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Abstract 
The importance of integrated computational materials engineering (ICME) has been 
acknowledged in the past decade. Yet, the reliability and robustness of simulation prediction 
under uncertainty have not been well recognized, given that all simulation models have errors 
involved. Particularly, discrepancy between models and physical world and numerical 
approximation for ease of computation are the major sources of model-form uncertainty. Data 
fitting and model calibration processes introduce additional input uncertainty because of 
systematic and random errors inherited in experimental data. Various uncertainty quantification 
(UQ) methods can be applied in materials simulation to assess the impacts of uncertainty. 
However, given the high cost of simulation mechanisms themselves, efficiency is a challenging 
issue for the application of UQ methods. In this paper, an overview of major UQ methods is 
given. The sources of uncertainty in materials modeling and simulation as well as technical 
challenges are discussed. The application of UQ methods in materials design and simulation is 
reviewed.  

Introduction 
The importance of integrated computational materials engineering (ICME) has been 
acknowledged in the past decade. The major paradigm shift is to provide data-enhanced and 
simulation-based tools so that sound decisions can be made during materials design. One of the 
core factors in decision making is uncertainty. Uncertainty exists universally in a real-world 
setting, and most of the decisions are made under uncertainty. It has been part of science 
development particularly in the domains of philosophy, mathematics, and physics for centuries. 
The quantification of uncertainty led to a new branch of mathematics, known as probability. 
Although different interpretations of probability co-exist and debates between scholars from 
these different schools last for centuries, it has been generally accepted by all that the source of 
uncertainty is our lack of knowledge about future. In the domains of physical sciences, two 
sources of uncertainty are differentiated. One is the lack of perfect knowledge, and the other is 
the random fluctuation of nature. The former is referred to as epistemic by many nowadays, 
whereas the latter is aleatory. Any uncertainty phenomenon we observe is the conflated effect of 
these two components. The differentiation of these two components is pragmatic and mainly for 
decision making practitioners. Epistemic uncertainty often appears as bias or systematic error in 
data or simulation results and is regarded as reducible. Increasing our level of knowledge can 
reduce the epistemic component of uncertainty. In contrast, aleatory uncertainty appears as 
random error and is irreducible. Random fluctuation inherently exists in physical matters such as 
atoms and electrons above absolute zero temperature. When decision makers can differentiate 
the sources of uncertainty, the risk of go/no-go decision is easier to be managed. Gaining more 
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knowledge to reduce the epistemic component of uncertainty will generally lead to more precise 
estimation of the risk, which is the combination of chances and consequences.  

Widely used modeling and simulation (M&S) software packages for ICME, such as density 
functional theory (DFT), molecular dynamics (MD), kinetic Monte Carlo (kMC), dislocation 
dynamics (DD), phase field (PF), and finite-element analysis (FEA), predict physical phenomena 
at different scales and provide decision support for engineers and scientists. The sources of 
uncertainty associated with these tools should be identified if we would like to make robust 
decisions based on the results of these computational tools. All models require certain levels of 
abstraction thus approximation error is inevitable. The causes of these errors are the major 
sources of epistemic uncertainties in M&S tools. The forms of models we choose in the 
approximation lead to model-form uncertainty. In addition, empirical models are derived from 
experiments via data fitting procedure. All measurement has systematic error or bias from device 
or human. This leads to bias in parameters of the fitted model, known as parameter uncertainty. 
Model form uncertainty and parameter uncertainty are the major factors of epistemic uncertainty. 
Needless to say, bias also exists in the data archived in ICME databases which are collected 
through either experiment or simulation.   

Uncertainty propagates through modeling and simulation procedures. M&S tools with imprecise 
and inaccurate inputs will produce uncertain output. Uncertainty quantification (UQ) is the 
process of representing uncertainty and predicting its propagation quantitatively in data and 
models. The predicted uncertainty is used for risk analysis and decision making. Given the 
enormous amount of work that has been done in UQ methods, the purpose of this paper is not to 
provide a comprehensive literature review of UQ methods themselves. Rather, an overview of 
the available methods is provided to assist materials scientists in the ICME community in 
selecting UQ methods for specific problems.  

