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Abstract

Phase �eld method (PFM) is a simulation tool to predict the microstructural evolution during

solidi�cation and helpful to establish the process-structure relationship for alloys. The robustness

of the relationship however is a�ected by model-form and parameter uncertainties in PFM. In

this paper, the uncertainty associated with the thermodynamic and process parameters of PFM

is studied and quanti�ed. Surrogate modeling is used to interpolate four quantities of intere-

sts (QoIs), including dendritic perimeter, area, primary arm length, and solute segregation, as

functions of thermodynamic and process parameters. A sparse grid approach is applied to miti-

gate the curse-of-dimensionality computational burden in uncertainty quanti�cation. Polynomial

chaos expansion is employed to obtain the probability density functions of the QoIs. The e�ect

of parameter uncertainty on the Al-Cu dendritic growth during solidi�cation simulation are in-

vestigated. The results show that the dendritic morphology varies signi�cantly with respect to the

interface mobility and the initial temperature.
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1 Introduction

Phase �eld method (PFM) is a widely used simulation tool for studying the evolution of microstruc-

tures during solidi�cation. The microstructure evolution, or more speci�cally the dendritic growth

along time, is modeled, and the characteristics of microstructures can be predicted. Thus the process-

structure relationship for solidi�cation can be established via simulation. Uncertainty quanti�cation

(UQ) however plays a critical role in using the predicted structure-property relationship for process

design, given the model-form and parameter uncertainties in PFM. Model-form uncertainty is due

to simpli�cation, approximation, and subjectivity during the modeling process, whereas parameter

uncertainty is the result of model calibration.

There are various sources of model-form uncertainty in PFM. Simpli�cations are the major

ones. First, solidi�cation is a complex physical process which requires a multi-physics approach

to model the dynamics of thermal distributions, velocity and pressure of �uid �ows, latent heat of

phase transition, and thermoelectric current, which all a�ect the nucleation and growth of grains

[1]. PFM itself however only provides a simpli�ed view of the physics with various assumptions.

Uncertainty thus arises from the separation of physics. Second, in a complete solidi�cation model,

multi-scale phenomena need to be considered, including atomic clustering and crystallization in

nucleation, as well as liquid-solid interface mobility at the atomistic scale. Existing PFMmodels focus

on mesoscale and use thermodynamics nucleation models in combination with empirical methods.

Similarly, the interface mobility is usually simpli�ed to be constant and temperature-independent

with empirical values. The dentritic growth and morphology in solidi�cation can be fairly unstable

and caused by many factors such as impurities as nucleation seeds, locally trapped supercooled

liquid, surface tension, interfacial anisotropy, interface mobility, and others. The separation of

scales introduces model-form uncertainty. Model-form uncertainty also comes from approximations.

First, truncations are always applied in the formulation of partial di�erential equations for complex

physics during mathematical modeling, which keep equations at low integer orders. Truncations are

also applied in functional and reciprocal spaces during the computational modeling process. Second,

numerical treatment in solving the equations introduces additional approximation and discretization

errors which lead to numerical instability, such as von Neumann instability in the explicit time-

integration scheme. Particularly for PFM, the di�use interface thickness in the simulation model is

typically two orders of magnitude higher than the physical interface thickness, which also introduces
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numerical errors, although anti-trapping current is usually introduced to eliminate the numerical

solute trapping. In addition, model-form uncertainty in PFM can be the bias introduced with

subjective choices of free energy functions with di�erent forms of multi-well and multi-obstacle for

di�erent phases.

Parameter uncertainty of PFM is introduced during the model calibration process. First, PFM

often relies on computational thermodynamics methods (e.g., CALPHAD), molecular dynamics, and

�rst-principles calculations for phase equilibrium thermodynamic parameters. The model-form and

parameter uncertainties from these models propagate and become the parameter uncertainty of the

PFM model. Second, for empirical methods where model parameters are adjusted so that predictions

match experimental observations, uncertainty originated from the systematic and random errors in

experimental measurements propagates to the PFM model as the parameter uncertainty.

Given the various sources of uncertainty in PFM, the accuracy and robustness of predictions

on dendritic growth and microstructures are the major challenges in the investigation of process-

structure-property linkages based on simulations. When the linkages are applied to process design

and optimization, uncertainties need to be taken into account for robustness. In this study, we

focus on the parameter uncertainty in PFM, particularly the e�ects of process parameters and

thermodynamic parameters associated with materials. Surrogate based UQ methods including sparse

grid and polynomial chaos expansion are applied here. Note that model-form uncertainty is mainly

epistemic, whereas parameter uncertainty is a combination of epistemic and aleatory ones. The

study of model-form uncertainty can be based on probabilistic and non-probabilistic UQ methods.

