samples. XR Y x X, y Y , xR y.

• strict equivalence: A = B x A, y B, x = y.

• strictly greater than or equal to: A ≥ B x A, y B, x ≥ y.

• strictly greater than: A > B x A, y B, x > y.

• strictly less than or equal to: A ≤ B x A, y B, x ≤ y.

• strictly less than: A < B x A, y B, x < y.

Besides strict relations, some global relations J’s exist in interval arithmetic
evaluation and problem solving. X J Y x X, y Y , x J y.

• global equivalence: A = B x A, y B, x = y.

• greater than or equal to: A ≥ B aL ≥ bL. Equivalently, A ≥ B x A,
y B, x ≥ y.
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• greater than: A > B aL > bL. Equivalently, A > B x A, y B, x > y.

• less than or equal to: A ≤ B aU ≤ bU . Equivalently, A ≤ B x A,
y B, x ≤ y.

• less than: A < B aU < bU . Equivalently, A < B x A, y B, x < y.

Strict inequalities are special cases of global inequalities. Global relations ensure
the feasibility of interval arithmetic operations and solutions. The global relations
make global solution and optimization of interval analysis possible. We assume
global relations to be the default relations, such as the four basic arithmetic opera-
tions and function evaluation.
Interval vectors with same dimensions can be ranked and sorted.

• Interval vectors AI and BI are in a non-decreasing order, AI ≺ BI, where
AI = (A1,A2,…,An), B

I = (B1,B2,…,Bn) if An ≤ Bn, and ¬(Ai < Bi) →
(Ai−1 ≤ Bi−1) recursively apply, starting from i = n.

• Interval vectors AI and BI are in a non-increasing order, AI � BI, where
AI = (A1,A2,…,An), B

I = (B1,B2,…,Bn) if An ≥ Bn, and ¬(Ai > Bi) →
(Ai−1 ≥ Bi−1) recursively apply, starting from i = n.

• maxwid(AI) = max
i
(wid(Ai)), where A

I = (A1,A2,…,An).

• minwid(AI) = min
i
(wid(Ai)), where A

I = (A1,A2,…,An).

A power interval in an n-dimensional vector space of XI with a degree of
m, denoted as PX(m, n), is an ordered list of m non-overlapped interval vectors of
n-dimensional, i.e., PX(m, n) = {XI1,XI2,…,XIm}, where XIi IRn (i = 1,…,m),
minwid(XIi XIj ) = 0 (i �= j), and XIi ≺ XIi+1 (i = 1,…,m− 1).

3.3. VARIATIONAL GEOMETRY WITH INTERVAL CONSTRAINTS

With the inherent capability of modeling uncertainty and inexactness, NICR has
some special properties that make it different from current geometric modeling
schemes. Changing geometric parameter values or adding extra geometric con-
straints lead to different geometries. For example, in Figure 2, the topology of a 2D
rectangular shape may vary based on coordinates of four corner points within their
allowable ranges.
A geometric model is a geometry vector

x = [x1, y1, z1,…, xn, yn, zn]
T ,

which are coordinates of n characteristic points in 3D Euclidean space, satisfying
the constraints f(x). The relations between these points can be linear or nonlinear
equality or inequality. Commonly used geometric constraints can be represent-
ed in polynomial forms. Some examples are listed in Table 1. In feature-based
parametric CAD systems, geometric constraints for shape construction usually are
2-dimentional. 3-dimensional constraints are normally used in assembly.
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Table 1. Some examples of geometric constraints.

Relation Constraint

Distance
(x1, y1, z1) (x2, y2, z2) (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = d2

Distance
(x3, y3)

(x1, y1) (x2, y2)

[(y2 − y1)(x3 − x1)− (x2 − x1)(y3 − y1)]2

= d2[(y2 − y1)2 + (x2 − x1)2]

Parallel
(x3, y3) (x4, y4)

(x1, y1) (x2, y2)

(y2 − y1)(x4 − x3)− (x2 − x1)(y4 − y3) = 0

Parallel
(x3, y3, z3)

(x4, y4, z4)

(x1, y1, z1)
(x2, y2, z2)



(y2 − y1)(x4 − x3)− (x2 − x1)(y4 − y3) = 0,
(z2 − z1)(x4 − x3)− (x2 − x1)(z4 − z3) = 0,
(y2 − y1)(z4 − z3)− (z2 − z1)(y4 − y3) = 0

Perpendicular
(x3, y3, z3)

(x1, y1, z1)

(x2, y2, z2)

(x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1) + (z2 − z1)(z3 − z1) = 0

Angle
(x3, y3, z3)

(x1, y1, z1)

(x2, y2, z2)

[(x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1) + (z2 − z1)(z3 − z1)]2

= cos2 [(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]
[(x3 − x1)2 + (y3 − y1)2 + (z3 − z1)2]

Tangent

(x1, y1, z1) (x2, y2, z2) (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = (r1 + r2)2

Incidence

(x1, y1, z1)

(x2, y2, z2)

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = 0

Incidence
(x3, y3)

(x2, y2)(x1, y1)

(x2y3 − x3y2) + (x3y1 − x1y3) + (x1y2 − x2y1) = 0

Incidence

(x2, y2, z2)(x1, y1, z1)

(x4, y4, z4) (x3, y3, z3)
(x4 − x1)[(y2 − y1)(z3 − z1)− (z2 − z1)(y3 − y1)]
+(y4 − y1)[(z2 − z1)(x3 − x1)− (x2 − x1)(z3 − z1)]
+(z4 − z1)[(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)] = 0

Concentric

(x1, y1, z1)

(x2, y2, z2)

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = 0
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Figure 2. Interval constraint driven geometry exhibits inherent variational geometry.

