
Reliable Computing (2007) 13: 211–244

Solving Interval Constraints by Linearization in
Computer-Aided Design

YAN WANG �

NSF Center for e-Design, University of Central Florida, 4000 Central Florida Blvd, Orlando,
FL 32816, USA, e-mail: wangyan@mail.ucf.edu

and

BARTHOLOMEW O. NNAJI
NSF Center for e-Design, University of Pittsburgh, 1048 Benedum Hall, Pittsburgh, PA 15261,
USA, e-mail: nnaji@engr.pitt.edu

(Received: 12 November 2004; accepted: 11 April 2005)

Abstract. Current parametric CAD systems require geometric parameters to have fixed values.
Specifying fixed parameter values implicitly adds rigid constraints on the geometry, which have
the potential to introduce conflicts during the design process. This paper presents a soft constraint
representation scheme based on nominal interval. Interval geometric parameters capture inexactness
of conceptual and embodiment design, uncertainty in detail design, as well as boundary information
for design optimization. To accommodate under-constrained and over-constrained design problems, a
double-loopGauss-Seidelmethod is developed to solve linear constraints. A symbolic preconditioning
procedure transforms nonlinear equations to separable form. Inequalities are also transformed and
integrated with equalities. Nonlinear constraints can be bounded by piecewise linear enclosures and
solved by linear methods iteratively. A sensitivity analysis method that differentiates active and
inactive constraints is presented for design refinement.

1. Introduction

During the process of design, various design variables are specified, which include
geometric variables (e.g. dimension, volume, and tolerance) and non-geometric
ones (e.g. functional characteristics, tooling speed, and expected life). When design
is realized by geometric form, these design variables are finalized and implemented
as geometric parameters in parametric Computer-Aided Design (CAD) systems.
Current CAD systems only allow geometric parameters to have fixed values, such
as the position of a point in 3D space, the direction of a line, and the distance
between two axes. Instead of simply assigning real values to design variables and
the derived geometric parameters in CAD models, there are some advantages to
give interval values to variables and parameters, which means that a variable or
parameter can take any valid value between the lower and upper bounds of the
interval.

� Corresponding author.

c© Springer 2007DOI: 10.1007/s11155-006-9023-4

212 YAN WANG AND BARTHOLOMEW O. NNAJI

Fixed-value design variables and geometric parameters in CAD generate some
problems. First, fixed values bring up conflicts easily in the design process. Spec-
ifying determined values of design variables and thereby geometric parameters
implicitly adds rigid constraints of value range on geometric parameters at the very
beginning of design implementation. The rigid constraints reduce the freedom of
geometric entities in a CADmodel to the minimal level. These dominant constraints
may become the sources of conflicts at later stages. To resolve the conflicts, the
values of some design variables have to be changed. This trial-and-error cycle will
continue until no conflicts occur. If an interval instead of a fixed value is assigned
to a design variable or a geometric parameter in CAD systems so that any real
value within the interval is valid, the degrees of freedom of geometric shape are
increased. As more constraints are imposed onto the designed object during the
process, the freedom of geometric entities will be restricted gradually. The allow-
able interval values of design variables and thus geometric parameters are reduced
by stages. There would be fewer chances that conflicts occur, and several cycles of
modification can be saved.
Second, the requirement of fixed values for geometric parameters makes the

development of Computer-Aided Conceptual Design (CACD) tools difficult. At the
conceptual and embodiment design stages, actual values of design variables may
not be known. Usually it is not important to specify fixed values of certain variables
at the earlier design stages yet. Current CAD systems require that parameter values
be fully specified and fixed, thus they are not effective tools for conceptual and
embodiment design. It is quite challenging to develop a practically usable CACD
tool based on the current schemeof fixed parameter values.Nevertheless, if the value
of a parameter is specified as a range, the problem of parameter partial integrity
can be solved, i.e., it is not necessary to fix all values of parameters. This increases
the flexibility of geometric modeling. Inexactness of preference and specification
is represented, and CACD is possible based on interval values.
Third, the specifications of valid value range are not captured by fixed-value

variables. Current design optimization process usually occurs after all variables are
specified at the detail design stage, while the original intention of feasible ranges
of variables from upstream design activities is not transferable with the fixed-value
scheme. Bounds have to be added separately for optimization purpose. However,
with the interval representation, the inherent range information is directly applicable
for optimization. Intervals appropriately represent design intent of feasibility, thus
integrating the process from conceptual sketching to parameter optimization.
Variable and parameter intervals capture the uncertainty characteristics of

design. In real-world situations, there are many uncertainty factors in CAD mod-
eling. The dimensions and shape of the designed objects are computed and stored
digitally in CAD systems. Representing an infinite number of real numbers by a
finite number of bits requires approximation. Not all decimal numbers can be rep-
resented in binary format exactly. Rounding errors come from the approximation.
Cancellation errors occur because of catastrophic and benign cancellation. The

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 213

precision of numbers in a computer depends on the word size and floating-point
representation. Variation exists among different systems with different architec-
tures. Uncertainty also comes from measurement as well as tolerance of human
perception during the parameter specification.
In this paper, a nominal interval constraint representation (NICR) scheme based

on nominal interval values is described to represent inexactness, uncertainty, and
feasibility boundary of design information for CAD. It represents soft constraints,
thus reducing the chances of conflicts during constraint imposition. It provides
a generic numerical parameter scheme for different design phases. A piecewise
linear enclosure is developed to transform nonlinear interval constraint systems
and solved by a double-loop Gauss-Seidel iteration method, which accommodates
under-constrained and over-constrained parametric design problems.
The paper is organized as follows. Section 2 reviews constraint-driven para-

metric design mechanisms, interval analysis in engineering design applications, as
well as existing interval constraint solving methods. Section 3 introduces the NICR
representation and notations. Section 4 describes the methods to solve under- and
over-determined linear equations and the linearization method for nonlinear equa-
tions. Symbolic preconditioning is introduced to incorporate inseparable functions
and inequalities. Section 5 describes a sensitivity analysis method to refine design.
Finally, Section 6 gives a comprehensive example for these methods.

2. Background

2.1. CONSTRAINT-DRIVEN DESIGN IN PARAMETRIC CAD

Geometric constraints are fundamental constraints to be captured in engineering
design. The study of geometric constraint representation can be traced back to the
origin of CAD systems. Constrained geometries are sets of loci that satisfy certain
constraints, thus they can be constructed systematically by computer systems. Dif-
ferent types of geometric constraint solving methods and associated representation
for CAD have been proposed. Generally, there are four approaches. The numerical
approach [27], [38], [66], [70], [87], [94] translates geometric constraints into a
system of mathematical equations. These equations then can be solved numeri-
cally by Newton-Raphson or Homotopy methods directly, or by minimizing the
total errors for all equations indirectly. The artificial intelligence approach [1], [2],
[62], [69], [101], [111], [118] represents geometric constraints by facts and rules.
Constraint problems are solved by the aid of geometric reasoning. The symbolic
approach [14], [25], [60], [61] translates geometric constraints into a system of easi-
ly solvable nonlinear equations with symbolic algebraic methods, such as Gr̈obner’s
bases or the Wu-Ritt method, before numerically solving them. The constructive
approach [8], [13], [19], [24], [28], [39], [40], [42], [62], [67], [68], [93], [109]
represents constraints as graphs internally. Constraint system is solved by either

214 YAN WANG AND BARTHOLOMEW O. NNAJI

top-down decomposition or bottom-up clustering of the constraint graphs with the
aid of degrees of freedom analysis.
From a different perspective, the NICR presented here allows all numerical

values of parameters including coordinates, dimensions, and others to be nominal
interval numbers. Thus, soft constraints compared to traditional fixed-value rigid
constraints can be represented.

2.2. INTERVAL ANALYSIS IN ENGINEERING DESIGN

Interval mathematics [5], [36], [46], [51], [79], [80], [89], [98] is a generalization
in which interval numbers replace real numbers, interval arithmetic replaces real
arithmetic, and interval analysis replaces real analysis. An interval A = [aL, aU] is
defined by a pair of real numbers, aL and aU , for lower and upper bounds.
Interval analysis has been applied in computer graphics, including rasterizing

parametric surfaces [83], ray tracing of parametric surfaces [112] and implicit
surfaces [47], collision detection of polyhedral objects [78] and surface models
[22], [107], [108], [114].
In engineering design applications, Finch andWard [23] applied interval analysis

to eliminate infeasible design in set-based modeling. Rao and Berke [95] used inter-
val arithmetic for imprecise structural analysis. Rao and Cao [96] applied interval
analysis in design optimization of mechanical systems. Muhanna and Mullen [84]–
[86] developed an element-by-element interval finite-element formulation method
for uncertainty in solid and structural mechanics. Sharp enclosures on structural
displacement and forces can be obtained with the consideration of interval depen-
dency. Modares et al. [77] extended the method to analyze structural stability under
uncertainty. Related to interval representation, probabilistic modeling, and fuzzy
logic are also applied in engineering design.
In CAD applications, Sederberg and Farouki [104] used interval arithmetic in

approximating Bezier curves. Maekawa and Patrikalakis [72], [73] used interval
Bezier curves to solve shape interrogation problems. Hu et al. [43], [44] used
rounded-interval arithmetic to ensure numerical robustness in Boolean operations
and boundary evaluation. Tuohy et al. [113] applied interval methods for interpo-
lating measured data with B-spline curves and surfaces. Wallner et al. [115] used
intervals to bound errors in geometric construction. Chen and Lou [16] proposed
methods to bound interval Bezier curve with lower degree interval Bezier curve.
Lin et al. [71] investigated the boundary evaluation of interval Bezier curve. The
above research concentrates on the improvement of geometric model’s robustness,
in which intervals embody rounding and cancellation errors during floating-point
computation. In this paper, we propose soft constraint representation with intervals
for conceptual and embodiment design. Newmethods of solving interval constraints
are developed.

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 215

2.3. SOLVING INTERVAL CONSTRAINTS

2.3.1. Linear Equality Systems

Interval linear equation systems AX = B, where A is interval matrix and B and X
are interval vectors, can be solved by interval version of Gaussian elimination and
Gauss-Seidel iteration [5], [36], [51], [89]. Hansen [30], [35] introduced a precon-
dition procedure by multiplying both sides of the equations with an approximate
inverse matrix of the center of A to reduce the effect of dependence in Gaussian
elimination. Hansen [29] and Bliek [12] developed an explicit bounding method to
find interval hull of solution set. Rohn [99] gave a rigorous proof of the interval hull
method. Ning and Kearfott [92] extended the interval hull method with a general
formula for H-matrix coefficient linear systems, as also proved by Neumaier [88].
Shary [105], [106] introduced an algebraic approach to estimate outer and inner
bounds of solution sets with the extension of Kaucher complete interval arithmetic
[48]. Neumaier [90] unified the algebraic approach with fixed-point inverse method.
Chiu and Lee [18] developed an incremental preconditioned interval Gauss-Seidel
method.