UQ for materials modeling has attracted research attentions in recent years [2, 3, 4]. Particu-

larly at atomistic scale, the major sources of model-form and parameter uncertainty in �rst-principles

density functional theory (DFT) include the exchange-correlation functionals, pseudopotentials and

nonzero temperature approximations, as well as calibration errors [5, 6]. UQ methods such as Bay-

esian error estimation [7], sensitivity analysis [8], and Gaussian process [9, 10] have been applied to

quantify the uncertainty associated with energy calculation in DFT. The major sources of uncertainty

in molecular dynamics are inaccurate inter-atomic potentials and the bias introduced in simulated

small sizes and short time scales. UQ methods such as polynomial chaos expansion [11, 12], statis-

tical regression [13], Bayesian calibration [14, 15, 16, 17, 18], interval bound analysis [19, 20], and

local sensitivity analysis and perturbation [21, 22] have been applied to quantify simulation errors.
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The uncertainty in kinetic Monte Carlo simulation is mainly due to event independence assumption,

incomplete knowledge of event catalog, and imprecise kinetic rates. Random set sampling approach

[23] was applied to quantify the prediction errors. In addition, some UQ issues which are unique

in materials modeling, such as cross-scale model validation [24] and cross-scale calibration [25] with

model-form discrepancy, still require further studies. Note that the model-form and parameter un-

certainties of the above atomistic models can propagate to mesoscale PFM models as parameter

uncertainty when the atomistic models are used to estimate and calibrate the PFM parameters.

In PFM simulation, the instability of morphology prediction is caused by both model-form and

parameter uncertainties. To mitigate the e�ect of model-form uncertainty due to missing physics and

information, stochastic [26, 27] and fractional order di�erential equations [28, 29] can be introduced.

Empirical model adjustment such as anti-trapping current term [30] can be added. In this paper, we

focus on the e�ect of parameter uncertainty. The uncertainty e�ects of process and thermodynamic

parameters on the microstructures of Al-4wt%Cu binary alloy during solidi�cation simulation are

studied. The microstructures are quanti�ed by four quantities of interest (QoIs) including dendritic

area, dendritic perimeter, the segregation of Cu at solid-liquid interface, and the length of primary

arm of dendrite. An image processing pipeline is utilized to automatically quantify the variations

of the four aforementioned QoIs. The sparse grid (SG) method is used to interpolate these QoIs in

high-dimensional input space and to reduce the computational burden of performing a large number

of PFM simulations. The representative dendritic morphology corresponding to the SG nodes clearly

demonstrates the impact of the input parameters on the dendritic growth. The dendritic morphology

varies signi�cantly with respect to the interface mobility Mφ, which is a thermodynamic parameter,

and the initial temperature T0, which is a process parameter. The polynomial chaos expansion

(PCE) framework is employed to quantify the uncertainty associated with the QoIs, where the

process parameters are assumed to be deterministic and controllable, whereas the thermodynamic

parameters are assumed to be random. The UQ study provides insights of the robustness in the

process-structure relationship for Al-4wt%Cu binary alloys.

In the remainder of the paper, Section 3 introduces the formulation of SG for high-dimensional

interpolation, and brie�y discusses the formulation of PCE framework in a UQ problem. Section 4

describes the details about the PFM to study the dendritic evolution, as well as the automatic post-

processing pipeline, in which four physical QoIs are extracted and studied as functions of process
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and thermodynamic parameters. Section 5 analyzes the UQ results for two separate cases. In the

�rst case (Section 5.1), the QoIs are represented as high-dimensional interpolation quantities and the

one-at-a-time variations of the QoIs with respect to input parameters are investigated. In the second

case (Section 5.2), the thermodynamic parameters are treated as random inputs, and the probability

density functions (PDFs) of the QoIs at di�erent values of process parameters are generated. In

Section 6, the results are discussed. Section 7 concludes the paper.

2 Background

2.1 Instability nature of dendritic growth and numerical stability of phase �eld

formulation

Model-form and parameter uncertainties in PFM can lead to perturbation and inaccuracy of dendritic

morphology predictions. Dendritic growth is by nature an unstable phenomenon. During the cooling

process, it is possible for a material to remain in its (thermodynamically metastable) liquid state even

below the melting temperature. The solidi�cation process can occur homogeneously after su�cient

cooling, or heterogeneously by a nucleated seed within the supercooled liquid [31]. The later one

induces an unstable dendritic growth. The solidi�cation can be divided into either a stable or unstable

process. In a stable solidi�cation process or Stefan problem, the kinetic mobility and surface tension

are ignored, resulting in a reduced perturbation on the interface. When the heat is conducted away

from the solid-liquid interface and the surface tension and kinetic mobility cannot be neglected,

the solidi�cation becomes unstable. When the undercooling is large enough, the dendritic growth

becomes dominant. During unstable dendritic growth, any statistic �uctuations can be ampli�ed,

which re�ects in the formation of secondary arms. Jaafar et al. [31] provides a comprehensive review

on dendritic growth instability, including Mullins-Sekerka [32] and interfacial instabilities, as well

as the history and evolution of Gibbs-Thomson condition. The interfacial anisotropy, due to the

presence of the crystal lattice in solid phase, also plays an important role in the dendritic side-

branching. Glicksman [33] noted the promotion of dendritic side-branching is rooted from applying

the anisotropic of Gibbs-Thomson condition to an interface with both strong shape anisotropy and

crystal's energy anisotropy, resulting in a pulsatile tip motion.