Sources of Epistemic Uncertainty in Multiscale Modeling and Simulation 
In DFT simulation, the major source of model-form uncertainty is the exchange-correlation 
potential functionals, where many-particle interaction is approximated and simplified in data 
fitting procedure. In addition, the pseudopotentials are typically used to replace the Coulomb 
potential near each nucleus in the calculation, which also introduces approximation error. Error 
is also introduced in the tradeoffs between long-range and short-range dispersions and between 
efficiency and accuracy during the approximation. In the self-consistency calculation of ground 
state energy, the chosen threshold for convergence also introduces numerical error. 

In MD simulation, the major source of model-form and parameter uncertainties is the uncertainty 
associated with the interatomic potential function. As the input of MD, the approximation error is 
naturally propagated to the output prediction through the simulation process. Other sources of 
uncertainties include the cut-off distance in simulation for ease of computation, the imposed 
boundary conditions that may introduce artificial effects, simulation acceleration through 
modified potentials or the application of physically unrealistic high strain rates which intends to 
overcome the time scale limitation of MD, the computational error with different computer 
architecture because of round-offs in floating-point numbers or task distribution and sequencing 
in parallel computation, the systematic error in measurement data that are used in model 
calibration, as well as other unknown biases introduced during the model construction process. 

In kMC simulation, the major sources of epistemic uncertainties are the incomplete event catalog 
and imprecise rates or propensities. The accuracy of kMC simulation depends on the validity of 
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complete knowledge of all possible events. Further more, the true rates in physical world can 
vary along time. They are also dependent on the state of the system. For instance, external loads 
can change the diffusion of defects. Crowding effect exits in reactions where molecules easily 
block reaction channels. In kMC, events are also assumed to be independent for the convenience 
of computation. In reality, they may be correlated. The unknown correlation between events is 
another source of model-form uncertainty.  

In DD simulation models, the major approximations include the empirical modeling of stress 
field, phenomenological rules for dislocation interactions, linear approximations of dislocation 
curves during discretization, and numerical solutions of ordinary differential equations.  

In PF simulation, the major sources of model-form uncertainty are the empirical models of 
energy functionals, and numerical treatment in solving partial differential equations.  

In summary, unknown bias and numerical treatment of any model in simulation introduce 
epistemic uncertainty into the model. As a result, the prediction as the simulation output is 
inherently imprecise. When macroscopic quantities as statistical ensembles are of our interest, 
the output is also inaccurate. Therefore, the simulation output contains both epistemic and 
aleatory uncertainties. Quantification of these uncertainties is necessary to estimate the possible 
extent of inaccuracy and imprecision, establish the confidence in model verification and 
validation, and improve the robustness of simulation prediction.  

The uniqueness of UQ for ICME is the need of considering uncertainty propagation between 
multiple length and time scales in material systems. Uncertainty observed at a larger scale is the 
manifestation of the uncertainty exhibited at a smaller scale. For instance, the non-deterministic 
strengths of material specimens are due to the statistical distributions of grain boundaries and 
defects. The randomness of molecular movement known as Brownian motion is from the 
stochasticity of physical forces and interactions among electrons at quantum level. The ability of 
modeling the propagation of uncertainty between scales will allow us to have a holistic view of 
material systems without the artificial separation of scales. Existing M&S tools simulate material 
systems with the range from nanometers to micrometers. The major challenge of UQ in these 
tools is the information exchange between different models, where assumptions of scales and 
boundaries are made a priori. For model validation, not all physical quantities predicted in 
simulation can be directly observed, especially those at small length and short time scales. 
Measurable quantities at larger scales are typically used to validate models. The assumed or 
derived correlation between the measureable and unobservable also introduces uncertainty, in 
addition to sensing errors. 