2.3.2. Nonlinear Equality Systems

Interval nonlinear equation systems can be solved by different methods. The inter-
val Newton method [4], [5], [79], [89] searches the roots of f(X) = 0 based on
range estimation of the derivative f (X). Fixed-point contraction [6], [76], [102]
solve f(X) = X by iterative substitution of X with epsilon inflation. The Krawczyk
operator [63], [64] removes the interval matrix inverse operation and improves
on the feasibility problem of interval Newton method if intervals are not narrow.
Wolfe [116] introduced inner iterations into the Krawczyk method to reduce the
number of times to compute derivatives. Alefeld and Platzoder [7] modified the
Krawczyk operator with the linear Gaussian algorithm. Hansen operator [33], [34]
integrates preconditioning and Gauss-Seidel iteration into nonlinear equation solv-
ing. Kearfott [36], [50] proposed a linear programming approach for precondition-
ing to minimize interval widths. Hansen [32] developed symbolic preconditioning
with cancellation of common algebraic terms. Kearfott and Walster [54] developed
symbolic preconditioning with Taylor models. Chen [17] generalized the Krawczyk
operator to non-smooth equations by using the mean-value theorem for non-smooth
functions. Benhamou and Granvilliers [9] proposed a symbolic and numeric hybrid
approach to accelerate convergence of the Newton’s method based on Gr̈obner
bases. Sufficient conditions for the existence and uniqueness of solutions for the
Newton alike linearization operators were developed [36], [51], [82] with nonsin-
gular linearization. Kearfott et al. extended the existence and uniqueness test to
problems with singular Jacobi matrices [52], [53] and non-smooth functions [49]
by computation of topological degrees in complex space. Recently, Moore [81]
proposed preprocessing to reduce dimension of sparse systems in fixed point form.

216 YAN WANG AND BARTHOLOMEW O. NNAJI

Hansen and Walster [37] developed an algorithm to compute sharp bounds on the
real roots of polynomials with interval coefficients. Zhang et al. [120] extended
the Krawczyk operator for under constrained problems with generalized inverse
operation for non-square matrices. Wolfe [117] applied generalized inverse matrix
operation to extended Krawczyk operator with second derivatives. Kolev [55], [56]
developed a top-down decomposition method to bound interval factorable functions
with linear interval enclosures. This method is further extended with a bottom-up
linear enclosure construction [57] and an initialization method to narrow the linear
bound [59].

2.3.3. Polynomial Enclosure

Different polynomial forms have been proposed for interval functions to enclose
the range of a function. Mean-value form [5], [79], [89] represents value ranges by
estimate of interval derivatives. Slope form [3], [31], [58], [65], [103], [121] replaces
interval derivatives with interval slope. Taylor form [91], [98] extends mean-value
form to high-order derivatives. Horner form [15], [110] reduces overestimation of
interval polynomial evaluation. Bernstein form [26], [41], [45], [97], [100] bounds
polynomials by ranges of Bernstein coefficients. Taylor model [10], [11], [74], [75]
changes coefficients of Taylor form from intervals to real numbers. Motivated by
Taylor model and Kolev’s work [55], we propose a piecewise linear enclosure for
polynomials to solve interval geometric constraints.

3. Nominal Interval Constraints

In NICR, we define interval number X as X = [xL, xN , xU] which contains lower
bound value xL, nominal value xN , and upper bound value xU . The nominal value
is usually corresponding to the specified fixed value in current CAD systems.
The introduction of the nominal value into an interval is necessary for CADmod-

eling. The nominal value represents user preference and the actual user specification
if the parameter is fixed. It allows current CAD modeling system to adopt interval
parameters so that intervals can be integrated with current fixed-value schemes and
visualization methods. Furthermore, the nominal value is allowed to change within
the range, allows more user interaction and captures the preference information. For
example, a 2D point P([1, 2, 3], [4, 5, 6]) can be displayed at (2, 5). When P is fixed,
its coordinates are ([2, 2, 2], [5, 5, 5]). A real number is a degenerated interval.

3.1. NOMINAL INTERVAL DEFINITIONS AND NOTATIONS

An n-dimensional real number space is denoted as Rn. An n-dimensional inter-
val number space is denoted as IRn. X = [xL, xN , xU] = {x | xL ≤ x ≤ xU ,
xL ≤ xN ≤ xU}, where xL R, xN R, xU R, and X IR.
Given that A = [aL, aN , aU], B = [bL, bN , bU], and is logical and, we have the

following relations:

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 217

 A:

 B:

 A ~> B A ~≥ B A ~< B A ~≤ B

 A:

 B:

 A = B A := B A ⊂ B A ⊃ B

 A:

 B:

 A ⊃ B A ⊂ B A ⊇ B A ⊆ B

 *Notation:

 xL xN xU

Figure 1. Relations between intervals.

• equivalence: A = B (aL = bL) (aU = bU).

• nominal equivalence: A := B (aL = bL) (aN = bN) (aU = bU).

• strictly greater than or equal to: A ≥ B aL ≥ bU .

• strictly greater than: A > B aL > bU .

• strictly less than or equal to: A ≤ B aU ≤ bL.

• strictly less than: A < B aU < bL.

• inclusion: A B (aU ≤ bU) (aL ≥ bL), A B (aU < bU) (aL > bL).

The relations of intervals are illustrated in Figure 1. 0 = [0, 0, 0] is zero interval.
Interval A is positive (negative), iff A > 0 (A < 0). If the nominal value of
A = [aL, aN , aU] is not of concern, A can simply be denoted as [aL, aU].
Interval A = [aL, aN , aU] is empty, denoted as A = ∅, iff aL > aU . A is invalid

when aN > aU , or aL > aN , or A is empty. The basic arithmetic and set operations
are:

• A B = {x | x A and x B, x R}. If A B �= ∅, it can be derived by
A B = [max{aL, bL}, (max{aL, bL} + min{aU , bU}) / 2, min{aU , bU}].

• A B = {x | x A or x B, x R}. If A B �= ∅, it can be derived by
A B = [min{aL, bL}, (min{aL, bL} + max{aU , bU}) / 2, max{aU , bU}].

• A\B = {x | x A and x � B, x R}.
• A + B = [aL + bL, aN + bN , aU + bU].

• A− B = [aL − bU , aN − bN , aU − bL].

• A B = [min{aLbL, aLbU , aUbL, aUbU}, aNbN , max{aLbL, aLbU , aUbL, aUbU}].
•
1
B
=
{
1
y
| y B, 0 � B

}
.

218 YAN WANG AND BARTHOLOMEW O. NNAJI

•
A
B
=

A
1
B
, (0 � B)

[− , 0,+], (B = 0)[
aU
bL

,
aU
bL

,+
]
, (aU ≤ 0, bL < 0, bU = 0)[

− ,
aU
bU

,
aU
bU

] [
aU
bL

,
aU
bL

,+
]
, (aU ≤ 0, bL < 0, bU > 0)[

− ,
aU
bU

,
aU
bU

]
, (aU ≤ 0, bL = 0, bU > 0)

[− , 0,+], (aL < 0, aU > 0, bL ≤ 0, bU ≥ 0)[
− ,

aL
bL
,
aL
bL

]
, (aL ≥ 0, bL < 0, bU = 0)[

− ,
aL
bL
,
aL
bL

] [
aL
bU

,
aL
bU

,+
]
, (aL ≥ 0, bL < 0, bU > 0)[

aL
bU

,
aL
bU

,+
]
. (aL ≥ 0, bL = 0, bU > 0)

The width of an interval is wid(A) = aU − aL. wid(∅) = 0. Some other notations
are ubd(A) = aU , lbd(A) = aL, and nom(A) = aN .

3.2. SAMPLING RELATION BETWEEN REAL GEOMETRY AND INTERVAL
GEOMETRY

The intervals capture uncertainty of design. The value of a parameter, which is
generated by computer or selected by human designer, is a sample of the corre-
sponding set of values within the interval. One CAD interval model is allowed to
generate different shapes because of parameter intervals. Implicitly, a CAD interval
model defines a set of geometric shapes that automatically accommodate geometry
variation.
Some strict relationsR’s exist among intervals, which are related to real number

samples. XR Y x X, y Y , xR y.

• strict equivalence: A = B x A, y B, x = y.

• strictly greater than or equal to: A ≥ B x A, y B, x ≥ y.

• strictly greater than: A > B x A, y B, x > y.

• strictly less than or equal to: A ≤ B x A, y B, x ≤ y.

• strictly less than: A < B x A, y B, x < y.

Besides strict relations, some global relations J’s exist in interval arithmetic
evaluation and problem solving. X J Y x X, y Y , x J y.

• global equivalence: A = B x A, y B, x = y.

• greater than or equal to: A ≥ B aL ≥ bL. Equivalently, A ≥ B x A,
y B, x ≥ y.

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 219

• greater than: A > B aL > bL. Equivalently, A > B x A, y B, x > y.

• less than or equal to: A ≤ B aU ≤ bU . Equivalently, A ≤ B x A,
y B, x ≤ y.

• less than: A < B aU < bU . Equivalently, A < B x A, y B, x < y.

Strict inequalities are special cases of global inequalities. Global relations ensure
the feasibility of interval arithmetic operations and solutions. The global relations
make global solution and optimization of interval analysis possible. We assume
global relations to be the default relations, such as the four basic arithmetic opera-
tions and function evaluation.
Interval vectors with same dimensions can be ranked and sorted.

• Interval vectors AI and BI are in a non-decreasing order, AI ≺ BI, where
AI = (A1,A2,…,An), B

I = (B1,B2,…,Bn) if An ≤ Bn, and ¬(Ai < Bi) →
(Ai−1 ≤ Bi−1) recursively apply, starting from i = n.

• Interval vectors AI and BI are in a non-increasing order, AI � BI, where
AI = (A1,A2,…,An), B

I = (B1,B2,…,Bn) if An ≥ Bn, and ¬(Ai > Bi) →
(Ai−1 ≥ Bi−1) recursively apply, starting from i = n.

• maxwid(AI) = max
i
(wid(Ai)), where A

I = (A1,A2,…,An).

• minwid(AI) = min
i
(wid(Ai)), where A

I = (A1,A2,…,An).

A power interval in an n-dimensional vector space of XI with a degree of
m, denoted as PX(m, n), is an ordered list of m non-overlapped interval vectors of
n-dimensional, i.e., PX(m, n) = {XI1,XI2,…,XIm}, where XIi IRn (i = 1,…,m),
minwid(XIi XIj) = 0 (i �= j), and XIi ≺ XIi+1 (i = 1,…,m− 1).

3.3. VARIATIONAL GEOMETRY WITH INTERVAL CONSTRAINTS

With the inherent capability of modeling uncertainty and inexactness, NICR has
some special properties that make it different from current geometric modeling
schemes. Changing geometric parameter values or adding extra geometric con-
straints lead to different geometries. For example, in Figure 2, the topology of a 2D
rectangular shape may vary based on coordinates of four corner points within their
allowable ranges.
A geometric model is a geometry vector

x = [x1, y1, z1,…, xn, yn, zn]
T ,

which are coordinates of n characteristic points in 3D Euclidean space, satisfying
the constraints f(x). The relations between these points can be linear or nonlinear
equality or inequality. Commonly used geometric constraints can be represent-
ed in polynomial forms. Some examples are listed in Table 1. In feature-based
parametric CAD systems, geometric constraints for shape construction usually are
2-dimentional. 3-dimensional constraints are normally used in assembly.