P0 P1

P3 P2

d0

L3 L1

L2

L0

(a)

(x1 − x0)2 + (y1 − y0)2 = d20
(x0 − x3)(x1 − x0)2 + (y0 − y3)(y1 − y0)2 = 0
(x2 − x1)(x1 − x0)2 + (y2 − y1)(y1 − y0)2 = 0

(b)

Figure 3. An example of under-constrained geometry.

Current parametric modeling scheme has strict requirements on the number of
constraints. The number of constraints should be equal to the number of variables,
namely well-constrained. The concept of under-constrained and over-constrained
geometry is not critical in interval representation. Soft constraints are applied to
geometry implicitly at every step of specifications. The effect of adding more
constraints is to reduce allowable regions of geometric entities. In the example
of Figure 3, the rectangular contour of a mounting bracket is under-constrained
if the available constraints are the distance between corner points P0 and P1, the
perpendicularity between lines L0 and L1, and lines L0 and L3.
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P0 P1

P3 P2

d0

L3 L1

L2

L0

d3 d1

d2

h

(a)

x0 = a0
y0 = b0
y0 − y1 = 0
(x1 − x0)2 + (y1 − y0)2 = d20

(x2 − x1)2 + (y2 − y1)2 = d21

(x3 − x2)2 + (y3 − y2)2 = d22

(x0 − x3)2 + (y0 − y3)2 = d23

(x0 − x3)(x1 − x0) + (y0 − y3)(y1 − y0) = o1
(x2 − x1)(x1 − x0) + (y2 − y1)(y1 − y0)2 = o2
x0 ≤ x1

(b)

Figure 4. An example of over-constrained geometry.

Over-determined or over-constrained situation is also allowed. As illustrated in
Figure 4, if the geometric constraints in the bracket design are specified as: the
position of P0; distances between P0 and P1, P1 and P2, P2 and P3, and P3 and
P0; L0 is perpendicular to L1 as well as to L3; and L0 is horizontal, current CAD
systems will complain that this geometry is over-constrained. However, in interval
representation, only constraints that cause no feasible regions generate conflicts.
Intervals loosen the current requirement on the number of constraints and give a
different view of specification in CAD.

4. Solving Interval Constraints

To incorporate interval geometric modeling into current CAD systems, several
fundamental issues related to geometric computation should be addressed. These
include linear and nonlinear equation representation and solution, which are essen-
tial for transformation and assembly operation, surface intersection, and parametric
shape construction, etc.
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INPUT:  Interval matrix A

        Interval vector B

OUTPUT: Interval vector X

Interval V 

int i, j, k 

REPEAT until stop criterion is met 

FOR each 1 <= i <= m 

FOR each 1 <= j <= n 

            V = 0 

FOR each 1<=k<j 

                V = V+Aik*Xk
ENDFOR

FOR each j+1<=k<=n 

                V = V+Aik*Xk
ENDFOR

            V = (Bi – V)/Aij

            Xj = Xj ∩ V 

ENDFOR

ENDFOR

Figure 5. A double-loop Gauss-Seidel method.

4.1. INTERVAL LINEAR EQUATIONS

An interval linear system is

AIXI = BI, (4.1a)

where AI IRm×n, XI IRn, and BI IRm. Under-constrained (m < n) and over-
constrained (m > n) linear systems are the major considerations in our context.
Iteration methods have no requirement on the number of constraints. After the lin-
earization process of geometric constraints, which will be discussed in Section 4.2,
matrix A is a real matrix. System (4.1a) becomes

AXI = BI. (4.1b)

A double-loop Gauss-Seidel method without preconditioning

X̃Ij =
1
Aij


BIi −∑

k �= j
AikX

I
k


 XIj for each i and j (4.2)

is developed, as listed in Figure 5.
A second method to solve the linear system (4.1b) is to use Singular Value

Decomposition (SVD) with linear least-square estimation. Suppose A = UWVT ,
where Um×n and Vn×n are column-orthogonal matrices, and Wn×n is a diagonal
matrix. With a preconditioner AT , we solve

ATAXI = ATBI. (4.3)



224 YAN WANG AND BARTHOLOMEW O. NNAJI

That is

XI = V

(
diag

(
1
wj

))
UT BI.

In singular cases, replace 1 / wj with 0 if wj = 0 and the corresponding Xj is not
narrowed. If we define∑

(AI,BI) := {x Rn | A AI, B BI, Ax = B},
then ∑

(A,BI)
∑
(ATA,ATB).

Here is an example. To solve linear system


1 3
4 2
1 −1

−2 4



[
X1
X2

]
=




[0, 6]
[−6, 8]
[−1, 1]
[−4, 1]


 ,

the double-loop Gauss-Seidel method without preconditioning has the result[
X1
X2

]
=
[
[−1.8, 2.4]
[−0.8, 1.45]

]
,

while the SVD preconditioning method gives[
X1
X2

]
=
[
[−1.2135, 2.0976]
[−0.9269, 1.2013]

]
.

The hull of united solution set is[
X1
X2

]
=
[
[−0.3, 1.6666]
[−0.25, 1]

]
.

Some examples from [92] are computed using the double-loop Gauss Seidel
method and results are compared in Table 2.

4.2. INTERVAL NONLINEAR EQUATIONS

To solve interval nonlinear equations

Fi(X
I) = 0 (i = 1,…, l), (4.4)

where XI = [X1,X2,…,Xn]T IRn, a piecewise linear enclosure algorithm is
developed to solve geometric constraints. This algorithm is more general than
Kolev’s algorithm with the consideration of multiple solutions. The piecewise
linear enclosure generates individual bounds for multiple roots.
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Table 2. Comparisons of linear equation methods.