UQ Methods 
Various UQ methods have been developed in the past five decades. Most of the UQ approaches 
are developed based on probability theory. Alternative approaches [1] such as evidence theory, 
possibility, interval analysis, and interval probability have also been developed, particularly with 
the differentiation between aleatory and epistemic uncertainty. With respect to the application of 
M&S, the methods can be categorized as intrusive and non-intrusive. Non-intrusive UQ methods 
do not require an internal representation of uncertainty in the M&S tools. The original tools are 
treated as black boxes, and the UQ methods are implemented as parent processes to call M&S 
tools for necessary evaluations. In contrast, intrusive UQ methods require the modification of the 
original M&S software tools so that uncertainty can be represented internally. 
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The commonly used non-intrusive UQ methods include Monte Carlo simulation, global 
sensitivity analysis, surrogate model, polynomial chaos, and stochastic collocation. The common 
intrusive UQ methods include local sensitivity analysis and interval-based approaches.  

Monte Carlo simulation. Monte Carlo (MC) simulation is the earliest attempt to quantify 
uncertainty inherent in physical models, where pseudo random numbers are generated by 
computers and used in evaluating models, although the technique was originally devised to 
numerically calculate deterministic integrals in quantum mechanics. The effectiveness of MC 
relies on how “random” the numbers generated by the pseudo random number generators 
(PRNGs) are. Common implementations of PRNGs as the core of MC to generate uniformly 
distributed numbers include linear congruential method [2, 3] and its various extensions [4, 5, 6, 
7, 8] for longer periods and better uniformity, feedback shift register generators [9, 10], and 
Mersenne twister [11]. Based on the uniformly distributed numbers, random variates that follow 
other distributions can be generated via computational methods such as inverse transform, 
composition, convolution, and acceptance-rejection. When MC is applied to assess the 
uncertainty associated with the inputs of a model, inputs with predetermined distributions are 
randomly generated. They are used to evaluate the model or run the simulation many times. The 
distribution of the resulting outputs is then used to assess the effect of uncertainty, which is 
quantified with statistical moments of different orders.  

The major issue of MC for UQ in ICME is its computational cost. The quality of uncertainty 
assessment depends on how many runs of simulation can be conducted in order to generate 
statistical distributions of outputs and draw meaningful conclusions from the results. If each run 
of simulation is expensive such as DFT and MD, the cost of UQ will be high in the pure 
sampling based approach. In addition, MC also requires the predetermined input distributions 
from which the samples are drawn. If there is a lack of prior knowledge about the distribution 
types or lack of data, the effect of model-form uncertainty needs to be assessed. Second-order 
Monte Carlo (SOMC) [12] is a natural extension of MC to study the uncertainty associated with 
the distributions. In the outer loop, the parameters or types of statistical distributions are 
randomly sampled. In the inner loop, classical MC is applied with each of the sampled 
distributions to study the variability. The SOMC results can provide an overall picture of the 
combined effects from both epistemic and aleatory uncertainty. 

Global Sensitivity Analysis. Sensitivity analysis is a general concept of studying how uncertainty 
in the output of a model is attributed to different portions of uncertainty associated with model 
inputs. Global sensitivity analysis (GSA) [13] quantifies the effect of each individual input as 
well as their joint effects by conducting the analysis of variance. For a given model or simulation 
input-output relation Y=f(X1,…,Xn), by fixing input variable Xi to be xi* one at a time, the 
conditional variance of the output Var(Y|Xi=xi*) is typically less than the original total variance 
Var(Y). The difference between the two is an indicator of the contribution of variance from input 
variable Xi, i.e. the sensitivity of output uncertainty with respect to input Xi. Given all possible 
value of xi*, Var(Y|Xi=xi*) itself is a random variable. Thus, it is easier to use its expectation 
E(Var(Y|Xi)). The deterministic value Var(Y)−E(Var(Y|Xi)) therefore is a metric to quantify the 
importance of input Xi. Similarly, the conditional expectation E(Y|Xi=xi*) is a random variable. 
Equivalently, the value Var(Y)−Var(E(Y|Xi)) is an indicator of the contribution of variance from 
input variable Xi, since Var(Y)=E(Var(Y|Xi))+Var(E(Y|Xi)). The first-order Sobol' sensitivity 
index [14, 15] Si=Var(E(Y|Xi))/Var(Y) is commonly used to quantify the sensitivity of output 
with respect to the uncertainty associated with the ith input variable as the main effect. The 
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interactions among input variables are estimated by second- or higher-order sensitivity indices. 
By fixing two variables Xi and Xj simultaneously at a time, Var(E(Y|Xi,Xj)) measures the joint 
effect of the two variables. The second-order index Sij=Var(E(Y|Xi,Xj))/Var(Y)−Sj−Sj shows the 
interaction effect of the two input variables. Higher-order indices can be defined in a similar way. 
Instead of variance, other moment-independent sensitivity indices [16, 17] were also proposed to 
quantify the importance of input uncertainty based on cumulative distributions or density 
functions directly. 