220 YAN WANG AND BARTHOLOMEW O. NNAJI

Table 1. Some examples of geometric constraints.

Relation Constraint

Distance
(x1, y1, z1) (x2, y2, z2) (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = d2

Distance
(x3, y3)

(x1, y1) (x2, y2)

[(y2 − y1)(x3 − x1)− (x2 − x1)(y3 − y1)]2

= d2[(y2 − y1)2 + (x2 − x1)2]

Parallel
(x3, y3) (x4, y4)

(x1, y1) (x2, y2)

(y2 − y1)(x4 − x3)− (x2 − x1)(y4 − y3) = 0

Parallel
(x3, y3, z3)

(x4, y4, z4)

(x1, y1, z1)
(x2, y2, z2)

(y2 − y1)(x4 − x3)− (x2 − x1)(y4 − y3) = 0,
(z2 − z1)(x4 − x3)− (x2 − x1)(z4 − z3) = 0,
(y2 − y1)(z4 − z3)− (z2 − z1)(y4 − y3) = 0

Perpendicular
(x3, y3, z3)

(x1, y1, z1)

(x2, y2, z2)

(x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1) + (z2 − z1)(z3 − z1) = 0

Angle
(x3, y3, z3)

(x1, y1, z1)

(x2, y2, z2)

[(x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1) + (z2 − z1)(z3 − z1)]2

= cos2 [(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]
[(x3 − x1)2 + (y3 − y1)2 + (z3 − z1)2]

Tangent

(x1, y1, z1) (x2, y2, z2) (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = (r1 + r2)2

Incidence

(x1, y1, z1)

(x2, y2, z2)

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = 0

Incidence
(x3, y3)

(x2, y2)(x1, y1)

(x2y3 − x3y2) + (x3y1 − x1y3) + (x1y2 − x2y1) = 0

Incidence

(x2, y2, z2)(x1, y1, z1)

(x4, y4, z4) (x3, y3, z3)
(x4 − x1)[(y2 − y1)(z3 − z1)− (z2 − z1)(y3 − y1)]
+(y4 − y1)[(z2 − z1)(x3 − x1)− (x2 − x1)(z3 − z1)]
+(z4 − z1)[(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)] = 0

Concentric

(x1, y1, z1)

(x2, y2, z2)

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = 0

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 221

Figure 2. Interval constraint driven geometry exhibits inherent variational geometry.

P0 P1

P3 P2

d0

L3 L1

L2

L0

(a)

(x1 − x0)2 + (y1 − y0)2 = d20
(x0 − x3)(x1 − x0)2 + (y0 − y3)(y1 − y0)2 = 0
(x2 − x1)(x1 − x0)2 + (y2 − y1)(y1 − y0)2 = 0

(b)

Figure 3. An example of under-constrained geometry.

Current parametric modeling scheme has strict requirements on the number of
constraints. The number of constraints should be equal to the number of variables,
namely well-constrained. The concept of under-constrained and over-constrained
geometry is not critical in interval representation. Soft constraints are applied to
geometry implicitly at every step of specifications. The effect of adding more
constraints is to reduce allowable regions of geometric entities. In the example
of Figure 3, the rectangular contour of a mounting bracket is under-constrained
if the available constraints are the distance between corner points P0 and P1, the
perpendicularity between lines L0 and L1, and lines L0 and L3.

222 YAN WANG AND BARTHOLOMEW O. NNAJI

P0 P1

P3 P2

d0

L3 L1

L2

L0

d3 d1

d2

h

(a)

x0 = a0
y0 = b0
y0 − y1 = 0
(x1 − x0)2 + (y1 − y0)2 = d20

(x2 − x1)2 + (y2 − y1)2 = d21

(x3 − x2)2 + (y3 − y2)2 = d22

(x0 − x3)2 + (y0 − y3)2 = d23

(x0 − x3)(x1 − x0) + (y0 − y3)(y1 − y0) = o1
(x2 − x1)(x1 − x0) + (y2 − y1)(y1 − y0)2 = o2
x0 ≤ x1

(b)

Figure 4. An example of over-constrained geometry.

Over-determined or over-constrained situation is also allowed. As illustrated in
Figure 4, if the geometric constraints in the bracket design are specified as: the
position of P0; distances between P0 and P1, P1 and P2, P2 and P3, and P3 and
P0; L0 is perpendicular to L1 as well as to L3; and L0 is horizontal, current CAD
systems will complain that this geometry is over-constrained. However, in interval
representation, only constraints that cause no feasible regions generate conflicts.
Intervals loosen the current requirement on the number of constraints and give a
different view of specification in CAD.

4. Solving Interval Constraints

To incorporate interval geometric modeling into current CAD systems, several
fundamental issues related to geometric computation should be addressed. These
include linear and nonlinear equation representation and solution, which are essen-
tial for transformation and assembly operation, surface intersection, and parametric
shape construction, etc.

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 223

INPUT: Interval matrix A

 Interval vector B

OUTPUT: Interval vector X

Interval V

int i, j, k

REPEAT until stop criterion is met

FOR each 1 <= i <= m

FOR each 1 <= j <= n

 V = 0

FOR each 1<=k<j

 V = V+Aik*Xk
ENDFOR

FOR each j+1<=k<=n

 V = V+Aik*Xk
ENDFOR

 V = (Bi – V)/Aij

 Xj = Xj ∩ V

ENDFOR

ENDFOR

Figure 5. A double-loop Gauss-Seidel method.

4.1. INTERVAL LINEAR EQUATIONS

An interval linear system is

AIXI = BI, (4.1a)

where AI IRm×n, XI IRn, and BI IRm. Under-constrained (m < n) and over-
constrained (m > n) linear systems are the major considerations in our context.
Iteration methods have no requirement on the number of constraints. After the lin-
earization process of geometric constraints, which will be discussed in Section 4.2,
matrix A is a real matrix. System (4.1a) becomes

AXI = BI. (4.1b)

A double-loop Gauss-Seidel method without preconditioning

X̃Ij =
1
Aij

BIi −∑

k �= j
AikX

I
k

 XIj for each i and j (4.2)

is developed, as listed in Figure 5.
A second method to solve the linear system (4.1b) is to use Singular Value

Decomposition (SVD) with linear least-square estimation. Suppose A = UWVT ,
where Um×n and Vn×n are column-orthogonal matrices, and Wn×n is a diagonal
matrix. With a preconditioner AT , we solve

ATAXI = ATBI. (4.3)

224 YAN WANG AND BARTHOLOMEW O. NNAJI

That is

XI = V

(
diag

(
1
wj

))
UT BI.

In singular cases, replace 1 / wj with 0 if wj = 0 and the corresponding Xj is not
narrowed. If we define∑

(AI,BI) := {x Rn | A AI, B BI, Ax = B},
then ∑

(A,BI)
∑
(ATA,ATB).

Here is an example. To solve linear system

1 3
4 2
1 −1

−2 4

[
X1
X2

]
=

[0, 6]
[−6, 8]
[−1, 1]
[−4, 1]

 ,

the double-loop Gauss-Seidel method without preconditioning has the result[
X1
X2

]
=
[
[−1.8, 2.4]
[−0.8, 1.45]

]
,

while the SVD preconditioning method gives[
X1
X2

]
=
[
[−1.2135, 2.0976]
[−0.9269, 1.2013]

]
.

The hull of united solution set is[
X1
X2

]
=
[
[−0.3, 1.6666]
[−0.25, 1]

]
.

Some examples from [92] are computed using the double-loop Gauss Seidel
method and results are compared in Table 2.

4.2. INTERVAL NONLINEAR EQUATIONS

To solve interval nonlinear equations

Fi(X
I) = 0 (i = 1,…, l), (4.4)

where XI = [X1,X2,…,Xn]T IRn, a piecewise linear enclosure algorithm is
developed to solve geometric constraints. This algorithm is more general than
Kolev’s algorithm with the consideration of multiple solutions. The piecewise
linear enclosure generates individual bounds for multiple roots.

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 225

Table 2. Comparisons of linear equation methods.

AI BI
Gaussian

elimination
Hansen [29] Ning-Kearfott [92]

Double − loop

Gauss − Seidel
 [4, 6] [-1, 1] [-1, 1] [-1, 1]

[-1, 1] [-6, -4] [-1, 1] [-1, 1]

[-1, 1] [-1, 1] [9, 11] [-1, 1]
[-1, 1] [-1, 1] [-1, 1] [-11, -9]

 [-2, 4]

[1, 8]

[-4, 10]
[2, 12]

[-2.60, 3.10]

[-3.90, 1.50]

[-1.43, 2.15]
[-2.35, 0.60]

[-2.50, 3.10]

[-3.90, 1.20]

[-1.40, 2.15]
[-2.35, 0.60]

[-2.50, 3.10]

[-3.90, 1.20]

[-1.40, 2.15]
[-2.35, 0.60]

[-2.50, 2.44]

[-3.70, 1.45]

[-1.38, 2.05]
[-2.25, 0.69]

[
[3.7, 4.3] [-1.5, -0.5] [0, 0]

[-1.5, -0.5] [3.7, 4.3] [-1.5, -0.5]
[0, 0] [-1.5, -0.5] [3.7, 4.3]

] [
[-14, 14]

[-9, 9]
[-3, 3]

] [
[-6.38, 6.38]

[-6.40, 6.40]
[-3.40, 3.40]

] [
[-6.38, 6.38]

[-6.40, 6.40]
[-3.40, 3.40]

] [
[-6.38, 6.38]

[-6.40, 6.40]
[-3.40, 3.40]

] [
[-6.38, 6.38]

[-6.40, 6.40]
[-3.40, 3.40]

]
[
[3.7, 4.3] [-1.5, -0.5] [0, 0]
[-1.5, -0.5] [3.7, 4.3] [-1.5, -0.5]

[0, 0] [-1.5, -0.5] [3.7, 4.3]

] [
[-14, 0]
[-9, 0]

[-3, 0]

] [
[-6.38, 0]
[-6.40, 0]

[-3.40, 0]

] [
[-6.38, 1.12]
[-6.40, 1.54]

[-3.40, 1.40]

] [
[-6.38, 6.67]
[-6.40, 2.77]

[-3.40, 2.40]

] [
[-6.38, 0]
[-6.40, 0]

[-3.40, 0]

]
[
[3.7, 4.3] [-1.5, -0.5] [0, 0]
[-1.5, -0.5] [3.7, 4.3] [-1.5, -0.5]

[0, 0] [-1.5, -0.5] [3.7, 4.3]

] [
[0, 14]
[0, 9]

[0, 3]

] [
[0, 6.38]
[0, 6.40]

[0, 3.40]

] [
[-1.12, 6.38]
[-1.54, 6.40]

[-1.40, 3.40]

] [
[-1.67, 6.38]
[-2.77, 6.40]

[-2.40, 3.40]

] [
[0, 6.38]
[0, 6.40]

[0, 3.40]

]
[
[3.7, 4.3] [-1.5, -0.5] [0, 0]

[-1.5, -0.5] [3.7, 4.3] [-1.5, -0.5]

[0, 0] [-1.5, -0.5] [3.7, 4.3]

] [
[2, 14]

[-9, 3]

[-3, 1]

] [
[-1.09, 4.29]