To simulate solidi�cation, methods of front tracking, enthalpy, lever set, cellular automaton,
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and phase �eld have been developed. PFM is the most used one and regarded as the most accurate

method, even though it is computationally more expensive than the other. Nevertheless, model errors

in PFM can cause instability of simulated dendritic growth, exhibited as the interfacial, capillary, and

chemical instabilities. Model-form errors are from the derivation of the partial di�erential equations,

and numerical treatment in solving them. Some research e�orts have been done to improve the

numerical stability. Karma [34] proposed a PFM formulation that uses a thin-interface and added an

anti-trapping current term to model the temperature jump across the interface and correct the heat

conservation and the surface di�usion at the interface for binary dilute alloys. Kim [35] extended

the method of Karma [34] by generalizing the anti-trapping term for arbitrary multicomponent

alloys. Tianden et al. [36] and Eiken et al. [37] proposed a thermodynamically consistent PFM for

multiphase and multicomponent systems.

2.2 Sensitivity study of uncertainty on phase-�eld simulation of dendritic growth

To model the interface stability because of model-form uncertainty, some approaches to enhance the

PFM models have been proposed. One of the perturbation theories of interface stability is called

Mullins-Sekerka instability [38, 39, 32], which determines if a small-amplitude perturbation will be

enhanced in time and destabilize the interface, or decay and leave the initial interface unchanged

and morphologically stable. The time dependent marginal stability theory developed by Langer and

Muller-Krumbhaar [40, 41, 42] can be used as a criterion for selection of the operating state of the

dendrite tip, which is related to the dendrite tip radius and velocity.

Sensitivity analysis (SA) has been applied in PFM to understand the e�ect of input parame-

ters on simulation results. Xing et al. [43] investigated the columnar dendritic growth competition

with respect to the orientation in Al-4wt%Cu alloy. Takaki et al. [44] proposed a coupled phase

�eld-lattice Boltzmann model to study the e�ect of solute expansion factor on dendritic morpho-

logy, tip velocity, and concentration of the Al-4wt%Cu for dendritic growth with natural convection.

Qi et al. [45] studied the e�ects of di�erent natural convection schemes and solid motion on the

dendritic tip growth velocity of the Al-4wt%Cu alloy using PFM and computational �uid dynamics

and concluded that when the dendrite is mobile, the tip growth velocity is sensitive to the natural

convection schemes. Liu and Wang [46, 1] proposed a framework called phase �eld and thermal

lattice Boltzmann method to investigate the e�ects of cooling rate and latent heat on the dendritic
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morphology, concentration, and temperature �elds of Al-4wt%Cu alloy. Boukellal et al. [47] con-

ducted a SA of the solute composition and the average distance between two nuclei on the dendritic

growth of Al-Cu binary alloy using PFM, and proposed a scaling laws for the tip velocity. Fezi and

Krane [48] developed a simple 1D solidi�cation model and conducted a uncertainty analysis using

Smolyak sparse grid on the positions of the liquidus, the solidus, and the solidi�cation time of alloy

625, with 7 input parameters. Fezi and Krane [49] conducted a sensitivity analysis on the solidi-

�cation of Al-4.5wt%Cu alloy, with respect to di�erent secondary dendritic arm spacing, equiaxed

particle size, and solids fraction in mushy zone, where the QoIs are the macrosegregation number,

the Weibull deviation of positive segregation, and the volume fraction of the ingot. Fezi and Krane

[50, 51] investigated the e�ects of microstructural model parameters, thermal boundary conditions,

and material properties on the macrosegregation levels and solidi�cation time, and concluded that

the macrosegregation are sensitive to the dendrite arm spacing in the mushy zone. Plotkowski and

Krane [52] analyzed three two-dimensional Al-4.5wt%Cu solidi�cation models with 7 and 9 input

parameters that account for both model-form and parameter uncertainties. However, in existing

work, the combined e�ects of uncertainties associated with thermodynamic and process parameters

upon the dendritic morphology using PFM has not been studied. More importantly, the uncertainty

in the process-structure relationship for dendritic growth has not been quanti�ed systematically.

3 Stochastic collocation for uncertainty quanti�cation

In this section, we brie�y summarize the stochastic collocation technique, which is employed to solve

the UQ problem. In this approach, the SG and PCE methods are combined to e�ciently quantify

the uncertainty of the QoIs.

3.1 Sparse grid method for high-dimensional interpolation

To mitigate the curse of dimensionality, the SG technique is employed to interpolate the QoIs in the

high-dimensional domain. We follow the formulation in [53, 54], and use global Lagrange polynomials

as basis functions. To be accurate, the interpolating function often needs to be smooth, which is a

reasonable assumption for the simulation considered herein. The accuracy of SG method has been

studied extensively by Bungartz et al. [55] and Nobile et al [56].
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Let f be the function, i.e. QoI, to be interpolate. Assume f is de�ned on the domainD = [−1, 1]d.