AI BI
Gaussian

elimination
Hansen [29] Ning-Kearfott [92]

Double − loop

Gauss − Seidel
 [4, 6] [-1, 1] [-1, 1] [-1, 1]

[-1, 1] [-6, -4] [-1, 1] [-1, 1]

[-1, 1] [-1, 1] [9, 11] [-1, 1]
[-1, 1] [-1, 1] [-1, 1] [-11, -9]





 [-2, 4]

[1, 8]

[-4, 10]
[2, 12]





[-2.60, 3.10]

[-3.90, 1.50]

[-1.43, 2.15]
[-2.35, 0.60]





[-2.50, 3.10]

[-3.90, 1.20]

[-1.40, 2.15]
[-2.35, 0.60]





[-2.50, 3.10]

[-3.90, 1.20]

[-1.40, 2.15]
[-2.35, 0.60]





[-2.50, 2.44]

[-3.70, 1.45]

[-1.38, 2.05]
[-2.25, 0.69]




[
[3.7, 4.3] [-1.5, -0.5] [0, 0]

[-1.5, -0.5] [3.7, 4.3] [-1.5, -0.5]
[0, 0] [-1.5, -0.5] [3.7, 4.3]

] [
[-14, 14]

[-9, 9]
[-3, 3]

] [
[-6.38, 6.38]

[-6.40, 6.40]
[-3.40, 3.40]

] [
[-6.38, 6.38]

[-6.40, 6.40]
[-3.40, 3.40]

] [
[-6.38, 6.38]

[-6.40, 6.40]
[-3.40, 3.40]

] [
[-6.38, 6.38]

[-6.40, 6.40]
[-3.40, 3.40]

]
[
[3.7, 4.3] [-1.5, -0.5] [0, 0]
[-1.5, -0.5] [3.7, 4.3] [-1.5, -0.5]

[0, 0] [-1.5, -0.5] [3.7, 4.3]

] [
[-14, 0]
[-9, 0]

[-3, 0]

] [
[-6.38, 0]
[-6.40, 0]

[-3.40, 0]

] [
[-6.38, 1.12]
[-6.40, 1.54]

[-3.40, 1.40]

] [
[-6.38, 6.67]
[-6.40, 2.77]

[-3.40, 2.40]

] [
[-6.38, 0]
[-6.40, 0]

[-3.40, 0]

]
[
[3.7, 4.3] [-1.5, -0.5] [0, 0]
[-1.5, -0.5] [3.7, 4.3] [-1.5, -0.5]

[0, 0] [-1.5, -0.5] [3.7, 4.3]

] [
[0, 14]
[0, 9]

[0, 3]

] [
[0, 6.38]
[0, 6.40]

[0, 3.40]

] [
[-1.12, 6.38]
[-1.54, 6.40]

[-1.40, 3.40]

] [
[-1.67, 6.38]
[-2.77, 6.40]

[-2.40, 3.40]

] [
[0, 6.38]
[0, 6.40]

[0, 3.40]

]
[
[3.7, 4.3] [-1.5, -0.5] [0, 0]

[-1.5, -0.5] [3.7, 4.3] [-1.5, -0.5]

[0, 0] [-1.5, -0.5] [3.7, 4.3]

] [
[2, 14]

[-9, 3]

[-3, 1]

] [
[-1.09, 4.29]

[-4.02, 1.24]

[-2.44, 0.773]

] [
[-0.995, 5.01]

[-4.64, 1.52]

[-2.69, 1.38]

] [
[-1.09, 4.29]

[-3.79, 1.24]

[-2.35, 0.773]

] [
[-0.995, 5.27]

[-3.79, 3.66]

[-2.35, 1.75]

]
[
[3.7, 4.3] [-1.5, -0.5] [0, 0]

[-1.5, -0.5] [3.7, 4.3] [-1.5, -0.5]

[0, 0] [-1.5, -0.5] [3.7, 4.3]

] [
[2, 14]

[3, 9]

[-3, 1]

] [
[0.517, 6.25]

[0.450, 6.07]

[-0.881, 2.73]

] [
[-0.206, 6.25]

[-0.386, 6.07]

[-2.01, 2.73]

] [
[0.523, 6.25]

[0.499, 6.07]

[-0.743, 2.73]

] [
[0.523, 6.25]

[0.499, 6.07]

[-0.743, 2.73]

]

 [15, 17] [-3, 3.01] [-3, 3.01] [-3, 3.01]

[-3, 3.01] [15, 17] [-3, 2.99] [-3, 2.99]
[-3, 2.99] [-3, 2.99] [15, 17] [-3, 3.01]

[-3, 3.01] [-3, 3.01] [-3, 2.99] [15, 17]




[-6, -2]

[4, 5]
[-2, 4]

[8, 10]




 [-1.03, 0.495]

[-0.347, 0.974]
[-0.770, 0.917]

[0.150, 1.25]




 [-1.03, 0.363]

[-0.233, 0.975]
[-0.752, 0.919]

[0.149, 1.25]





 [-1.03, 0.761]

[-0.372, 0.974]
[-0.785, 0.917]

[0.051, 1.25]




The following steps are needed to solve the system:

STEP 1: Transform each equation of (4.4) to separable form to eliminate depen-
dency among variables.

STEP 2: Find the piecewise linear enclosure of each of the univariate nonlinear
functions and form a piecewise linear equation system.

STEP 3: Solve the piecewise linear system by the algorithm of Section 4.1.

STEP 4: If stopping criterion is met, stop. Otherwise, repeat from STEP 2 to
STEP 4.

STEP 1: According to Yamamura’s algorithm [119], functions that are com-
posed of four basic arithmetic operations (+,−, ×, /), unary operations (sin, exp,
log, sqrt, etc.), and the power operation (ˆ) can be transformed to the separable
form by introducing extra variables. For example, ƒ1 × ƒ2 can be transformed to
(y2 − ƒ21 − ƒ22) / 2 and y = ƒ1 + ƒ2 by introducing y = ƒ1 + ƒ2. Similarly, ƒ1 / ƒ2 can
be transformed to (y2− ƒ21 − 1 / ƒ22) / 2 and y = ƒ1 + 1 / ƒ2; and (ƒ1)ƒ2 is symbolically
equivalent to exp(y1), and y1 = (y22 − (log(ƒ1))2 − ƒ22) / 2, y2 = log(ƒ1) + ƒ2. In
geometric modeling, polynomial constraints, as shown in Table 1, can be easily
transformed to the separable form.
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After the transformation, system (4.4) is equivalent to

n∑
j=0

ƒij(Xj) = 0 (i = 1, 2,…,m), (4.5)

where Xj IR.