[-4.02, 1.24]

[-2.44, 0.773]

] [
[-0.995, 5.01]

[-4.64, 1.52]

[-2.69, 1.38]

] [
[-1.09, 4.29]

[-3.79, 1.24]

[-2.35, 0.773]

] [
[-0.995, 5.27]

[-3.79, 3.66]

[-2.35, 1.75]

]
[
[3.7, 4.3] [-1.5, -0.5] [0, 0]

[-1.5, -0.5] [3.7, 4.3] [-1.5, -0.5]

[0, 0] [-1.5, -0.5] [3.7, 4.3]

] [
[2, 14]

[3, 9]

[-3, 1]

] [
[0.517, 6.25]

[0.450, 6.07]

[-0.881, 2.73]

] [
[-0.206, 6.25]

[-0.386, 6.07]

[-2.01, 2.73]

] [
[0.523, 6.25]

[0.499, 6.07]

[-0.743, 2.73]

] [
[0.523, 6.25]

[0.499, 6.07]

[-0.743, 2.73]

]

 [15, 17] [-3, 3.01] [-3, 3.01] [-3, 3.01]

[-3, 3.01] [15, 17] [-3, 2.99] [-3, 2.99]
[-3, 2.99] [-3, 2.99] [15, 17] [-3, 3.01]

[-3, 3.01] [-3, 3.01] [-3, 2.99] [15, 17]

[-6, -2]

[4, 5]
[-2, 4]

[8, 10]

 [-1.03, 0.495]

[-0.347, 0.974]
[-0.770, 0.917]

[0.150, 1.25]

 [-1.03, 0.363]

[-0.233, 0.975]
[-0.752, 0.919]

[0.149, 1.25]

 [-1.03, 0.761]

[-0.372, 0.974]
[-0.785, 0.917]

[0.051, 1.25]

The following steps are needed to solve the system:

STEP 1: Transform each equation of (4.4) to separable form to eliminate depen-
dency among variables.

STEP 2: Find the piecewise linear enclosure of each of the univariate nonlinear
functions and form a piecewise linear equation system.

STEP 3: Solve the piecewise linear system by the algorithm of Section 4.1.

STEP 4: If stopping criterion is met, stop. Otherwise, repeat from STEP 2 to
STEP 4.

STEP 1: According to Yamamura’s algorithm [119], functions that are com-
posed of four basic arithmetic operations (+,−, ×, /), unary operations (sin, exp,
log, sqrt, etc.), and the power operation (ˆ) can be transformed to the separable
form by introducing extra variables. For example, ƒ1 × ƒ2 can be transformed to
(y2 − ƒ21 − ƒ22) / 2 and y = ƒ1 + ƒ2 by introducing y = ƒ1 + ƒ2. Similarly, ƒ1 / ƒ2 can
be transformed to (y2− ƒ21 − 1 / ƒ22) / 2 and y = ƒ1 + 1 / ƒ2; and (ƒ1)ƒ2 is symbolically
equivalent to exp(y1), and y1 = (y22 − (log(ƒ1))2 − ƒ22) / 2, y2 = log(ƒ1) + ƒ2. In
geometric modeling, polynomial constraints, as shown in Table 1, can be easily
transformed to the separable form.

226 YAN WANG AND BARTHOLOMEW O. NNAJI

After the transformation, system (4.4) is equivalent to

n∑
j=0

ƒij(Xj) = 0 (i = 1, 2,…,m), (4.5)

where Xj IR.

STEP 2: Piecewise linear enclosure of ƒij(xj) is found with the initial power inter-
val of PX(1, 1) = {X (0)j } for each i and j as follows. Let the jth initial variable
X (0)j = [xj0, xjp] and PX

(p, 1) = {[xj0, xj1], [xj1, xj2],…, [xj(p−1), xjp]} for a p-piecewise
linearization (p ≥ 2), we have slopes

aijk =
ƒij(xj(k+1))− ƒij(xjk)

xj(k+1) − xjk
(k = 0, 1,…, p− 1). (4.6)

The piecewise linear enclosure of ƒij(xj) is defined as

Eij(x) =

aij0x + Bij0 x [xj0, xj1),

aij1x + Bij1 x [xj1, xj2),
...

...

aij(p−1)x + Bij(p−1) x [xj(p−1), xjp],

(4.7)

where aijk R and Bijk IR such that

ƒij(x) Eij(x) for x X(0)j , (4.8)

as illustrated in Figure 6. Piecewise linear enclosure is able to find multiple solu-
tions.
Geometric constraints usually are polynomials. Therefore ƒij(x) is continuous

and differentiable within interval X(0)j . To find a Bijk with the minimum width with
the given aijk, derivative of ƒij(x) can be obtained symbolically. The problem is
reduced to solve real value nonlinear equation and find solutions of

ƒij(x) = aijk. (4.9)

Given that ƒij(x) is a univariate polynomial function or a function with unary
operations for most geometric constraints, equations (4.9) have at least one solution.
Roots can be isolated within disjointed intervals individually based on Descartes’
rule of signs before equations are solved. Descartes’ bound gives the upper bound
of the numbers of positive and negative roots of a polynomial.
Let P(x) be a polynomial with real coefficients, the following transformations

are defined:

• (Reverse transformation): R[P(x)] = xnP(1 / x) where n is the degree of P.

• (Translation transformation): Tt[P(x)] = P(x + t) for t R.

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 227

fij(x)

x

Xj
(0)

Bijk

Xj
(1)

fij(xj(k-1))

fij(xj(k+1))

fij(xjk)

xij(k-1) xijk xij(k+1)

Bij(k-1)

Figure 6. Piecewise linear enclosure of nonlinear interval function.

• (Homothetic transformation): Hc[P(x)] = P(cx) for c R.

Based on the algorithm of Collins et al. [20], [21], Pij(x) for x X is transformed
to P0ij(x) for x [0, 1] by P0ij(x) = Hb−a[Ta[Pij(x)]] where a is the lower bound of
X while b is the upper bound of X. The roots of Pij(x) for x X have one-to-one
correspondence with the roots of P0ij(x) for x [0, 1]. A list of root intervals or
exact roots can be obtained by calling RootIsolation(P0ij , 0, 0) listed in Figure 7. For
each root interval or exact root with information of (depth, index) in the list, there

is an corresponding x
[
(b − a)index

2depth
+ a, (b− a)(index + 1)

2depth
+ a

]
for root intervals or

x = (b− a)index
2depth

+ a for exact roots such that Pij(x) = 0.

Interval [xijk, xij(k+1)] can be subdivided into small intervals bounding individual
roots of (4.9). Let gijk(x) = ƒij(x) − aijk. Solutions to (4.9) can be found by the
Secant method

x(n+1) = x(n) − x(n) − x(n−1)

gijk(x(n))− gijk(x(n−1))
gijk(x

(n)) n = 1, 2, 3,… (4.10)

Suppose xijks (s = 1, 2,…, S) is the sth solution of (4.9), and xijk0 = xj0 as defined in
(4.6). Let Bijk = [b

ijk
L , bijkN , bijkU], where

bijkU = max
s

{ƒij(xijks)− aijkxijks, s = 0, 1,…, S}, (4.11a)

bijkN = ƒij(xijk0)− aijkxijk0, (4.11b)

bijkL = min
s
{ƒij(xijks)− aijkxijks, s = 0, 1, …, S}. (4.11c)

228 YAN WANG AND BARTHOLOMEW O. NNAJI

INPUT: Polynomial P with n degree

 int depth

 int index

OUTPUT: RootIntervalList

IF P(0) = 0

 RootIntervalList.addExactRoot(depth, index)

ENDIF

IF P(1) = 0

 RootIntervalList.addExactRoot(depth, index+1)

ENDIF

Polynomial Q = T1[R(P)]

IF DecartesBound(Q) = 1

 RootIntervalList.addRootInterval(depth, index)

ELSEIF DecartesBound(Q) >= 2

 Polynomial P1 = 2
n
H1/2[P]

 RootIsolation(P1, depth+1, 2*index)

 Polynomial P2 = T1[P1]

 RootIsolation(P2, depth+1, 2*index+1)

ENDIF

Figure 7. RootIsolation procedure based on Descartes’ rule of signs.

LEMMA 4.1.
n∑
j=1

ƒij(Xj)
n∑
j=1

Eij(Xj) i = 1, 2,…,m. (4.12)

Proof. From (4.8), we have for x [xijk, xij(k+1)],

ƒij(x) aijkx + Bijk (i = 1,…,m; j = 1,…, n). (4.13)

Then, for x [xij0, xijp],

ƒij(x)

aij0x + Bij0 x [xj0, xj1],

aij1x + Bij1 x [xj1, xj2],
...

...

aij(p−1)x + Bij(p−1) x [xj(p−1), xjp].

(i = 1, …,m; j = 1,…, n)(4.14)

Thus,
n∑
j=1

ƒij(Xj)
p−1⋃
k=0

n∑
j=1

(aijkX
k
j + Bij0) (i = 1,…,m), (4.15)

where Xkj = [xjk, xj(k+1)] and Xj =
p−1⋃
k=0

Xkj . �

STEP 3: Solving (4.5) thus is further reduced to solving piecewise linear enclo-
sure

n∑
j=1

(aijXj + Bij) = 0 (i = 1,…,m)

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 229

iteratively, or

n∑
j=1

aijXj = −
n∑
j=1

Bij (i = 1, …,m), (4.16)

where

aij =

aij0 x [xj0, xj1),

aij1 x [xj1, xj2),
...

...

aij(p−1) x [xj(p−1), xjp]

and Bij =

Bij0 x [xj0, xj1),

Bij1 x [xj1, xj2),
...

...

Bij(p−1) x [xj(p−1), xjp].

This linear system can be solved using the algorithm described in Section 4.1.
Suppose Yj is the jth variable solution of (4.16) in the tth iteration. By (4.17), the
initial value ofXj in the (t+1)-th iteration is calculated. If an empty interval is derived,
the original system has no solution within the given intervals (X(t)1 ,X (t)2 ,…,X (t)n).

X (t+1)j = X (t)j Yj for j = 1, 2, …, n. (4.17)

STEP 4: When the stopping criterion is met, such as the width of intervals has
no further improvement, or the intervals are sharp enough, the iteration is stopped.
Otherwise, go back to (4.6) to find out the new linear enclosures within the updated
intervals and repeat the procedure starting from STEP 2.

Remark 4.1. The piecewise linear enclosure is a special case of first-order Taylor
model.

E(F,A,XI) = F(0) + A(XI − 0) + I = AXI + BI, (4.18)

where BI = F(0) + I, Aij = aij, and B
I
i =

∑
j
Bij as in (4.16).

THEOREM 4.1. Let K(XI) be the operator to solve the piecewise linear system
E(F,A,XI) = 0. If K(XI) XI, then there exists a point x∗ = XI such that
F(x∗) = 0.

Proof. From Lemma 4.1, we have XI F(XI) E(F,A,XI). The combina-
tion of interval splitting in piecewise enclosure and Gauss-Seidel method ensures
K(XI) XI. Therefore, the Brouwer fixed point theorem implies that there is a
point x∗ = XI such that F(x∗) = 0. �

With extended interval arithmetic [36], [51] in which division by zero is allowed,
interval Newtonmethods elegantly split intervals containing multiple solutions. The
piecewise linear enclosure method works in the same way to divide intervals and
bound unique solutions individually. A simple example is bisection of two-piece
linear enclosure.