It should be noted that GSA does not require a known or closed-form mathematical function 
Y=f(X1,…,Xn) for the input-output relation. For black-box simulation, if enough runs of 
simulation are conducted with proper design of experiments to generate statistically meaningful 
pairs of input and output, GSA can be performed by the analysis of variance.  

The limitation of GSA for ICME is similar to the one in MC, since MC sampling is typically 
needed to estimate the variances. Notice that traditional MC only provides the information of 
overall output distributions, whereas GSA can provide fine-grained information of individual and 
compound effects of input variables. Instead of variance, other measure of uncertainty such as 
interval range can also be applied for GSA [18]. This can reduce some computational cost of 
sampling. 

Surrogate models. When the input-output relations in simulation models are too complex or 
unknown, surrogate models can be constructed to approximate the response between inputs and 
outputs. The simplified surrogate models, typically in the form of polynomials or exponentials, 
can improve the efficiency of model evaluations and predictions. For UQ, surrogate models are 
used for sensitivity analysis. The input-output responses can be generated by experimental 
designs such as factorial, fractional factorial, central composite, and orthogonal designs [19, 20, 
21]. The resulting models are generally called response surfaces. They are constructed by 
interpolation or regression analysis of the results from simulations with combinations of input 
variable values. Particularly, to improve the efficiency of sampling from inputs under uncertainty, 
Latin hypercube sampling and Kriging were developed. With the constructed response surfaces, 
performance of new input values and the sensitivity can be predicted without running the actual 
simulation itself. 

To construct response surfaces, the input variable values can be generated via Latin hypercube 
sampling (LHS) [22, 23, 24]. LHS is a stratified sampling strategy for variance reduction where 
samples are taken from the predefined input subspaces. For each subspace, there is an equal 
probability that the input samples are drawn from. The sampling is then performed within each 
of these subspaces so that all subspaces can be covered by much fewer samples than classical 
MC sampling. Thus, the number of samples can be significantly reduced while results are still 
statistically representative. LHS is also extended to dividing subspaces with unequal probabilities, 
and the estimates are weighted by the corresponding probability values [25]. LHS is a versatile 
tool and can be applied to study statistical properties of responses directly without constructing 
response surfaces. The limitation of LHS is that the efficiency of the sampling strategy depends 
on the prior knowledge of probability distributions associated with input variables. When there is 
a lack of knowledge about the types and parameters, the variance reduction technique may 
introduce bias.  