STEP 2: Piecewise linear enclosure of ƒij(xj) is found with the initial power inter-
val of PX(1, 1) = {X (0)j } for each i and j as follows. Let the jth initial variable
X (0)j = [xj0, xjp] and PX

(p, 1) = {[xj0, xj1], [xj1, xj2],…, [xj(p−1), xjp]} for a p-piecewise
linearization (p ≥ 2), we have slopes

aijk =
ƒij(xj(k+1))− ƒij(xjk)

xj(k+1) − xjk
(k = 0, 1,…, p− 1). (4.6)

The piecewise linear enclosure of ƒij(xj) is defined as

Eij(x) =




aij0x + Bij0 x [xj0, xj1),

aij1x + Bij1 x [xj1, xj2),
...

...

aij(p−1)x + Bij(p−1) x [xj(p−1), xjp],

(4.7)

where aijk R and Bijk IR such that

ƒij(x) Eij(x) for x X(0)j , (4.8)

as illustrated in Figure 6. Piecewise linear enclosure is able to find multiple solu-
tions.
Geometric constraints usually are polynomials. Therefore ƒij(x) is continuous

and differentiable within interval X(0)j . To find a Bijk with the minimum width with
the given aijk, derivative of ƒij(x) can be obtained symbolically. The problem is
reduced to solve real value nonlinear equation and find solutions of

ƒij(x) = aijk. (4.9)

Given that ƒij(x) is a univariate polynomial function or a function with unary
operations for most geometric constraints, equations (4.9) have at least one solution.
Roots can be isolated within disjointed intervals individually based on Descartes’
rule of signs before equations are solved. Descartes’ bound gives the upper bound
of the numbers of positive and negative roots of a polynomial.
Let P(x) be a polynomial with real coefficients, the following transformations

are defined:

• (Reverse transformation): R[P(x)] = xnP(1 / x) where n is the degree of P.

• (Translation transformation): Tt[P(x)] = P(x + t) for t R.
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fij(x)

x

Xj
(0)

Bijk

Xj
(1)

fij(xj(k-1))

fij(xj(k+1))

fij(xjk)

xij(k-1) xijk xij(k+1)

Bij(k-1)

Figure 6. Piecewise linear enclosure of nonlinear interval function.

• (Homothetic transformation): Hc[P(x)] = P(cx) for c R.

Based on the algorithm of Collins et al. [20], [21], Pij(x) for x X is transformed
to P0ij(x) for x [0, 1] by P0ij(x) = Hb−a[Ta[Pij(x)]] where a is the lower bound of
X while b is the upper bound of X. The roots of Pij(x) for x X have one-to-one
correspondence with the roots of P0ij(x) for x [0, 1]. A list of root intervals or
exact roots can be obtained by calling RootIsolation(P0ij , 0, 0) listed in Figure 7. For
each root interval or exact root with information of (depth, index) in the list, there

is an corresponding x
[
(b − a)index

2depth
+ a, (b− a)(index + 1)

2depth
+ a

]
for root intervals or

x = (b− a)index
2depth

+ a for exact roots such that Pij(x) = 0.

Interval [xijk, xij(k+1)] can be subdivided into small intervals bounding individual
roots of (4.9). Let gijk(x) = ƒij(x) − aijk. Solutions to (4.9) can be found by the
Secant method

x(n+1) = x(n) − x(n) − x(n−1)

gijk(x(n))− gijk(x(n−1))
gijk(x

(n)) n = 1, 2, 3,… (4.10)

Suppose xijks (s = 1, 2,…, S) is the sth solution of (4.9), and xijk0 = xj0 as defined in
(4.6). Let Bijk = [b

ijk
L , bijkN , bijkU ], where

bijkU = max
s

{ƒij(xijks)− aijkxijks, s = 0, 1,…, S}, (4.11a)

bijkN = ƒij(xijk0)− aijkxijk0, (4.11b)

bijkL = min
s
{ƒij(xijks)− aijkxijks, s = 0, 1, …, S}. (4.11c)



228 YAN WANG AND BARTHOLOMEW O. NNAJI

INPUT:  Polynomial P with n degree 

        int depth 

        int index 

OUTPUT: RootIntervalList 

IF P(0) = 0 

    RootIntervalList.addExactRoot(depth, index) 

ENDIF

IF P(1) = 0 

    RootIntervalList.addExactRoot(depth, index+1) 

ENDIF

Polynomial Q = T1[R(P)]

IF DecartesBound(Q) = 1 

    RootIntervalList.addRootInterval(depth, index) 

ELSEIF DecartesBound(Q) >= 2

    Polynomial P1 = 2
n
H1/2[P]

    RootIsolation(P1, depth+1, 2*index) 

    Polynomial P2 = T1[P1]

    RootIsolation(P2, depth+1, 2*index+1) 

ENDIF

Figure 7. RootIsolation procedure based on Descartes’ rule of signs.

LEMMA 4.1.
n∑
j=1

ƒij(Xj)
n∑
j=1

Eij(Xj) i = 1, 2,…,m. (4.12)

Proof. From (4.8), we have for x [xijk, xij(k+1)],

ƒij(x) aijkx + Bijk (i = 1,…,m; j = 1,…, n). (4.13)

Then, for x [xij0, xijp],

ƒij(x)




aij0x + Bij0 x [xj0, xj1],

aij1x + Bij1 x [xj1, xj2],
...

...

aij(p−1)x + Bij(p−1) x [xj(p−1), xjp].