230 YAN WANG AND BARTHOLOMEW O. NNAJI

LEMMA 4.2 [55]. If ƒ : X → R (X IR) is a smooth function and its linear

enclosure is E(X) = aX + B, then lim
wid(X)→0

wid(B)
(wid(B))2

= .

Proof. Suppose that X(T) = [xL, xU] X (0) at Tth iteration. Let a = ƒ(xU)− ƒ(xL)
xU − xL

and B = [bL, bU]. There exists an xs X (T) such that ƒ (xs) = a. Assume that ƒ(x)
(x X) is convex. Other cases can be proved similarly. bU = ƒ(xL) − axL and
bL = ƒ(xs)− axs. Then wid(B) = ƒ(xL)− ƒ(xs)− a(xL − xs).

Because of ƒ(x) = ƒ(xs) + ƒ (xs)(x − xs) +
1
2
ƒ (xs)(x − xs)2 +

1
6
ƒ ()(xL − xs)3,

we have ƒ(xL) = ƒ(xs) + ƒ (xs)(xL− xs) +
1
2
ƒ (xs)(xL− xs)2 +

1
6
ƒ ()(xL− xs)3. That

is ƒ(xL)− ƒ(xs)− a(xL− xs) =
1
2
ƒ (xs)(xL− xs)2 +

1
6
ƒ ()(xL− xs)3. Thus wid(B)

1
2
ƒ (xs)(wid(X))2 + O[(wid(X))3] as wid(X) → 0. Therefore, lim

wid(X)→0

wid(B)
(wid(X))2

=

. �

THEOREM 4.2. Suppose F : XI → Rn (XI IRn) is a smooth function such that,
if F(x∗) = 0, then x∗ � XI. K(XI) is the operator to solve the piecewise linear
system E(F,A,XI) = 0. If ATA is nonsingular and K(XI) XI, then there exists
unique solutions such that F(x) = 0.

Proof. Because of the inherent interval splitting procedure, the piecewise lin-
ear enclosure method will isolate zeros in individual boxes during iteration. Let

(ATA)−1AT = P as in (4.16) and p = min
i, j

|Pij|, p = max
i, j

|Pij|. For X̃k =
m∑
i=1
Pki

n∑
j=1

Bij,

from Lemma 4.2, we have

lim
wid(Xk)→0

wid(X̃k)
(wid(Xk))2

= lim
wid(Xk)→0

m × [p, p] × wid
(

n∑
j=1

Bij

)

(wid(Xk))2

= lim
wid(Xk)→0

mn[p, p]wid(Bij)

(wid(Xk))2
= [mn p,mn p],

which indicates quadratic convergence. �

Remark 4.2. Even if ATA is singular, the convergence of smooth functions is
quadratic given the condition K(XI) XI.

Remark 4.3. In (4.7), if a B̂ijk can be estimated without the calculation of derivative
as described in STEP 2 such that Bijk B̂ijk, this algorithm can be simplified
and F(X) can be non-smooth functions. However, certain conditions need to be
satisfied to ensure quadratic convergence. The interval splitting only provides linear
convergence.

An example [51, p. 57] is used to show the quadratic onvergence of the algorithm,
as shown in Table 3.

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 231

Table 3. An example to illustrate convergence.

Constraints:{
x21 − 4x2 = 0,
x22 − 2x1 + 4x2 = 0

Iteration
(T)

1∑
j=0

wid(X(T)j)

1∑
j=0

wid(X(T)j)(
1∑
j=0

wid(X(T−1)j)

)2

1 1.25 0.078125
Initial values: Solution: 2 0.78125 0.5{
X1 = [−1, 1],
X2 = [−1, 1]

{
x1 = 0,
x2 = 0

3
4

0.22049
0.0170582

0.36125
0.350878

5 9.82161e−005 0.337535
6 3.2185e−009 0.333647
7 3.45293e−018 0.333335
8 3.97423e−036 0.333333
9 5.26484e−072 0.333333
10 9.23951e−144 0.333333
11 2.84562e−287 0.333333

4.3. INTERVAL INEQUALITIES

With preconditioning, inequalities can be solved by the methods for equations.
Consider a set of linear or nonlinear inequalities

Fi(X
I) ≤ Ci (i = 1,…, l), (4.19)

where XI IRn and Ci IR, inequalities are transformed to equations

Fi(X
I) + Si = Ci (i = 1, …, l), (4.20)

where Si IR is a slack variable with initial value of [0, 0,+]. Similarly,

Fi(X
I) ≥ Ci (i = 1,…, l) (4.21)

can be transformed to

Fi(X
I) + Si = Ci (i = 1, …, l), (4.22)

where Si IR has initial value of [− , 0, 0]. Inequalities can be easily integrated
into systems of equalities, which is a good property of interval constraint represen-
tation.
Table 4 shows an example when inequality is introduced in the example of

Table 3.

5. Design Refinement

One important aspect related to interval representation is the over estimation of
allowance. Design refinement is needed to generate more delicate design if desirable

232 YAN WANG AND BARTHOLOMEW O. NNAJI

Table 4. The result when inequality is introduced in the example of Table 3.

Constraints:

x21 − 4x2 = 0,
x22 − 2x1 + 4x2 = 0,
x1 ≤ x2

Preconditioned:

x21 − 4x2 = 0,
x22 − 2x1 + 4x2 = 0,
x1 − x2 + s1 = 0

Itera-
tion
(T)

2∑
j=0

wid(X(T)j)

2∑
j=0

wid(X(T)j)(
2∑
j=0

wid(X(T−1)j)

)2
1 0.75 7.44036e−007

Initial values: Solution: 2 0.046875 0.0833333

X1 = [−1, 1],
X2 = [−1, 1],
X3 = [0, 1000]

x1 = 0,
x2 = 0,
x3 = 0

3
4
5

0.000183105
2.79397e−009
6.50521e−019

0.0833333
0.0833333
0.0833333

6 3.52648e−038 0.0833333
7 1.03634e−076 0.0833333
8 8.95001e−154 0.0833333
9 6.67522e−308 0.0833333

details have not been achieved yet. There are two ways to refine design: interval
subdivision and constraint respecification. Interval subdivision is to divide existing
interval boxes into unions of subintervals to achieve a refined view of current
design. Constraint respecification is to modify some of constraints or to add extra
valid constraints to contract feasible regions.

5.1. INTERVAL SUBDIVISION

Interval subdivision (also called subpaving) substitutes an interval vector with
multiple interval vectors such that the corresponding real space region is subdivided
into multiple smaller regions to cover the actual solution set more compactly.
Interval vectorX can be bisected recursively and subintervals are tested individually
if they contain the actual solution set. The actual solution set then is approximated
by the union of subinterval regions.
Consider a design problem f(X) = Y. The target is to find the actual solution

set S X with the minimal size such that f(S) = Y. Interval arithmetic only gives
a valid solution D with f(D) Y. If the valid solution is represented by power
intervals, refinement is degree elevation of power intervals. If the original solution
to a problem is found as an n-dimensional vector X = [X1,X2,…,Xn] with the
corresponding power interval P(1, n)(0) . One elevation operation will bisect X, with
each interval vector being deleted and new subintervals inserted. Feasibility of
each new subinterval then is tested. For a m-step n-dimensional X subdivision, the
number of intervals generated is an order of O(2m×n), which is computationally
inefficient. A better way to contract a solution is to modify or add valid constraints
to generate a new solution with narrower feasible regions.

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 233

(a)

(b)

(c)

S1

S2

D1

S1 D2

D2

S2D1

x-space

f
ZY

z-spacey-space

g

D1

S1

x-space

f
ZY

z-spacey-space

gD2

S2

x-space

f
ZY

z-spacey-space

g

Figure 8. Relations of two constraint subsets.

5.2. CONSTRAINT RESPECIFICATION

Constraint modification depends on sensitivity analysis, while adding constraints
is largely dependent on user’s specification. Feasibility and effectiveness should be
considered simultaneouslywhen changing constraints. One basic issue in sensitivity
analysis is how to differentiate active and inactive constraints. Active constraints
scope the actual range of solution, while inactive constraints have certain level of
slackness. At the beginning of interval computation, all constraints are active if a
sufficiently large initial region is given. As the iteration proceeds, some constraints
become inactive. The decision of which constraints to be modified is based on the
selection of active constraints.

THEOREM 5.1. For a constraint set p = { f(X) = Y and g(X) = Z}, the subset
f(X) = Y with respect to a solution D X is inactive if f(D) Y and g(D) Z.

Proof. Suppose S1 and S2 are actual solution sets of f and g respectively, and S
is the actual solution set of p. Given that f(S1) = Y and f(D) Y, because of the
inclusion monotonicity, S1 D. Similarly, D S2. Thus, S1 S2. �

As illustrated by Figure 8, subset f is inactive and g is active in case (a); both f
and g are active in case (b); and f is active and g is inactive in case (c).

234 YAN WANG AND BARTHOLOMEW O. NNAJI

3 2

d1

0 1

5

6

1716

4
8

9

7

11
12

10
14
15

13

d0

d5

d4

d6

d7

d8 d8d9

d10 d10

d4

d5

d6

d7

(a) design problem with 50 constraints and 36 variables

(b) variational bounds of 18 characteristic points in the solution
with 100 variables and 110 constraints in separable form

Figure 9. An over-constrained bracket design problem.

6. A Numerical Example

The NICR kernel is implemented in C++ with an object-oriented programming
style. The kernel includes the fundamental structure and arithmetic operations of
the nominal intervals. It also includes the implementation of the methods described
in previous sections for solving linear and nonlinear constraint systems.
As a demonstration, the design of the bracket in Figure 4 is used as a numerical

example. As shown in Figure 9(a), there are 18 characteristic points therefore 36
design variables in this problem. 50 constraints are assigned to the variables, which
is over-constrained in the sense of traditional parametric modeling. Commercial
CAD systems usually use constructive constraint solving methods. Large problems
are decomposed into small ones. It is unusual and unrealistic to solve very large
numerical systems directly. After the transformation to separable form, the bracket
design problem has 100 variables and 110 constraints, as listed in Appendices. This

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 235

Table 5. Width reduction of 100 variables in the bracket example.

Iter.
(T)

99∑
j=0

wid(X(T)j)−
99∑
j=0

wid(X(T−1)j)
Iter.
(T)

99∑
j=0

wid(X(T)j)−
99∑
j=0

wid(X(T−1)j)

1 188.135 26 0.037213
2 12.0089 27 0.02771
3 3.09879 28 0.020351
4 3.87703 29 0.014782
5 3.16818 30 0.010643
6 1.83084 31 0.007607
7 1.28761 32 0.005405
8 0.892381 33 0.003821
9 0.541563 34 0.00269
10 0.502575 35 0.001887
11 0.394768 36 0.001319
12 0.313836 37 0.00092
13 0.286785 38 0.00064
14 0.231169 39 0.000445
15 0.156597 40 0.000308
16 0.127431 41 0.000213
17 0.130038 42 0.000147
18 0.138253 43 0.000102
19 0.128812 44 7.00e−05
20 0.115669 45 4.82e−05
21 0.108886 46 3.31e−05
22 0.09546 47 2.28e−05
23 0.079314 48 1.56e−05
24 0.06334 49 1.07e−05
25 0.049103 50 7.35e−06

problem is solved by the NICR kernel, and the result is shown in Figure 9(b). The
reduction of total widths for the 100 variables is shown in Table 5 and Figure 10.