Kriging [ 26 , 27 ], also known as Gaussian process regression, is an interpolation method 
(although regression appears in the name) to find approximated response models between input’s 
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and outputs. It predicts new functional value from some existing ones by modeling the 
underlying but unknown true function as a Gaussian process. The prediction is the weighted 
average of the existing values plus an additive noise as a stationary covariance process with zero 
mean. With the estimated covariance from existing data via maximum likelihood estimation 
(MLE), the new value is predicted. More specifically, the prediction of new functional value y(x) 
at any x is y(x)=f(x)Tβ+ε(x) where f(x)=[f1(x),…,fp(x)] is a vector of p polynomial basis 
functions in the so-called universal Kriging. With m existing inputs x*=(x1,…,xm),  the 
corresponding output vector Y=[y1,…,ym]T, and an m×p matrix of polynomial values 
F=[f1(x*),…,fm(x*)]T, the estimation of functional value at the new position x is y(x)=f(x)Tβ+ε(x), 
where β=(FTR−1F)−1FTR−1Y is the generalized least square estimators of the coefficient β, R is 
the m×m correlation matrix for m data points, and ε(x)=r(x)TR−1(Y−Fβ) is the estimator of 
covariance with r(x) being the correlation function at the new position x. Classical Kriging as the 
interpolation method has been used in surrogate model construction from deterministic 
simulations [28, 29, ] as well as its application in design optimization [30, 31].  

One issue of universal Kriging for UQ is that the functional response with polynomials as bases 
is assumed. Therefore model-form uncertainty is introduced. To improve the accuracy of 
prediction, Bayesian model update approach with multiple models has been proposed [32]. 
Similarly, blind Kriging modifies polynomials with Bayesian variable selection by incorporating 
experimental data [33]. Another issue is that the covariance for the underlying true function is 
unknown. Some correlation functions have to be assumed or fitted from existing data with MLE. 
An important model-form uncertainty thus is introduced. Stochastic Kriging or composite 
Gaussian process [34, 35] were introduced to decompose the covariance into two components. 
One covariance process is from the underlying true function, whereas the other is from 
experimental data. This approach allows for the decomposition of model-form uncertain. 
Nevertheless, the assumption of the unknown covariance of the two Gaussian processes still has 
to be made.  

Polynomial chaos expansion. Polynomial chaos expansion (PCE) [36, 37, 38] approximates 
random variables in functional or reciprocal space with orthogonal polynomials as bases. 
Different polynomials are available for different probability distributions. Orthogonality ensures 
the efficiency of computation and ease of truncation error quantification. However, efficiency is 
still a challenge for PCE. For instance, solving a stochastic differential equation is reduced to 
solving many deterministic differential equations. The efficiency of computation is directly 
related to the truncation, which also depends on types of distributions and the corresponding 
polynomials. Some distributions such as those with long and heavy tails cannot be efficiently 
modeled using PCE approximation. 

Stochastic collocation. When the number of input parameters for simulation models is very high, 
such as hundreds, the direct construction of the high dimensional response surface will become 
inefficient. Stochastic collocation [39, 40] is an approach to alleviate the curse of dimensionality. 
The main idea is to choose the sampling positions of input wisely for functional evaluations in 
conjunction with the orthogonal polynomials in the problem solving process (i.e. partial 
differential equation with random inputs) so that a much sparser grid can be used. 

Local sensitivity analysis. Different from GSA, local sensitivity analysis (LSA) studies the effect 
of input uncertainty locally. A straight-forward way is to estimate derivatives of models with the 
finite-difference approach where the difference between two responses is divided by the 
perturbation of inputs. The finite-difference approach is a non-intrusive approach to assess 
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sensitivity. In addition to these direct (forward) methods, adjoint (backward) SA approaches 
were also developed for deterministic simulation based on differential equations [41, 42]. A 
more efficient LSA method that is specific for stochastic simulation is to estimate the derivatives 
of the expected values of output performance, i.e. the expected values of stochastic derivatives or 
gradients, from simulation directly. This can be achieved by either varying output performance 
w.r.t. input parameters as the infinitesimal perturbation analysis [43, 44], or by varying the 
probability measures w.r.t. inputs as in the likelihood ratio method [ 45 , 46 , 47 ]. These 
approaches are intrusive in order to promote efficiency of computation. 