(i = 1, …,m; j = 1,…, n)(4.14)

Thus,
n∑
j=1

ƒij(Xj)
p−1⋃
k=0

n∑
j=1

(aijkX
k
j + Bij0) (i = 1,…,m), (4.15)

where Xkj = [xjk, xj(k+1)] and Xj =
p−1⋃
k=0

Xkj . �

STEP 3: Solving (4.5) thus is further reduced to solving piecewise linear enclo-
sure

n∑
j=1

(aijXj + Bij) = 0 (i = 1,…,m)
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iteratively, or

n∑
j=1

aijXj = −
n∑
j=1

Bij (i = 1, …,m), (4.16)

where

aij =




aij0 x [xj0, xj1),

aij1 x [xj1, xj2),
...

...

aij(p−1) x [xj(p−1), xjp]

and Bij =




Bij0 x [xj0, xj1),

Bij1 x [xj1, xj2),
...

...

Bij(p−1) x [xj(p−1), xjp].

This linear system can be solved using the algorithm described in Section 4.1.
Suppose Yj is the jth variable solution of (4.16) in the tth iteration. By (4.17), the
initial value ofXj in the (t+1)-th iteration is calculated. If an empty interval is derived,
the original system has no solution within the given intervals (X(t)1 ,X (t)2 ,…,X (t)n ).

X (t+1)j = X (t)j Yj for j = 1, 2, …, n. (4.17)

STEP 4: When the stopping criterion is met, such as the width of intervals has
no further improvement, or the intervals are sharp enough, the iteration is stopped.
Otherwise, go back to (4.6) to find out the new linear enclosures within the updated
intervals and repeat the procedure starting from STEP 2.

Remark 4.1. The piecewise linear enclosure is a special case of first-order Taylor
model.

E(F,A,XI) = F(0) + A(XI − 0) + I = AXI + BI, (4.18)

where BI = F(0) + I, Aij = aij, and B
I
i =

∑
j
Bij as in (4.16).

THEOREM 4.1. Let K(XI) be the operator to solve the piecewise linear system
E(F,A,XI) = 0. If K(XI) XI, then there exists a point x∗ = XI such that
F(x∗) = 0.

Proof. From Lemma 4.1, we have XI F(XI) E(F,A,XI). The combina-
tion of interval splitting in piecewise enclosure and Gauss-Seidel method ensures
K(XI) XI. Therefore, the Brouwer fixed point theorem implies that there is a
point x∗ = XI such that F(x∗) = 0. �

With extended interval arithmetic [36], [51] in which division by zero is allowed,
interval Newtonmethods elegantly split intervals containing multiple solutions. The
piecewise linear enclosure method works in the same way to divide intervals and
bound unique solutions individually. A simple example is bisection of two-piece
linear enclosure.
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LEMMA 4.2 [55]. If ƒ : X → R (X IR) is a smooth function and its linear

enclosure is E(X) = aX + B, then lim
wid(X)→0

wid(B)
(wid(B))2

= .

Proof. Suppose that X(T) = [xL, xU] X (0) at Tth iteration. Let a = ƒ(xU )− ƒ(xL)
xU − xL

and B = [bL, bU]. There exists an xs X (T) such that ƒ (xs) = a. Assume that ƒ(x)
(x X) is convex. Other cases can be proved similarly. bU = ƒ(xL) − axL and
bL = ƒ(xs)− axs. Then wid(B) = ƒ(xL)− ƒ(xs)− a(xL − xs).

Because of ƒ(x) = ƒ(xs) + ƒ (xs)(x − xs) +
1
2
ƒ (xs)(x − xs)2 +

1
6
ƒ ( )(xL − xs)3,

we have ƒ(xL) = ƒ(xs) + ƒ (xs)(xL− xs) +
1
2
ƒ (xs)(xL− xs)2 +

1
6
ƒ ( )(xL− xs)3. That

is ƒ(xL)− ƒ(xs)− a(xL− xs) =
1
2
ƒ (xs)(xL− xs)2 +

1
6
ƒ ( )(xL− xs)3. Thus wid(B)

1
2
ƒ (xs)(wid(X))2 + O[(wid(X))3] as wid(X) → 0. Therefore, lim

wid(X)→0

wid(B)
(wid(X))2

=

. �

THEOREM 4.2. Suppose F : XI → Rn (XI IRn) is a smooth function such that,
if F(x∗) = 0, then x∗ � XI. K(XI) is the operator to solve the piecewise linear
system E(F,A,XI) = 0. If ATA is nonsingular and K(XI) XI, then there exists
unique solutions such that F(x) = 0.

Proof. Because of the inherent interval splitting procedure, the piecewise lin-
ear enclosure method will isolate zeros in individual boxes during iteration. Let

(ATA)−1AT = P as in (4.16) and p = min
i, j

|Pij|, p = max
i, j

|Pij|. For X̃k =
m∑
i=1
Pki

n∑
j=1

Bij,

from Lemma 4.2, we have

lim
wid(Xk)→0

wid(X̃k)
(wid(Xk))2

= lim
wid(Xk)→0

m × [p, p] × wid
(

n∑
j=1

Bij

)

(wid(Xk))2

= lim
wid(Xk)→0

mn[p, p]wid(Bij)

(wid(Xk))2
= [mn p,mn p],

which indicates quadratic convergence. �

Remark 4.2. Even if ATA is singular, the convergence of smooth functions is
quadratic given the condition K(XI) XI.

Remark 4.3. In (4.7), if a B̂ijk can be estimated without the calculation of derivative
as described in STEP 2 such that Bijk B̂ijk, this algorithm can be simplified
and F(X) can be non-smooth functions. However, certain conditions need to be
satisfied to ensure quadratic convergence. The interval splitting only provides linear
convergence.

An example [51, p. 57] is used to show the quadratic onvergence of the algorithm,
as shown in Table 3.
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Table 3. An example to illustrate convergence.