Given ensembles {f(xj)}mj=1, the interpolation approach �nds an approximation U(f) of f that ful�lls

the condition U(f)(xj) = f(xj), ∀j = 1, . . . ,m. More speci�cally, we seek

U(f)(x) =
m∑
j=1

f(xj)Lj(x), (1)

where Lj(x) are the Lagrange polynomials

Lj(xi) = 1 if i = j, Lj(xi) = 0 if i 6= j, 1 ≤ i, j ≤ m,

whose explicit formulae are known. Interpolation in one dimension (d = 1) is well-studied. To extend

the method to multiple dimensions (d > 1), we need to employ certain tensor product rule. The full

tensor product formula is perhaps the most straightforward, as

Um1 ⊗ · · · ⊗ Umd(f) =

m1∑
j1=1

· · ·
md∑
jd=1

f(xj1 , . . . , xjd) · (Lj1 ⊗ · · · ⊗ Ljd). (2)

Here, Umi(f) is one-dimensional Lagrange interpolation in the i-th dimension with m = mi, so

the rule just employs univariate interpolations and then �lls up D dimension by dimension. Albeit

simple, a major drawback of full tensor product is that the total number of points grows very fast

in high dimensions.

An alternative and more e�cient approach is Smolyak sparse grids interpolation, based on the

work by Smolyak in [57]. Instead of taking the full tensor product in Eq. (2), the Smolyak interpo-

lation takes a subset of the full tensor construction described as

A(q, d) =
∑

q−d+1≤|i|≤q

(−1)q−|i| ·
(
d− 1

q − |i|

)
· U i1 ⊗ · · · ⊗ U id . (3)

see [58], where q ≥ d is an integer denoting the level of the construction. To compute the operator

A(q, d), one needs to evaluate f on the set of points

H(q, d) =
⋃

q−d+1≤|i|≤q

(
X i1 × · · · × X id

)
, (4)

where X i = {xi1, . . . , ximi
} ⊂ [−1, 1] is the collection of nodes used by the univariate interpolating

operator U i. This set is a much smaller subset of those required by the full tensor product rule.
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In this paper, we opt to use Clenshaw-Curtis points [59], which are the roots of Chebyshev

polynomials and speci�ed as

xij = − cos
π(j − 1)

mi − 1
, j = 1, . . . ,mi, (5)

where xi1 = 0 if mi = 1, and mi = 2i−1 + 1 for i > 1. This rule is very popular in high-dimensional

interpolation, due to its stability as well as nested property, i.e., the lower-level grids are subsets of

the higher-level grids. Figure 1a and Figure 1b show two examples of 2D and 3D SG, respectively,

where the Clenshaw-Curtis nodes are used to construct the SG. To see the reduction in function

ensembles by using SG, we compare the number of nodes required by SG and full tensor grid in

Table 1. It is possible to construct the interpolation of QoIs with other choices of quadrature rules

(e.g., Gauss rules, greedy rules) as well as basis functions (e.g., piecewise polynomials, wavelets). We

do not attempt to optimize such choices in this paper and will investigate this in future study.

(a) q = 6, Clenshaw-Curtis nodes; d = 2; number

of nodes per main dimension: 65; total number

of nodes: 321

(b) q = 6, Clenshaw-Curtis nodes; d = 3; number

of nodes per main dimension: 321; total number

of nodes: 1073;

Figure 1: Example of SG in 2D (a) and 3D (b) for high dimensional interpolation.

3.2 Non-intrusive spectral projection for uncertainty propagation

We rely on spectral representation of uncertainty using the PCE framework and the non-intrusive

spectral projection method to compute the PDFs of QoIs. PCE [60, 61] is one of the most widely

used UQ methods to propagate uncertainty in physical models and computational simulations. Let

θ be the random event in a sample space Ω with probability measure P , and f(θ) be a second

order stochastic process. PCE is a means of representing f parametrically through a set of random
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Table 1: The number of nodes used by SG and full tensor grid.

Level d = 3 d = 5 d = 7

SG full grid SG full grid SG full grid

0 1 1 1 1 1 1

1 7 27 11 243 15 2,187

2 25 125 61 3,125 113 78,125

3 69 729 241 59,049 589 4,782,969

4 177 4,913 801 1,419,857 2,465 410,338,673

5 441 35,937 2,433 39,135,393 9,017 4.26e+10

6 1,073 274,625 6,993 1,160,290,625 30,241 4.90e+12

7 2,561 2,146,689 19,313 3.57e+10 95,441 5.94e+14

8 6,017 16,974,593 51,713 1.12e+12 287,745 7.40e+16

variables {ζi(θ)}di=1, d ∈ N:

f(θ) =

∞∑
j=0

f̂jΦj(ζ(θ)), (6)

where Φj(ζ(θ)) are orthogonal polynomials in terms of ζ := {ζi(θ)}di=1, i.e.,

〈ΦiΦj〉 6= 0 if i = j, 〈ΦiΦj〉 = 0 if i 6= j,

Here, f̂j are the coe�cients to be computed, and 〈ΦiΦj〉 :=

∫
θ∈Ω

Φi(ζ)Φj(ζ)dP (θ). In practice, the

number of terms in (6) are truncated after a �nite term P , where P + 1 =
(p+ d)!

p!d!
, p is the order of

PCE, and d is the dimensionality of the problem, resulting in an approximation for �nite PCE, as

f(θ) ≈
P∑
j=0

f̂jΦj(ζ). (7)

The PCE coe�cients f̂j is determined by projection of (7) onto the polynomial basis {Φj} as

f̂j =
〈fΦj〉
〈Φ2

j 〉
. (8)

To compute the PCE coe�cients, we apply a non-intrusive spectral projection approach [62,

63, 64] to evaluate the deterministic high-dimensional integrals in the numerators and denominators
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of (8). In short, we compute the value of basis functions at the Clenshaw-Curtis nodes to obtain

the PDFs using Legendre-Uniform quadratures and interpolate the QoIs through the interpolation

process.