Interval analysis. Interval analysis [48] is a generalization in which interval numbers replace real 
numbers, interval arithmetic replaces real arithmetic, and interval analysis replaces real analysis. 
Interval arithmetic was originally developed to solve the issue of numerical errors in digital 
computation due to the floating-point representation of numbers. Intervals provide a distribution-
neutral form to represent uncertainties and errors in measurement or digital computation. Interval 
probability is an extension of probability theory to include epistemic uncertainty. It is also 
closely related to Dempster-Shafer evidence theory and possibility theory. One drawback of the 
intrusive methods based on intervals is the range of variations can be overestimated and grow 
pessimistically wide based on classical interval arithmetic during propagation. 

UQ in Materials Design and Simulation 
In this section, the application of UQ methods in materials design and simulation is reviewed. 
Chernatynskiy et al. [49] provided a review related to UQ in multiscale simulation. Here, the 
review is focused on the research efforts related to materials simulation, especially those that 
emerged in the most recent years, indicating the rapidly growing interest of UQ for ICME. 

Uncertainty in materials simulation was initially recognized with sensitivity of inter-atomic 
potential selection in MD simulation of solid materials [50, 51], water molecule [52, 53], 
irradiation damage [54], and others, as well as the effect of cut-off radius. Only recently, formal 
UQ methods have been applied. To study the sensitivity of macroscopic properties w.r.t. 
interatomic potential parameters, Jacobson et al. [ 55 ] constructed response surfaces with 
Lagrange interpolation. To construct better interatomic potentials in MD, Frederiksen et al. [56] 
applied Bayesian update with experimental data sets. Cailliez and Pernot [57] as well as Rizzi et 
al. [ 58 ] applied Bayesian model calibration to calibrate interatomic potentials parameters. 
Angelikopoulos et al. [59, 60] showed the applicability of Bayesian model calibration with water 
molecule models. Rizzi et al. [61] applied PCE to study the effect of input uncertainty in MD. 
Cailliez et al. [62] applied Kriging in water molecule MD model calibration. As an intrusive 
approach, Tsourtis et al. [63] developed Langevin dynamics in MD so that the effect of input 
uncertainty is assessed. As another intrusive UQ method, Tran and Wang [64] developed an 
interval based MD mechanism via Kaucher interval arithmetic to assess uncertainty propagation.  

The sensitivity of first-principles simulation was recognized more recently. Mortensen et al. [65, 
66] estimated the distribution of exchange-correlation functional errors from experimental data 
via the Bayesian update approach. Hanke [67] performs local sensitivity analysis of DFT with 
respect to input parameters with finite difference estimation of the first derivative of binding 
energy. Pernot et al. [68] predicted systematic errors associated with the exchange-correlation 
functionals of different crystal structures using regression analysis. He [69] used the stochastic 
Kriging approach and developed efficient and robust first-principles saddle point search 
algorithms where model-form uncertainties of DFT and surrogate are quantified simultaneously. 
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Choi et al. [70] applied response surface model for simulation based robust design of material 
compositions. Koslowski and Strachan [71] studied the local sensitivity of MD, PF, and DD in 
crystal elasticity via perturbation.  

Concluding Remarks 
To facilitate the wide adoption of ICME by academic researchers and industry practitioners in 
materials design, the reliability of simulation should be assessed so that it can provide better 
confidence to the ‘consumers’ of such information about how credible the predictions are. Even 
though it is well recognized that simulation results are very sensitive to model inputs, for 
instance, interatomic potentials and cut-off radius for MD, existing practice of not providing 
uncertainty information gives the perception to the information consumers that modelers are not 
willing to reveal the details and model development tends to be ad hoc. This obviously hinders 
the adoption of ICME methods. On the other hand, simulation practitioners’ unwillingness to 
perform UQ for their models is a reflection of the lack of understanding of uncertainty in ICME 
research community. It is most likely because of their perception that uncertainty is equivalent to 
error-prone and unscientific. Therefore, researchers of UQ methodology must reach out to 
educate and fill this knowledge gap. Much more work still needs to be done to explore the 
potential of UQ to improve ICME methods and tools. 
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