Constraints:{
x21 − 4x2 = 0,
x22 − 2x1 + 4x2 = 0

Iteration
(T)

1∑
j=0

wid(X(T)j )

1∑
j=0

wid(X(T)j )(
1∑
j=0

wid(X(T−1)j )

)2

1 1.25 0.078125
Initial values: Solution: 2 0.78125 0.5{
X1 = [−1, 1],
X2 = [−1, 1]

{
x1 = 0,
x2 = 0

3
4

0.22049
0.0170582

0.36125
0.350878

5 9.82161e−005 0.337535
6 3.2185e−009 0.333647
7 3.45293e−018 0.333335
8 3.97423e−036 0.333333
9 5.26484e−072 0.333333
10 9.23951e−144 0.333333
11 2.84562e−287 0.333333

4.3. INTERVAL INEQUALITIES

With preconditioning, inequalities can be solved by the methods for equations.
Consider a set of linear or nonlinear inequalities

Fi(X
I) ≤ Ci (i = 1,…, l), (4.19)

where XI IRn and Ci IR, inequalities are transformed to equations

Fi(X
I) + Si = Ci (i = 1, …, l), (4.20)

where Si IR is a slack variable with initial value of [0, 0,+ ]. Similarly,

Fi(X
I) ≥ Ci (i = 1,…, l) (4.21)

can be transformed to

Fi(X
I) + Si = Ci (i = 1, …, l), (4.22)

where Si IR has initial value of [− , 0, 0]. Inequalities can be easily integrated
into systems of equalities, which is a good property of interval constraint represen-
tation.
Table 4 shows an example when inequality is introduced in the example of

Table 3.

5. Design Refinement

One important aspect related to interval representation is the over estimation of
allowance. Design refinement is needed to generate more delicate design if desirable
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Table 4. The result when inequality is introduced in the example of Table 3.

Constraints:

x21 − 4x2 = 0,
x22 − 2x1 + 4x2 = 0,
x1 ≤ x2

Preconditioned:

x21 − 4x2 = 0,
x22 − 2x1 + 4x2 = 0,
x1 − x2 + s1 = 0

Itera-
tion
(T)

2∑
j=0

wid(X(T)j )

2∑
j=0

wid(X(T)j )(
2∑
j=0

wid(X(T−1)j )

)2
1 0.75 7.44036e−007

Initial values: Solution: 2 0.046875 0.0833333

X1 = [−1, 1],
X2 = [−1, 1],
X3 = [0, 1000]



x1 = 0,
x2 = 0,
x3 = 0

3
4
5

0.000183105
2.79397e−009
6.50521e−019

0.0833333
0.0833333
0.0833333

6 3.52648e−038 0.0833333
7 1.03634e−076 0.0833333
8 8.95001e−154 0.0833333
9 6.67522e−308 0.0833333

details have not been achieved yet. There are two ways to refine design: interval
subdivision and constraint respecification. Interval subdivision is to divide existing
interval boxes into unions of subintervals to achieve a refined view of current
design. Constraint respecification is to modify some of constraints or to add extra
valid constraints to contract feasible regions.

5.1. INTERVAL SUBDIVISION

Interval subdivision (also called subpaving) substitutes an interval vector with
multiple interval vectors such that the corresponding real space region is subdivided
into multiple smaller regions to cover the actual solution set more compactly.
Interval vectorX can be bisected recursively and subintervals are tested individually
if they contain the actual solution set. The actual solution set then is approximated
by the union of subinterval regions.
Consider a design problem f(X) = Y. The target is to find the actual solution

set S X with the minimal size such that f(S) = Y. Interval arithmetic only gives
a valid solution D with f(D) Y. If the valid solution is represented by power
intervals, refinement is degree elevation of power intervals. If the original solution
to a problem is found as an n-dimensional vector X = [X1,X2,…,Xn] with the
corresponding power interval P(1, n)(0) . One elevation operation will bisect X, with
each interval vector being deleted and new subintervals inserted. Feasibility of
each new subinterval then is tested. For a m-step n-dimensional X subdivision, the
number of intervals generated is an order of O(2m×n), which is computationally
inefficient. A better way to contract a solution is to modify or add valid constraints
to generate a new solution with narrower feasible regions.
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Figure 8. Relations of two constraint subsets.

5.2. CONSTRAINT RESPECIFICATION

Constraint modification depends on sensitivity analysis, while adding constraints
is largely dependent on user’s specification. Feasibility and effectiveness should be
considered simultaneouslywhen changing constraints. One basic issue in sensitivity
analysis is how to differentiate active and inactive constraints. Active constraints
scope the actual range of solution, while inactive constraints have certain level of
slackness. At the beginning of interval computation, all constraints are active if a
sufficiently large initial region is given. As the iteration proceeds, some constraints
become inactive. The decision of which constraints to be modified is based on the
selection of active constraints.

THEOREM 5.1. For a constraint set p = { f(X) = Y and g(X) = Z}, the subset
f(X) = Y with respect to a solution D X is inactive if f(D) Y and g(D) Z.

Proof. Suppose S1 and S2 are actual solution sets of f and g respectively, and S
is the actual solution set of p. Given that f(S1) = Y and f(D) Y, because of the
inclusion monotonicity, S1 D. Similarly, D S2. Thus, S1 S2. �

As illustrated by Figure 8, subset f is inactive and g is active in case (a); both f
and g are active in case (b); and f is active and g is inactive in case (c).
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(a) design problem with 50 constraints and 36 variables

(b) variational bounds of 18 characteristic points in the solution
with 100 variables and 110 constraints in separable form

Figure 9. An over-constrained bracket design problem.