4 Phase-�eld model for dendritic growth simulation

In this paper, we adopted the PFM developed from Steinbach et al. [65, 36, 37], which have been

validated against experimental observations [65], where the antitrapping current term is added to

ensure equal chemical potential between liquid and solid phases.

The essential component of PFM is a free energy functional that describes the kinetics of phase

transition. The free energy functional

F =

∫
Ω

(fGB + fCH)dV (9)

is de�ned with an interfacial free energy density fGB and a chemical free energy density fCH in a

domain Ω.

A continuous variable named phased �eld φ (0 ≤ φ ≤ 1) indicates the fraction of solid phase in

the simulation domain during the solidi�cation process, and the fraction of liquid phase is φl = 1−φ.

The interfacial free energy density is de�ned as

fGB =
4σ∗(n)

η

{
|∇φ|2 +

π2

η2
φ(1− φ)

}
, (10)

where σ∗(n) is the anisotropic interfacial energy sti�ness, η is the interfacial width, n =
∇φ
|∇φ|

is the

local normal direction of the interface. The anisotropic interfacial energy sti�ness is de�ned as

σ∗ = σ +
∂2σ

∂θ2
= σ∗0[1− 3ε∗ + 4ε∗(n4

x + n4
y)], (11)

where σ is the interfacial energy, θ = atan

(
ny
nx

)
indicates the orientation, σ∗0 is the prefactor of

interfacial energy sti�ness, and ε∗ is the anisotropy strength of interfacial energy sti�ness, which

models the di�erence between the primary and secondary growth directions of dendrites.

The chemical free energy is the combination of bulk free energies of individual phases as

fCH = h(φ)fs(Cs) + h(1− φ)flCl + µ[C − (φsCs + φlCl)], (12)
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where Cs and Cl are the compositions of solutions as weight percent (wt%) in solid and liquid phases

respectively, which is the amount of solute dissolved in a speci�c amount of solution. C is the overall

composition of a solution in the simulation domain. fs(Cs) and fl(Cl) are the chemical bulk free

energy densities of solid and liquid phases respectively. µ is the generalized chemical potential of

solute introduced as a Lagrange multiplier to conserve the solute mass balance C = φsCs + φlCl.

The weight function

h(φ) =
1

4

[
(2φ− 1)

√
φ(1− φ) +

1

2
asin(2φ− 1)

]
(13)

provides the coe�cients associated with solid and liquid bulk energies.

The evolution of the phase �eld is described by

φ̇ = Mφ

{
σ∗(n)

[
∇2φ+

π2

η2
(φ− 1

2
)

]
+
π

η

√
φ(1− φ)∆G

}
, (14)

where Mφ is the coe�cient of interface mobility, and the driving force is given by

∆G = ∆S(Tm − T +mlCl), (15)

where ∆S = −1 · 106J ·K−1 is the entropy di�erence between the solid and liquid phase, Tm is the

melting temperature of a pure substance, T is the temperature �eld, and ml is slope of liquidus. For

simpli�cation, the interface mobility is assumed to be constant in this work.

The evolution of composition variable is modeled by

Ċ = ∇ · [Dl(1− φ)∇Cl] +∇ · jat, (16)

where k =
Cs
Cl

is the local partition coe�cient and Dl is the di�usion coe�cient of liquid. Further-

more, jat is the anti-trapping current and de�ned as

jat =
η

π

√
φ(1− φ)(Cl − Cs)φ̇

∇φ
|∇φ|

(17)

which is to eliminate the unphysical solute trapping during the interface di�usion process by removing

the anomalous chemical potential jump [35, 66] so that simulations can be done more e�ciently with

the simulated interface width larger than the physical one. The PFM are solved mainly based on

Equation 14 and Equation 16.

The open-source PFM toolkit OpenPhase [67] is used to simulate the two dimensional (2D)

dendritic growth of binary alloy Al-4wt%Cu. Table 1 shows the physical properties of Al-4wt%Cu
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alloy. In all simulation runs, the grid spacing is ∆x = 0.5µm, the time step is ∆t = 2 · 10−5s, and

the simulation period is 0.12 s. The length and width of the simulated domain are Lx = 150µm

and Ly = 150µm in x- (< 1, 0, 0 >) and y-directions (< 0, 1, 0 >), respectively. In general, the

interface width should be at least 3∆x to guarantee the convergence of simulation. Therefore, the

interface width is η = 5∆x = 2.5µm. The initial diameter D should be larger than the interface

width and D = 5µm is determined in this work. The initial position of the seed is at the center of

the simulation box. The initial concentration of Cu is C0 = 4wt% for the liquid melt. For phase

�eld φ and concentration C, zero Neumann conditions are set at all boundaries.

Table 2 lists the physical parameters of the Al-4wt%Cu alloy concerned in the study. The

dendritic growth of Al-4wt%Cu is investigated through a parametric study of PFM, where the input

parameters are varied, and the QoIs are investigated using an automatic post-processing pipeline.