7. Conclusion

This paper presents a soft constraint representation scheme based on nominal inter-
val for parametric CAD systems. Interval geometric parameters capture inexactness
of conceptual and embodiment design, uncertainty in detail design, aswell as bound-
ary information for design optimization. To accommodate under-constrained and
over-constrained design problems, a double-loopGauss-Seidelmethod is developed
to solve linear constraints. A symbolic preconditioning procedure transforms non-
linear equations to separable form. Inequalities are also transformed and integrated
with equalities.

236 YAN WANG AND BARTHOLOMEW O. NNAJI

Figure 10. Width reduction in the bracket example.

Nonlinear constraints can be bounded by piecewise linear enclosures and solved
by linear methods iteratively. A sensitivity analysis method that differentiates active
and inactive constraints is presented for design refinement.

Acknowledgements

This research was supported in part by the Office of Naval Research, U.S. Depart-
ment of Defense (Grant Number: N00014-02-1-0649). Authors would like to thank
referees for the incisive comments and suggestions.

Appendix

A. 50 Constraints and 36 variables of the example in Section 6

x0 = a0, y0 = b0, y0 − y1 = 0,
(x1 − x0)2 + (y1 − y0)2 = d20 ,

(x2 − x1)2 + (y2 − y1)2 = d21 ,

(x3 − x2)2 + (y3 − y2)2 = d22 ,

(x0 − x3)2 + (y0 − y3)2 = d23 ,

(x0 − x3)(x1 − x0) + (y0 − y3)(y1 − y0) = 0,

(x2 − x1)(x1 − x0) + (y2 − y1)(y1 − y0) = 0,

x0 ≤ x1, y0 ≤ y3, x0 ≤ x5, y0 ≤ y5,

[(y1 − y0)(x5 − x0)− (x1 − x0) + (y5 − y0)]2 − d24 [(y1 − y0)2 + (x1 − x0)2] = 0,

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 237

[(y3 − y0)(x5 − x0)− (x3 − x0) + (y5 − y0)]2 − d25 [(y3 − y0)2 + (x3 − x0)2] = 0,

[(y1 − y0)(x8 − x0)− (x1 − x0) + (y8 − y0)]2 − d24 [(y1 − y0)2 + (x1 − x0)2] = 0,

[(y3 − y0)(x8 − x0)− (x3 − x0) + (y8 − y0)]2 − d26 [(y3 − y0)2 + (x3 − x0)2] = 0,

[(y1 − y0)(x11 − x0)− (x1 − x0) + (y11 − y0)]2 − d24 [(y1 − y0)2 + (x1 − x0)2] = 0,

[(y2 − y1)(x11 − x0)− (x2 − x1) + (y11 − y0)]2 − d26 [(y2 − y1)2 + (x2 − x1)2] = 0,

[(y1 − y0)(x14 − x0)− (x1 − x0) + (y14 − y0)]2 − d24 [(y1 − y0)2 + (x1 − x0)2] = 0,

[(y2 − y1)(x14 − x0)− (x2 − x1) + (y14 − y0)]2 − d25 [(y2 − y1)2 + (x2 − x1)2] = 0,

[(y1 − y0)(x16 − x0)− (x1 − x0) + (y16 − y0)]2 − d27 [(y1 − y0)2 + (x1 − x0)2] = 0,

[(y3 − y0)(x16 − x0)− (x3 − x0) + (y16 − y0)]2 − d28 [(y3 − y0)2 + (x3 − x0)2] = 0,

[(y1 − y0)(x17 − x0)− (x1 − x0) + (y17 − y0)]2 − d27 [(y1 − y0)2 + (x1 − x0)2] = 0,

[(y2 − y1)(x17 − x0)− (x2 − x1) + (y17 − y0)]2 − d28 [(y2 − y1)2 + (x2 − x1)2] = 0,

x4 − x5 = 0, x6 − x5 = 0, x7 − x8 = 0,

x9 − x8 = 0, x10 − x11 = 0, x12 − x11 = 0,

x13 − x14 = 0, x15 − x14 = 0, y4 − y7 = 0,

y6 − y9 = 0, y10 − y13 = 0, y12 − y15 = 0,

y9 − y12 = 0, y7 − y10 = 0, y5 − y4 − r = 0,

y6 − y5 − r = 0, y8 − y7 − r = 0, y9 − y8 − r = 0,

y11 − y10 − r = 0, y12 − y11 − r = 0, y14 − y13 − r = 0,

y15 − y14 − r = 0, y17 − x16 − d9 = 0,

y16 − y5 − d10 = 0, y17 − y11 − d10 = 0.

B. 110 Constraints and 100 variables of the example in Section 6 after the
transformation to separable form

x0 = a0, y0 = b0, y0 − y1 = 0,

(u1)2 + (v1)2 = d20 , u1 = x1 − x0, v1 = y1 − y0,

(u2)2 + (v2)2 = d21 , u2 = x2 − x1, v2 = y2 − y1,

(u3)2 + (v3)2 = d22 , u3 = x3 − x2, v3 = y3 − y2,

(u4)2 + (v4)2 = d23 , u4 = x3 − x0, v4 = y3 − y0,

.5(p1)2 − .5(u4)2 − .5(u1)2 + .5(q1)2 − .5(v4)2 − .5(v1)2 = 0,

p1 = u4 + u1, q1 = v4 + v1,

.5(p2)2 − .5(u2)2 − .5(u1)2 + .5(q2)2 − .5(v2)2 − .5(v1)2 = 0,

p2 = u2 + u1, q2 = v2 + v1,

x0 ≤ x1, y0 ≤ y3, x0 ≤ x5, y0 ≤ y5,

u5 = x5 − x0, v5 = y5 − y0,

[w1]2 − d24 [(v1)
2 + (u1)2] = 0,

238 YAN WANG AND BARTHOLOMEW O. NNAJI

w1 = .5(p3)2 − .5(v1)2 − .5(u5)2 − .5(q3)2 + .5(u1)2 + .5(v5)2,

p3 = v1 + u5, q3 = u1 + v5,

[w2]2 − d25 [(v4)
2 + (u4)2] = 0,

w2 = .5(p4)2 − .5(v4)2 − .5(u5)2 − .5(q4)2 + .5(u4)2 + .5(v5)2,

p4 = v4 + u5, q4 = u4 + v5,

u6 = x8 − x0, v6 = y8 − y0,

[w3]2 − d24 [(v1)
2 + (u1)2] = 0,

w3 = .5(p5)2 − .5(v1)2 − .5(u6)2 − .5(q5)2 + .5(u1)2 + .5(v6)2,

p5 = v1 + u6, q5 = u1 + v6,

[w4]2 − d26 [(v4)
2 + (u4)2] = 0,

w4 = .5(p6)2 − .5(v4)2 − .5(u6)2 − .5(q6)2 + .5(u4)2 + .5(v6)2,

p6 = v4 + u6, q6 = u4 + v6,

u7 = x11 − x0, v7 = y11 − y0,

[w5]2 − d24 [(v1)
2 + (u1)2] = 0,

w5 = .5(p7)2 − .5(v1)2 − .5(u7)2 − .5(q7)2 + .5(u1)2 + .5(v7)2,

p7 = v1 + u7, q7 = u1 + v7,

[w6]2 − d26 [(v2)
2 + (u2)2] = 0,

w6 = .5(p8)2 − .5(v2)2 − .5(u7)2 − .5(q8)2 + .5(u2)2 + .5(v7)2,

p8 = v2 + u7, q8 = u2 + v7,

u8 = x14 − x0, v8 = y14 − y0,

[w7]2 − d24 [(v1)
2 + (u1)2] = 0,

w7 = .5(p9)2 − .5(v1)2 − .5(u8)2 − .5(q9)2 + .5(u1)2 + .5(v8)2,

p9 = v1 + u8, q9 = u1 + v8,

[w8]2 − d25 [(v2)
2 + (u2)2] = 0,

w8 = .5(p10)2 − .5(v2)2 − .5(u8)2 − .5(q10)2 + .5(u2)2 + .5(v8)2,

p10 = v2 + u8, q10 = u2 + v8,

u9 = x16 − x0, v9 = y16 − y0,

[w9]2 − d27 [(v1)
2 + (u1)2] = 0,

w9 = .5(p11)2 − .5(v1)2 − .5(u9)2 − .5(q11)2 + .5(u1)2 + .5(v9)2,

p11 = v1 + u9, q11 = u1 + v9,

[w10]2 − d28 [(v4)
2 + (u4)2] = 0,

w10 = .5(p12)2 − .5(v4)2 − .5(u9)2 − .5(q12)2 + .5(u4)2 + .5(v9)2,

p12 = v4 + u9, q12 = u4 + v9,

u10 = x17 − x0, v10 = y17 − y0,

[w11]2 − d27 [(v1)
2 + (u1)2] = 0,

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 239

w11 = .5(p13)2 − .5(v1)2 − .5(u10)2 − .5(q13)2 + .5(u1)2 + .5(v10)2,

p13 = v1 + u10, q13 = u1 + v10,

[w12]2 − d28 [(v2)
2 + (u2)2] = 0,

w12 = .5(p14)2 − .5(v2)2 − .5(u10)2 − .5(q14)2 + .5(u2)2 + .5(v10)2,

p14 = v2 + u10, q14 = u2 + v10,

x4 − x5 = 0, x6 − x5 = 0, x7 − x8 = 0,

x9 − x8 = 0, x10 − x11 = 0, x12 − x11 = 0,

x13 − x14 = 0, x15 − x14 = 0, y4 − y7 = 0,

y6 − y9 = 0, y10 − y13 = 0, y12 − y15 = 0,

y9 − y12 = 0, y7 − y10 = 0, y5 − y4 − r = 0,

y6 − y5 − r = 0, y8 − y7 − r = 0, y9 − y8 − r = 0,

y11 − y10 − r = 0, y12 − y11 − r = 0, y14 − y13 − r = 0,

y15 − y14 − r = 0, y17 − x16 − d9 = 0,

y16 − y5 − d10 = 0, y17 − y11 − d10 = 0.

References

1. Aldefeld, B.: Variation of Geometries Based on a Geometric-Reasoning Method, Computer-
Aided Design 20 (3) (1988), pp. 117–126.

2. Aldfeld, B.: Rule-Based Approach to Variational Geometry, in: Smith, A. (ed.), Knowledge
Engineering and Computer Modelling in CAD, Proceedings of the 7th International Conference
on the Computer as a Design Tool, September 2–5, 1986, London, pp. 59–67.

3. Alefeld, G.: Bounding the Slope of Polynomial Operators and Some Applications, Computing
26 (1981), pp. 227–237.

4. Alefeld, G.: On the Convergence of Some Interval-Arithmetic Modifications of Newton’s
Method, SIAM Journal on Numerical Analysis 21 (2) (1984), pp. 363–372.

5. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New
York, 1983.

6. Alefeld, G. andMayer, G.: IntervalAnalysis: Theory andApplication, Journal of Computational
and Applied Mathematics 121 (1–2) (2000), pp. 421–464.

7. Alefeld, G. and Platzoder, L.: A Quadratically Convergent Krawczyk-Like Algorithm, SIAM
Journal on Numerical Analysis 20 (1) (1983), pp. 210–219.

8. Anantha, R., Kramer, G.A., and Crawford, R. H.: AssemblyModelling by Geometric Constraint
Satisfaction, Computer-Aided Design 28 (9) (1996), pp. 707–722.

9. Benhamou, F. and Granvilliers, L.: Automatic Generation of Numerical Redundancies for Non-
Linear Constraint Solving, Reliable Computing 3 (3) (1997), pp. 335–344.

10. Berz, M.: Modern Map Methods in Particle Beam Physics, Academic Press, San Diego, 1999.
11. Berz, M. and Hoffstatter, G.: Computation and Application of Taylor Polynomials with Interval

Remainder Bounds, Reliable Computing 4 (1) (1998), pp. 83–97.
12. Bliek, C.: Computer Methods for Design Automation, unpublished Ph.D. thesis, Massachusetts

Institute of Technology, 1992.
13. Bouma, W., Fudos, I., Hoffmann, C., Cai, J., and Paige, R.: Geometric Constraint Solver,

Computer-Aided Design 27 (6) (1995), pp. 487–501.
14. Buchberger, B., Collins, G., and Kutzler, B.: Algebraic Methods for Geometric Reasoning,

Annual Review of Computer Science 3 (1988), pp. 85–120.
15. Ceberio, M. and Granvilliers, L.: Horner’s Rule for Interval Evaluation Revisited, Computing

69 (1) (2002), pp. 51–81.

240 YAN WANG AND BARTHOLOMEW O. NNAJI

16. Chen, F. and Lou, W.: Degree Reduction of Interval Bezier Curves, Computer-Aided Design 32
(10) (2000), pp. 571–582.

17. Chen, X.: A Verification Method for Solutions of Nonsmooth Equations, Computing 58 (1997),
pp. 281–294

18. Chiu, C.-K. and Lee, J. H.-M.: Efficient Interval Linear Equality Solving in Constraint Logic
Programming, Reliable Computing 8 (2) (2002), pp. 139–174.

19. Chyz, W.: Constraint Management for CSG, Unpublished Master Thesis, Massachusetts Insti-
tute of Technology, 1985.

20. Collins, G. E. and Akritas, A. G.: Polynomial Real Root Isolation Using Descarte’s Rule of
Signs, in: Proceedings of the Third ACM Symposium on Symbolic and Algebraic Computation,
August 10–12, 1976, Yorktown Heights, New York, pp. 272–275.

21. Collins, G. E. and Johnson, J. R.: Quantifier Elimination and the Sign Variation Method for
Real Root Isolation, in: Proceedings of the ACM-SIGSAM 1989 International Symposium on
Symbolic and Algebraic Computation, July 17–19, 1989 Portland, Oregon, pp. 264–271.

22. Duff, T.: Interval Arithmetic and Recursive Subdivision for Implicit Functions and Constructive
Solid Geometry, Computer Graphics 26 (2) (1992), pp. 131–138.

23. Finch, W. W. and Ward, A. C.: A Set-Based System for Eliminating Infeasible Designs in
Engineering ProblemsDominated byUncertainty, in:ASMEProceedings ofDETC97/dtm-3886,
Sept. 14–17, 1997, Sacramento, CA, USA.

24. Fudos, I. and Hoffmann, C. M.: A Graph-Constructive Approach to Solving Systems of Geo-
metric Constraints, ACM Transactions on Graphics 16 (2) (1997), pp. 179–216.

25. Gao, X.-S. and Chou, S.-C.: Solving Geometric Constraint Systems II: A Symbolic Approach
and Decision of Rc-constructibility, Computer Aided-Design 30 (2) (1998), pp. 115–122.

26. Garloff, J.: The Bernstein Algorithm, Interval Computations (2) (1993), pp. 154–168.
27. Ge, J.-X., Chou, S.-C., and Gao, X.-S.: Geometric Constraint Satisfaction Using Optimization

Methods, Computer-Aided Design 31 (14) (1999), pp. 867–879.
28. Gossard, D. C., Zuffante, R. P., and Sakurai, H.: Representing Dimensions, Tolerances, and

Features in MCAE Systems, IEEE Computer Graphics & Applications 8 (3) (1988), pp. 51–59.
29. Hansen, E.: Bounding the Solution of Interval Linear Equations, SIAM Journal on Numerical

Analysis 29 (5) (1992), pp. 1493–1503.
30. Hansen, E.: Interval Arithmetic in Matrix Computations, SIAM Journal on Numerical Analysis

2 (1965), pp. 308–320.
31. Hansen, E. R.: Interval Forms of Newton’s Method, BIT 20 (1978), pp. 153–163.
32. Hansen, E.: Preconditioning Linearized Equations, Computing 58 (2) (1997), pp. 187–196.
33. Hansen, E. R. and Greenberg, R. I.: An Interval Newton Method, Applied Mathematics and

Computation 12 (2–3) (1983), pp. 89–98.
34. Hansen, E. and Sengupta, S.: Bounding Solutions of Systems of Equations Using Interval

Analysis, BIT 21 (1981), pp. 203–211.
35. Hansen, E. and Smith, R.: Interval Arithmetic in Matrix Computations, Part II, SIAM Journal

on Numerical Analysis 4 (1) (1967), pp. 1–9.
36. Hansen, E. and Walster, G. W.: Global Optimization Using Interval Analysis, 2nd Edition,

Marcel Dekker, New York, 2004.
37. Hansen, E. R. and Walster, G. W.: Sharp Bounds on Interval Polynomial Roots, Reliable

Computing 8 (2) (2002), pp. 115–122.
38. Hillyard, R. C. and Braid, I. C., Analysis of Dimensions and Tolerances in Computer-Aided

Mechanical Design, Computer-Aided Design 10 (3) (1978), pp. 161–166.
39. Hoffmann, C. M., Lomonosov, A., and Sitharam, M.: Decomposition Plans for Geometric

Constraint Systems, Part I: Performance Measures for CAD, Journal of Symbolic Computation
31 (4) (2001), pp. 367–408.

40. Hoffmann, C. M., Lomonosov, A., and Sitharam, M.: Decomposition Plans for Geometric
Constraint Systems, Part II: New Algorithms, Journal of Symbolic Computation 31 (4) (2001),
pp. 409–427.

41. Hong,H. and Stahl, V.: Bernstein Form Is InclusionMonotone,Computing 55 (1995), pp. 43–53.

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 241

42. Hsu, C. Y. and Bruderlin, B.: Constraint Objects—Integrating Constraint Definition and Graph-
ical Interaction, in: ACM Proceedings of the Second Symposium on Solid Modeling and Appli-
cations, 1993, Montreal, Quebec, Canada, pp. 467–468.

43. Hu, C. Y., Maekawa, T., Patrikalakis, N. M., and Ye, X.: Robust Interval Algorithm for Surface
Intersections, Computer-Aided Design 29 (9) (1997), pp. 617–627.

44. Hu, C. Y., Patrikalakis, N. M., and Ye, X.: Robust Interval Solid Modeling, Part II: Boundary
Evaluation, Computer-Aided Design 28 (10) (1996), pp. 819–830.

45. Hungerbuhler, A. R. and Garloff, B. J.: Bounds for the Range of a Bivariate Polynomial over a
Triangle, Reliable Computing 4 (1) (1998), pp. 3–13.

46. Jaulin, L., Kieffer, M., Didrit, O., and Walter, E.: Applied Interval Analysis, Springer, London,
2001.

47. Kalra, D. and Barr, A. H.: Guaranteed Ray Intersections with Implicit Surfaces, Computer
Graphics 23 (3) (1989), pp. 297–304.

48. Kaucher, E.: Interval Analysis in the Extended Interval Space IR, Computing Supplementum 2,
Springer, Heidelberg, 1980, pp. 33–49.

49. Kearfott, R. B.: On Existence and Uniqueness Verification for Non-Smooth Functions, Reliable
Computing 8 (4) (2002), pp. 267–282.

50. Kearfott, R. B.: Preconditioners for the Interval Gauss-Seidel Method, SIAM Journal on Numer-
ical Analysis 27 (3) (1990), pp. 804–822.

51. Kearfott, R. B.: Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers,
Dordrecht, 1996.

52. Kearfott, R. B. and Dian, J.: Existence Verification for Higher Degree Singular Zeros of
Nonlinear Systems, SIAM Journal on Numerical Analysis 41 (6) (2003), pp. 2350–2373.

53. Kearfott, R. B., Dian, J., andNeumaier, A.: ExistenceVerification for Singular Zeros of Complex
Nonlinear Systems, SIAM Journal on Numerical Analysis 38 (2) (2000), pp. 360–379.

54. Kearfott, R. B. and Walster, G. W.: Symbolic Preconditioning with Taylor Models: Some
Examples, Reliable Computing 8 (6) (2002), pp. 453–468.

55. Kolev, L. V.: A NewMethod for Global Solution of Systems of Non-Linear Equations, Reliable
Computing 4 (2) (1998), pp. 125–146.

56. Kolev, L. V.: An Improved Method for Global Solution of Non-Linear Systems, Reliable
Computing 5 (2) (1999), pp. 103–111.

57. Kolev, L. V.: Automatic Computation of a Linear Interval Enclosure, Reliable Computing 7 (1)
(2001), pp. 17–28.

58. Kolev, L.: Use of Interval Slopes for the Irrational Part of Factorable Functions, Reliable
Computing 3 (1) (1997), pp. 83–93.

59. Kolev, L. V. and Nenov, I.: Cheap and Tight Bounds on the Solution Set of Perturbed Systems
of Nonlinear Equations, Reliable Computing 7 (5) (2001), pp. 399–408.

60. Kondo, K.: Algebraic Method for Manipulation of Dimensional Relationships in Geometric
Models, Computer-Aided Design 24 (3) (1992), pp. 141–147.

61. Kondo, K.: PIGMOD: Parametric and Interactive Geometric Modeller for Mechanical Design,
Computer-Aided Design 22 (10) (1990), pp. 633–644.

62. Kramer, G. A.: A Geometric Constraint Engine, in: Freuder, E. C. and Mackworth, A. K. (eds),
Artificial Intelligence: Constraint-Based Reasoning 58, Elsever, 1992, pp. 327–360.

63. Krawczyk, R.: Newton-Algorithmen zurBestimmug vonNullstellenmit Fehlerschranken,Com-
puting 4 (1969), pp. 187–201.

64. Krawczyk, R. and Neumaier, A.: An Improved Interval Newton Operator, Journal of Mathe-
matical Analysis and Applications 118 (1) (1986), pp. 194–207.

65. Krawczyk, R. andNeumaier, A.: Interval Slopes for Rational Functions andAssociatedCentered
Forms, SIAM Journal on Numerical Analysis 22 (3) (1985), pp. 604–615.