6. A Numerical Example

The NICR kernel is implemented in C++ with an object-oriented programming
style. The kernel includes the fundamental structure and arithmetic operations of
the nominal intervals. It also includes the implementation of the methods described
in previous sections for solving linear and nonlinear constraint systems.
As a demonstration, the design of the bracket in Figure 4 is used as a numerical

example. As shown in Figure 9(a), there are 18 characteristic points therefore 36
design variables in this problem. 50 constraints are assigned to the variables, which
is over-constrained in the sense of traditional parametric modeling. Commercial
CAD systems usually use constructive constraint solving methods. Large problems
are decomposed into small ones. It is unusual and unrealistic to solve very large
numerical systems directly. After the transformation to separable form, the bracket
design problem has 100 variables and 110 constraints, as listed in Appendices. This
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Table 5. Width reduction of 100 variables in the bracket example.

Iter.
(T)

99∑
j=0

wid(X(T)j )−
99∑
j=0

wid(X(T−1)j )
Iter.
(T)

99∑
j=0

wid(X(T)j )−
99∑
j=0

wid(X(T−1)j )

1 188.135 26 0.037213
2 12.0089 27 0.02771
3 3.09879 28 0.020351
4 3.87703 29 0.014782
5 3.16818 30 0.010643
6 1.83084 31 0.007607
7 1.28761 32 0.005405
8 0.892381 33 0.003821
9 0.541563 34 0.00269
10 0.502575 35 0.001887
11 0.394768 36 0.001319
12 0.313836 37 0.00092
13 0.286785 38 0.00064
14 0.231169 39 0.000445
15 0.156597 40 0.000308
16 0.127431 41 0.000213
17 0.130038 42 0.000147
18 0.138253 43 0.000102
19 0.128812 44 7.00e−05
20 0.115669 45 4.82e−05
21 0.108886 46 3.31e−05
22 0.09546 47 2.28e−05
23 0.079314 48 1.56e−05
24 0.06334 49 1.07e−05
25 0.049103 50 7.35e−06

problem is solved by the NICR kernel, and the result is shown in Figure 9(b). The
reduction of total widths for the 100 variables is shown in Table 5 and Figure 10.

7. Conclusion

This paper presents a soft constraint representation scheme based on nominal inter-
val for parametric CAD systems. Interval geometric parameters capture inexactness
of conceptual and embodiment design, uncertainty in detail design, aswell as bound-
ary information for design optimization. To accommodate under-constrained and
over-constrained design problems, a double-loopGauss-Seidelmethod is developed
to solve linear constraints. A symbolic preconditioning procedure transforms non-
linear equations to separable form. Inequalities are also transformed and integrated
with equalities.
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Figure 10. Width reduction in the bracket example.

Nonlinear constraints can be bounded by piecewise linear enclosures and solved
by linear methods iteratively. A sensitivity analysis method that differentiates active
and inactive constraints is presented for design refinement.
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Appendix

A. 50 Constraints and 36 variables of the example in Section 6

x0 = a0, y0 = b0, y0 − y1 = 0,
(x1 − x0)2 + (y1 − y0)2 = d20 ,

(x2 − x1)2 + (y2 − y1)2 = d21 ,

(x3 − x2)2 + (y3 − y2)2 = d22 ,

(x0 − x3)2 + (y0 − y3)2 = d23 ,

(x0 − x3)(x1 − x0) + (y0 − y3)(y1 − y0) = 0,

(x2 − x1)(x1 − x0) + (y2 − y1)(y1 − y0) = 0,

x0 ≤ x1, y0 ≤ y3, x0 ≤ x5, y0 ≤ y5,

[(y1 − y0)(x5 − x0)− (x1 − x0) + (y5 − y0)]2 − d24 [(y1 − y0)2 + (x1 − x0)2] = 0,
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[(y3 − y0)(x5 − x0)− (x3 − x0) + (y5 − y0)]2 − d25 [(y3 − y0)2 + (x3 − x0)2] = 0,

[(y1 − y0)(x8 − x0)− (x1 − x0) + (y8 − y0)]2 − d24 [(y1 − y0)2 + (x1 − x0)2] = 0,

[(y3 − y0)(x8 − x0)− (x3 − x0) + (y8 − y0)]2 − d26 [(y3 − y0)2 + (x3 − x0)2] = 0,

[(y1 − y0)(x11 − x0)− (x1 − x0) + (y11 − y0)]2 − d24 [(y1 − y0)2 + (x1 − x0)2] = 0,

[(y2 − y1)(x11 − x0)− (x2 − x1) + (y11 − y0)]2 − d26 [(y2 − y1)2 + (x2 − x1)2] = 0,

[(y1 − y0)(x14 − x0)− (x1 − x0) + (y14 − y0)]2 − d24 [(y1 − y0)2 + (x1 − x0)2] = 0,

[(y2 − y1)(x14 − x0)− (x2 − x1) + (y14 − y0)]2 − d25 [(y2 − y1)2 + (x2 − x1)2] = 0,

[(y1 − y0)(x16 − x0)− (x1 − x0) + (y16 − y0)]2 − d27 [(y1 − y0)2 + (x1 − x0)2] = 0,

[(y3 − y0)(x16 − x0)− (x3 − x0) + (y16 − y0)]2 − d28 [(y3 − y0)2 + (x3 − x0)2] = 0,

[(y1 − y0)(x17 − x0)− (x1 − x0) + (y17 − y0)]2 − d27 [(y1 − y0)2 + (x1 − x0)2] = 0,

[(y2 − y1)(x17 − x0)− (x2 − x1) + (y17 − y0)]2 − d28 [(y2 − y1)2 + (x2 − x1)2] = 0,

x4 − x5 = 0, x6 − x5 = 0, x7 − x8 = 0,

x9 − x8 = 0, x10 − x11 = 0, x12 − x11 = 0,

x13 − x14 = 0, x15 − x14 = 0, y4 − y7 = 0,

y6 − y9 = 0, y10 − y13 = 0, y12 − y15 = 0,

y9 − y12 = 0, y7 − y10 = 0, y5 − y4 − r = 0,

y6 − y5 − r = 0, y8 − y7 − r = 0, y9 − y8 − r = 0,

y11 − y10 − r = 0, y12 − y11 − r = 0, y14 − y13 − r = 0,

y15 − y14 − r = 0, y17 − x16 − d9 = 0,

y16 − y5 − d10 = 0, y17 − y11 − d10 = 0.