Table 3 lists the ranges of input parameters and their physical meanings in the PFM study.

The ranges of input parameters are determined based on the values used in other simulation and

experimental studies [68] of solidi�cation. Because the number of samples is limited in the literature,

the parameters used in this work are assumed to be uniformly distributed based on the principle of

maximum entropy.

Table 2: The physical properties of Al-4wt%Cu alloy.

Symbol Physical meaning Value Unit

Tm Melting point of pure Al 933.6 K

ρ Density of liquid 2700 kg/m3

ml Slope of liquidus -2.6 K/wt%

k Partition coe�cient 0.14

Dl Di�usivity of liquid 3.0 · 10−9 m2/s

σ∗0 Prefactor of interfacial energy sti�ness 0.24 J/m2

ε∗ Interfacial energy sti�ness anisotropy 0.35

Mφ Interface mobility 4 · 10−9 m4/(J· s)
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Table 3: Input parameters and their respective ranges.

Symbol Physical meaning Lower bound Upper bound Unit

∂T

∂t
Cooling rate -20 -10 K/s

T0 Initial temperature 915 920 K

σ∗0 Prefactor of interfacial energy sti�ness 0.22 0.26 J/m2

ε∗ Interface anisotropy 0.30 0.40

Mφ Interface mobility 3 · 10−9 5 · 10−9 m4/(J· s)

4.1 Simulation procedure

Figure 2a and Figure 2b show an example of dendritic growth at di�erent snapshots in the 2D PFM

simulations. The primary and secondary dendritic arms are observed. The input parameters listed

in Table 3 have direct impact on the geometry and shape of the dendritic growth. An automatic

post-processing pipeline is devised to extract the QoIs that describe the dendrite.

(a) An example of dendritic growth at timestep

3000.

(b) An example of dendritic growth at timestep

6000.

Figure 2: Dendritic growth of binary alloy Al-4wt%Cu at di�erent snapshots.

A level-seven SG for �ve-dimensional space is constructed based on Clenshaw-Curtis rule [59],

where the nested Chebyshev nodes are chosen. Tasmanian package [69, 70, 71, 72] is used to construct

and evaluate for high-dimensional interpolation. The construction of SG results in 19,313 nodes,
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which correspond to di�erent sets of inputs for the PFM. As shown in Table 1, the use of level-

seven full tensor grid would require 3.57× 1010 nodes for comparable results. At each node, a PFM

simulation is performed, and the QoIs are collected once the simulation is �nished. The process is

automated using Bash/Shell and Python scripts. The mappings from the process parameter space

to the microstructural descriptor space are known to be smooth, as no singularity is expected for

the PFM, and the dendrite is expected to evolve continuously as time advances.

In this work, four QoIs are considered: (1) the perimeter of dendrite Ld, (2) the area of dendrite

Sd, (3) the segregation of Cu at solid-liquid interface κ, and (4) the length of primary arm of dendrite

Pd. Since the microstructure determines the �nal properties of products, it is important to quantify

the morphology of the microstructure. Three QoIs including dendritic perimeter, dendritic area

and primary arm length are good metrics to quantify the morphology of the microstructure. The

segregation of Cu is used to quantify the microsegregation at the interface.

Dendrite growth are strongly related to the grain growth, as both are competitive in nature [73].

Bostanabad et al. [74], Liu et al. [75], Li [76], and Bargmann et al. [77] provided a comprehensive

review for computational microstructure reconstruction, generation, and characterization techniques,

with statistical and deterministic physics-based microstructure descriptors. Dendritic morphology is

highly correlated to the �nal grain microstructure, e.g. grain area and grain aspect ratio. Thus, in

the scope of this paper, three dendritic QoIs related to the grain size, namely the dendritic perimeter,

the dendritic area, and the primary arm length, are considered.

4.2 Dendritic perimeter

The perimeter of the dendrite, denoted as Ld, is the �rst QoI. To compute the perimeter of the

dendrite, the phase �eld composition is extracted after a number of time steps. Figure 3a and Figure

3b present the contours of the dendrite in Al-4wt%Cu binary alloy at di�erent snapshots. The

contours are highlighted around the solid dendrite. A threshold is imposed based on the phase �eld

composition to convert the simulation outputs to gray scale images. Then, the contours are retrieved

from the binary images using Suzuki algorithm [78]. The contour extraction is implemented based

on the OpenCV toolkit [79].
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(a) Dendrite contour at timestep 3000. (b) Dendrite contour at timestep 6000.

Figure 3: Perimeter and area computation of the dendrite in Figure 2 via �nding contour with image

processing. Readers are referred to the online manuscript for color version. Green lines indicate the

contours, whereas black region corresponds the Cu-rich region, and white region corresponds to the

Al-rich region.
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4.3 Dendritic area

The area of the dendrite, denoted as Sd, is the second QoI in this study. The computation of dendritic

area is performed in a similar approach as the dendritic perimeter, in which a phase �eld contour is

extracted based on the phase �eld composition function, as in Figure 3. After a non-self-intersecting

contour of dendrite is extracted, the dendritic area is computed as the contour area through Green

formula. The computation of dendritic area occurs after a �xed number of time steps, based on the

frequency of phase �eld composition outputs of the PFM, and is implemented using the OpenCV

toolkit similarly.