66. Lamure, H. and Michelucci, D.: Solving Geometric Constraints by Homotopy, in: Proceedings
of the Third ACM Symposium on Solid Modeling and Applications, May 17–19, 1995, Salt Lake
City, Utah, pp. 263–269.

67. Latham, R. S. and Middleditch, A. E.: Connectivity Analysis: A Tool for Processing Geometric
Constraints, Computer-Aided Design 28 (11) (1996), pp. 917–928.

242 YAN WANG AND BARTHOLOMEW O. NNAJI

68. Lee, J. Y. and Kim, K.: A 2-DGeometric Constraint Solver Using DOF-Based Graph Reduction,
Computer-Aided Design 30 (11) (1998), pp. 883–896.

69. Lee, J. Y. and Kim, K.: Geometric Reasoning for Knowledge-Based Parametric Design Using
Graph Representation, Computer-Aided Design 28 (10) (1996), pp. 831–841.

70. Light, R. and Gossard, D.: Modification of Geometric Models Through Variational Geometry,
Computer-Aided Design 14 (4) (1982), pp. 209–214.

71. Lin, H., Liu, L., andWang, G.: Boundary Evaluation for Interval Bezier Curve,Computer-Aided
Design 34 (9) (2002), pp. 637–646.

72. Maekawa, T. and Patrikalakis, N. M.: Computation of Singularities and Intersections of Offsets
of Planar Curves, Computer Aided Geometric Design 10 (5) (1993), pp. 407–429.

73. Maekawa, T. and Patrikalakis, N. M.: Interrogation of Differential Geometry Properties for
Design and Manufacture, The Visual Computer 10 (4) (1994), pp. 216–237.

74. Makino, K. and Berz, M.: Efficient Control of the Dependency Problem Based on Taylor Model
Methods, Reliable Computing 5 (1) (1999), pp. 3–12.

75. Makino, K. and Berz,M.: Remainder Differential Algebras and TheirApplications, in: Berz,M.,
Bischof, C., Corliss, G., and Griewank, A. (eds.), Computational Differentiation: Techniques,
Applications, and Tools, SIAM, Philadelphia pp. 63–74.

76. Mayer, G.: Epsilon-Inflation in Verification Algorithms, Journal of Computational and Applied
Mathematics 60 (1–2) (1995), pp. 147–169.

77. Modares, M., Mullen, R., Muhanna, R. L., and Zhang, H.: Buckling Analysis of Structures with
Uncertain Properties and Loads Using an Interval Finite Element Method, in: Muhanna, R. L.
and Mullen, R. L. (eds), Proceedings of the 2004 NSF Workshop on Reliable Engineering
Computing, September 15–17, 2004, Savannah, GA, USA, pp. 317–327.

78. Moore, M. and Wilhelms, J.: Collision Detection and Response for Computer Animation,
Computer Graphics 22 (4) (1988), pp. 289–298.

79. Moore, R. E.:Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.
80. Moore, R. E. (ed.): Reliability in Computing: The Role of Interval Methods in Scientific Com-

puting, Academic Press, Boston, 1988.
81. Moore, R. E.: Sparse Systems in Fixed Point Form, Reliable Computing 8 (4) (2002), pp. 249–

265.
82. Moore, R. E. and Qi, L.: A Successive Interval Test for Nonlinear Systems, SIAM Journal on

Numerical Analysis 19 (4) (1982), pp. 845–850.
83. Mudur, S. P. and Koparkar, P. A.: Interval Methods for Processing Geometric Objects, IEEE

Computer Graphics and Applications 4 (2) (1984), pp. 7–17.
84. Muhanna, R. L. and Mullen, R. L.: Formulation of Fuzzy Finite-Element Methods for Solid

Mechanics Problems,Computer-AidedCivil and Infrastructure Engineering 14 (1999), pp. 107–
117.

85. Muhanna, R. L. and Mullen, R. L.: Uncertainty in Mechanics Problems—Interval-Based
Approach, ASCE Journal of Engineering Mechanics 127 (6) (2001), pp. 557–566.

86. Muhanna, R. L.,Mullen, R. L., and Zhang, H.: Interval Finite Element as a Basis for Generalized
Models of Uncertainty in Engineering Mechanics, in: Muhanna, R. L. and Mullen, R. L. (eds),
Proceedings of the 2004 NSFWorkshop on Reliable Engineering Computing, September 15–17,
2004, Savannah, GA, USA, pp. 353–370.

87. Mullineux, G: Constraint Resolution Using Optimisation Techniques, Computers & Graphics
25 (3) (2001), pp. 483–492.

88. Neumaier, A.: A Simple Derivation of the Hansen-Bliek-Rohn-Ning-Kearfott Enclosure for
Linear Interval Equations, Reliable Computing 5 (2) (1999), pp. 131–136.

89. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, 1990.
90. Neumaier, A.: On Shary’s Algebraic Approach for Linear Interval Equations, SIAM Journal on

Matrix Analysis and Applications 21 (4) (2000), pp. 1156–1162.
91. Neumaier, A.: Taylor Forms—Use and Limits, Reliable Computing 9 (1) (2003), pp. 43–79.
92. Ning, S. and Kearfott, R. B.: A Comparison of Some Methods for Solving Linear Interval

Equations, SIAM Journal on Numerical Analysis 34 (4) (1997), pp. 1289–1305.

SOLVING INTERVAL CONSTRAINTS BY LINEARIZATION... 243

93. Owen, J. C.: Algebraic Solution for Geometry from Dimensional Constraints, in: ACM Pro-
ceedings of the First Symposium on Solid Modeling Foundations and CAD/CAM Applications,
1991, Austin, Texas, pp. 397–407.

94. Perez, A. and Serrano, D.: Constraint Based Analysis Tools for Design, in: ACM Proceedings
on the 2nd Symposium on Solid Modeling and Applications, 1993, Montreal, Quebec, Canada,
pp. 281–291.

95. Rao, S. S. and Berke, L.: Analysis of Uncertain Structural Systems Using Interval Analysis,
AIAA Journal 35 (4) (1997), pp. 727–735.

96. Rao, S. S. and Cao, L.: Optimum Design of Mechanical Systems Involving Interval Parameters,
ASME Journal of Mechanical Design 124 (2002), pp. 465–472.

97. Ratschek, H. and Rokne, J.: Computer Methods for the Range of Functions, Ellis Horwood,
Chichester, 1984, Ch. 6.

98. Ratschek, H. and Rokne, J.: New Computer Methods for Global Optimization, Ellis Horwood,
New York, 1988.

99. Rohn, J.: Cheap and Tight Bounds: the Recent Result by E.Hansen CanBeMadeMore Efficient,
Interval Computations 4 (1993), pp. 13–21.

100. Rokne, J. G.: A Note on the Bernstein Algorithm for Bounds for Interval Polynomials, Com-
puting 21 (1979), pp. 159–170.

101. Roller, D.: An Approach to Computer-Aided Parametric Design, Computer-Aided Design 23
(5) (1991), pp. 385–391.

102. Rump, S. M.: A Note on Epsilon-Inflation, Reliable Computing 4 (4) (1998), pp. 371–375.
103. Rump, S. M.: Inclusion of Zeros of Nowhere Differentiable n-Dimensional Functions, Reliable

Computing 3 (1) (1997), pp. 5–16.
104. Sederberg, T. W. and Farouki, R. T.: Approximation by Interval Bezier Curves, IEEE Computer

Graphics and Applications 12 (5) (1992), pp. 87–95.
105. Shary, S. P.: A New Technique in Systems Analysis under Interval Uncertainty and Ambiguity,

Reliable Computing 8 (5) (2002), pp. 321–418.
106. Shary, S. P.: Algebraic Approach in the “Outer Problem” for Interval Linear Equations, Reliable

Computing 3 (2) (1997), pp. 103–135.
107. Snyder, J.: Generative Modeling for Computer Graphics and CAD: Symbolic Shape Design

Using Interval Analysis, Academic Press, Cambridge, 1992.
108. Snyder, J. M., Woodbury, A. R., Fleischer, K., Currin, B., and Barr, A. H.: Interval Methods for

Multi-Point Collisions Between Time-Dependant Curved Surfaces, in: ACMProceedings of the
20th Annual Conference on Computer Graphics and Interactive Techniques, New York, 1993,
pp. 321–334.

109. Solano, L. and Brunet, P.: Constructive Constraint-Based Model for Parametric CAD Systems,
Computer-Aided Design 26 (8) (1994), pp. 614–621.

110. Stahl, V., Interval Methods for Bounding the Range of Polynomials and Solving Systems of
Nonlinear Equations, unpublished Ph.D. thesis, University of Linz, 1995.

111. Sunde, G.: Specification of Shape by Dimensions and Other Geometric Constraints, in:
Wozny, M. J., McLaughlin, H. W., and Encarnacao, J. L. (eds), Geometric Modeling for CAD
Applications, IFIPWG 5.2 Working Conference on Geometric Modeling for CAD Applications,
May 12–16, 1986, Rensselaerville, New York, North-Holland, Amsterdam, 1988, pp. 199–213.

112. Toth, D. L.: On Ray Tracing Parametric Surfaces, Computer Graphics 19 (3) (1985), pp. 171–
179.

113. Tuohy, S. T., Maekawa, T., Shen, G., and Patrikalakis, N. M.: Approximation of Measured Data
with Interval B-Splines, Computer-Aided Design 29 (11) (1997), pp. 791–799.

114. Von Herzen, B., Barr, A. H., and Zatz, H. R.: Geometric Collisions for Time-Dependent
Parametric Surfaces, Computer Graphics 24 (4) (1990), pp. 39–48.

115. Wallner, J., Krasauskas, R., and Pottmann, H.: Error Propagation in Geometric Constructions,
Computer-Aided Design 32 (11) (2000), pp. 631–641.

116. Wolfe, M. A.: A Modification of Krawczyk’s Algorithm, SIAM Journal on Numerical Analysis
17 (3) (1980), pp. 376–379.

117. Wolfe, M. A.: On Bounding Solutions of Underdetermined Systems, Reliable Computing 7 (3)
(2001), pp. 195–207.

244 YAN WANG AND BARTHOLOMEW O. NNAJI

118. Yamaguchi, Y. and Kimura, F.: A Constraint Modeling System for Variational Geometry, in:
Wozny, M. J., Turner, J. U., and Preiss, K. (eds), Geometric Modeling for Product Engineer-
ing, IFIP WG 5.2/NSF Working Conference on Geometric Modeling, September 18–22, 1988,
Rensselaerville, New York, North-Holland, Amsterdam, 1990, pp. 221–233.

119. Yamamura, K.: An Algorithm for Representing Functions of Many Variables by Superpositions
of Functions of One Variable and Addition, IEEE Transactions on Circuits and Systems—I:
Fundamental Theory and Application 43 (4) (1996), pp. 338–340.

120. Zhang, D., Li, W., and Shen, Z.: Solving Underdetermined Systems with Interval Methods,
Reliable Computing 5 (1) (1999), pp. 23–33.

121. Zuhe, S. and Wolfe, M. A.: On Interval Enclosures Using Slope Arithmetic, Applied Mathe-
matics and Computation 39 (1) (1990), pp. 89–105.