B. 110 Constraints and 100 variables of the example in Section 6 after the
transformation to separable form

x0 = a0, y0 = b0, y0 − y1 = 0,

(u1)2 + (v1)2 = d20 , u1 = x1 − x0, v1 = y1 − y0,

(u2)2 + (v2)2 = d21 , u2 = x2 − x1, v2 = y2 − y1,

(u3)2 + (v3)2 = d22 , u3 = x3 − x2, v3 = y3 − y2,

(u4)2 + (v4)2 = d23 , u4 = x3 − x0, v4 = y3 − y0,

.5(p1)2 − .5(u4)2 − .5(u1)2 + .5(q1)2 − .5(v4)2 − .5(v1)2 = 0,

p1 = u4 + u1, q1 = v4 + v1,

.5(p2)2 − .5(u2)2 − .5(u1)2 + .5(q2)2 − .5(v2)2 − .5(v1)2 = 0,

p2 = u2 + u1, q2 = v2 + v1,

x0 ≤ x1, y0 ≤ y3, x0 ≤ x5, y0 ≤ y5,

u5 = x5 − x0, v5 = y5 − y0,

[w1]2 − d24 [(v1)
2 + (u1)2] = 0,
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w1 = .5(p3)2 − .5(v1)2 − .5(u5)2 − .5(q3)2 + .5(u1)2 + .5(v5)2,

p3 = v1 + u5, q3 = u1 + v5,

[w2]2 − d25 [(v4)
2 + (u4)2] = 0,

w2 = .5(p4)2 − .5(v4)2 − .5(u5)2 − .5(q4)2 + .5(u4)2 + .5(v5)2,

p4 = v4 + u5, q4 = u4 + v5,

u6 = x8 − x0, v6 = y8 − y0,

[w3]2 − d24 [(v1)
2 + (u1)2] = 0,

w3 = .5(p5)2 − .5(v1)2 − .5(u6)2 − .5(q5)2 + .5(u1)2 + .5(v6)2,

p5 = v1 + u6, q5 = u1 + v6,

[w4]2 − d26 [(v4)
2 + (u4)2] = 0,

w4 = .5(p6)2 − .5(v4)2 − .5(u6)2 − .5(q6)2 + .5(u4)2 + .5(v6)2,

p6 = v4 + u6, q6 = u4 + v6,

u7 = x11 − x0, v7 = y11 − y0,

[w5]2 − d24 [(v1)
2 + (u1)2] = 0,

w5 = .5(p7)2 − .5(v1)2 − .5(u7)2 − .5(q7)2 + .5(u1)2 + .5(v7)2,

p7 = v1 + u7, q7 = u1 + v7,

[w6]2 − d26 [(v2)
2 + (u2)2] = 0,

w6 = .5(p8)2 − .5(v2)2 − .5(u7)2 − .5(q8)2 + .5(u2)2 + .5(v7)2,

p8 = v2 + u7, q8 = u2 + v7,

u8 = x14 − x0, v8 = y14 − y0,

[w7]2 − d24 [(v1)
2 + (u1)2] = 0,

w7 = .5(p9)2 − .5(v1)2 − .5(u8)2 − .5(q9)2 + .5(u1)2 + .5(v8)2,

p9 = v1 + u8, q9 = u1 + v8,

[w8]2 − d25 [(v2)
2 + (u2)2] = 0,

w8 = .5(p10)2 − .5(v2)2 − .5(u8)2 − .5(q10)2 + .5(u2)2 + .5(v8)2,

p10 = v2 + u8, q10 = u2 + v8,

u9 = x16 − x0, v9 = y16 − y0,

[w9]2 − d27 [(v1)
2 + (u1)2] = 0,

w9 = .5(p11)2 − .5(v1)2 − .5(u9)2 − .5(q11)2 + .5(u1)2 + .5(v9)2,

p11 = v1 + u9, q11 = u1 + v9,

[w10]2 − d28 [(v4)
2 + (u4)2] = 0,

w10 = .5(p12)2 − .5(v4)2 − .5(u9)2 − .5(q12)2 + .5(u4)2 + .5(v9)2,

p12 = v4 + u9, q12 = u4 + v9,

u10 = x17 − x0, v10 = y17 − y0,

[w11]2 − d27 [(v1)
2 + (u1)2] = 0,
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w11 = .5(p13)2 − .5(v1)2 − .5(u10)2 − .5(q13)2 + .5(u1)2 + .5(v10)2,

p13 = v1 + u10, q13 = u1 + v10,

[w12]2 − d28 [(v2)
2 + (u2)2] = 0,

w12 = .5(p14)2 − .5(v2)2 − .5(u10)2 − .5(q14)2 + .5(u2)2 + .5(v10)2,

p14 = v2 + u10, q14 = u2 + v10,

x4 − x5 = 0, x6 − x5 = 0, x7 − x8 = 0,

x9 − x8 = 0, x10 − x11 = 0, x12 − x11 = 0,

x13 − x14 = 0, x15 − x14 = 0, y4 − y7 = 0,

y6 − y9 = 0, y10 − y13 = 0, y12 − y15 = 0,

y9 − y12 = 0, y7 − y10 = 0, y5 − y4 − r = 0,

y6 − y5 − r = 0, y8 − y7 − r = 0, y9 − y8 − r = 0,

y11 − y10 − r = 0, y12 − y11 − r = 0, y14 − y13 − r = 0,

y15 − y14 − r = 0, y17 − x16 − d9 = 0,

y16 − y5 − d10 = 0, y17 − y11 − d10 = 0.
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