4.4 Cu segregation

In literature, the segregation coe�cient is typically de�ned as the ratio between composition of solid

and that of liquid. This de�nition holds for single-component materials systems. However, for multi-

component materials systems. The de�nition of segregation coe�cient must be de�ned based on one

component. In this case, we de�ne the segregation coe�cient based on Cu.

The segregation of Cu at solid-liquid interface, denoted as κ, is used as the third QoI, and

calculated as

κ =
Cil
Cis

(18)

where Cil and C
i
s are the compositions of liquid and solid phase at the interface, respectively. The

deviation of the segregation coe�cient κ from one determines the amount of actual segregation.

Notice that the segregation of Cu at the interface κ is di�erent from the partition coe�cient k. The

computation of Cu segregation quantity occurs after a �xed number of time steps, based on the

phase �eld composition outputs of the PFM. It has been shown that high Cu segregation indicator

κ promotes the Al2Cu θ intermetallic phase [80] on the grain boundary or inside the grain. The

Al2Cu θ phase is associated with a higher mechanical strength of the material. Thus, κ serves as an

implicit link between structure and property relationship.

4.5 Dendritic primary arm length

The dendritic primary arm length, denoted as Pd, is the fourth QoI. Based on the extracted spatial

phase �eld composition from the PFM simulation, the dendritic primary arm length is computed
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based on the locations of the pixels where Cu-rich phase switches to Al-rich phase along < 1, 0, 0 >

and < 0, 1, 0 > crystallographic directions.

4.6 Mesh convergence study

In order to assess the sensitivity and numerical stability of the implemented PFM, a mesh convergence

study is conducted to ensure that the QoIs do not drastically change with respect to the spatio-

temporal discretization scheme. Figure 4a presents four QoIs along time steps, where independent

runs with di�erent time steps have been performed and post-processed. It is seen that the chosen

time step of 2.0 · 10−5s is stable for all four QoIs. Figure 4b to Figure 4f presents a qualitative

analysis of dendrites using di�erent mesh sizes, 300× 300, 400× 400, 600× 600, and 750× 750, also

showing a numerical stability of QoIs at the chosen mesh size of 300× 300. von Neumann stability

is taken into account to reduce the time-step accordingly, corresponding to the increase in the mesh

size.

(a) Time-step convergence analysis.

(b) 750 (c) 600 (d) 500 (e) 400 (f) 300

Figure 4: Mesh-timestep convergence study.
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5 Numerical Results

In Section 5.1, the QoIs are regarded as functions of process parameters at some �xed values of

thermodynamic parameters, and vice versa. The SG method is employed to expand the QoIs through

high-dimensional interpolation of the input parameters.

In Section 5.2, the PDFs of the QoIs are estimated based on the assumption that the thermody-

namic parameters (σ∗0, ε
∗ and Mphi) are uniformly distributed between the lower and upper bounds

in Table 2. The process parameters, on the other hand, are assumed to be �xed and known. The

PDFs of the QoIs for di�erent �xed values of process parameters are computed numerically.

5.1 QoIs as functions of process and thermodynamic parameters

Figure 5 shows dendritic morphology variations on SG nodes, as functions of process parameters.

Both high cooling rate and low initial temperature promote the overall dendritic growth and the

growth of the secondary dendritic arms. This is because that higher cooling rate and lower initial

temperature result in higher driving force, which promotes the dendritic growth. Meanwhile, faster

dendritic growth causes a higher segregation of Cu at the solid-liquid interface because there is less

time for the solute Cu at the interface to di�use. The initial temperature seems to have a larger

impact on the secondary arm length than the cooling rate. At T0 = 915K, the secondary arms grow

more densely, compared to those at T0 = 920K. To be representative, the dendrite at each node is

�xed at a nominal thermodynamic parameter value.

Figure 6 shows the contour map of four di�erent QoIs as functions of process parameters. The

corresponding dendritic morphology on SG is shown in Figure 5. The dendritic morphology changes

dramatically with respect to the initial temperature. A lower initial temperature causes a higher

undercooling and driving force, which encourages the dendritic growth. The low initial temperature

promotes the dendritic growth in all aspects, particularly the dendrite secondary arm growth. The

secondary arm counts, as well as the dendritic area and perimeter are monotonic in the chosen

bound of the initial temperature [915, 920]K. The cooling rate also has an e�ect on the dendritic

growth. However, qualitatively, the dendritic morphology does not change signi�cantly with respect

to the cooling rate in the chosen bound [-20,-10] K/s, as shown in Figure 5. Quantitatively, higher

cooling rate promotes dendritic growth, as manifested by the dendritic area and dendritic perimeter,
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Figure 5: Representative dendritic morphology on SG as process parameters vary, i.e. cooling rate

and initial temperature. The thermodynamic parameters are �xed at ε∗ = 0.35, σ∗0 = 0.24,Mφ =

4 · 10−9, respectively.
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as shown in Figure 6. However, the initial temperature appears to play a major role in promoting

dendritic growth, as well as morphing the dendrite. Dendrites with more secondary arms have larger

areas and perimeters.

Cu segregation κ is a monotonic function of process parameters, including cooling rate
∂T

∂t
and the initial temperature T0, in the range of study, as shown in Figure 6c. Particularly, the Cu

segregation κ increases with respect to a faster cooling rate and lower initial temperature. The

initial temperature T0 has a dominant e�ect on the Cu segregation κ in the range used. The primary

arm length Pd, as shown in Figure 6d, is a highly nonlinear function of the process parameters, but

appears to be correlated with the initial temperature T0 as well. Lower initial temperature T0 tends

to be weakly associated with higher primary dendritic arm length Pd.

Figure 7 shows the dendritic morphology variation with respect to the thermodynamic parame-

ters, i.e. interface anisotropy ε∗ and interface mobility Mφ. Because interface anisotropy ε
∗ models

the di�erence between the primary and secondary growth directions of dendrites, it has a larger

e�ect on the shape of dendrite than the dendritic growth speed. Therefore, interface anisotropy ε∗

does not a�ect the dendritic growth speed much. Since the interface mobility Mφ is the constant

ratio between dendritic growth velocity and driving force, a higher interface mobility results in fas-

ter dendritic growth. The dendritic morphology varies signi�cantly with respect to the interface

mobility Mφ. Higher interface mobility Mφ promotes the growth of dendrite secondary arms, and

consequently, the dendritic area and the dendritic perimeter. It is noted that there is a small di�e-

rence between Figure 7 and Figure 5 at the center of the dendrites. Particularly, the center of the

dendrites in Figure 5 is more developed than the center of the dendrites in Figure 7. The center

of the dendrites has an impact on the dendritic area and dendritic perimeter. If the center of the

dendrites is well-developed, with substantial secondary arm growth, then the dendritic perimeter

and dendritic area increase. If the center of the dendrites is under-developed, then the dendritic area

and dendritic perimeter decrease.

It is observed that the dendritic area Sd and the dendritic perimeter Pd signi�cantly increase

when the interface mobility Mφ increases. This is because a higher interface mobility results in a

higher growth speed of dendrite. When the initial temperature is low (915K), the dendritic area and

perimeter are positively correlated with the interfacial energy sti�ness. When the initial temperature

is high (920K), which means the undercooling is low, the change of interfacial energy sti�ness has a
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(a) Dendritic area (µm)2 as a function of process

parameters.

(b) Dendritic perimeter (µm) as a function of pro-

cess parameters.

(c) Cu segregation as a function of process para-

meters.

(d) Dendritic primary arm length (µm) as a

function of process parameters.

Figure 6: Dendrite QoIs as functions of process parameters. Other thermodynamic parameters are

�xed at ε∗ = 0.35, σ∗0 = 0.24,Mφ = 4 · 10−9, respectively.
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trivial e�ect on the dendritic area and perimeter. The interface anisotropy ε∗ does not change the

dendritic area Sd and the dendritic perimeter Pd much. Qualitatively, the interface anisotropic ε∗

parameter does not have a signi�cant impact on the dendritic morphology. Quantitatively, as shown

in Figure 8, the dendritic area and dendritic perimeter is sensitively dependent on the interface

mobility Mφ. A small increase of Mφ substantially promotes the dendritic growth.

As illustrated in Figure 8c, the Cu segregation κ generally increases as the interface mobility

Mφ increases. The relationship between κ and Mφ is not strictly monotonic. However, when Figure

8c and Figure 6c are compared, it is seen that the process parameters have stronger e�ects on the

magnitude of Cu segregation than the thermodynamic parameters. The variation bound for κ in

Figure 6c is [10.60,15.40], compared to [12.74,13.28] in Figure 8c.

The dendritic primary arm length Pd is shown to be a nonlinear function of thermodynamic

parameters, as in Figure 8d. However, the variation is fairly mild, as most of the dendrites achieve

roughly the same tip location with di�erent thermodynamic parameters. There is a weak positive

correlation between the interface mobility Mφ and the dendritic primary arm length Pd.

To further visualize the e�ect of all process and thermodynamic parameters on the dendrite,

3D contours of all QoIs, i.e. the dendritic area, dendritic perimeter, Cu segregation, and dendritic

primary arm length, are plotted in Figure 9, Figure 10, Figure 11, and Figure 12, respectively.

The process parameters are further divided into subplot of each �gure, where the cooling rate
∂T

∂t
and the initial temperature T0 are �xed at four corners of the SG, corresponding to the lower and

upper bounds of each parameters. The QoIs are then plotted as functions of three thermodynamic

parameters, i.e. prefactor of interfacial energy sti�ness σ∗0, interface anisotropy ε∗, and interface

mobility Mφ, using 3D contour plots.

Figure 9 shows the dendritic area variation as a function of thermodynamic parameters. Initial

temperature T0 plays a major role in dendritic growth, as slightly lower temperature signi�cantly

accelerates dendritic area. An increase in interface mobility Mφ corresponds to an increase in den-

dritic area. Figure 10 shows the dendritic perimeter variations as a function of input parameters.

The dendritic area and dendritic perimeter are highly correlated, as shown in Figure 9 and Figure

10. Figure 11 plots the Cu segregation κ, showing a mild variation with respect to thermodynamic

parameters. Namely, lower interface anisotropy ε∗ and higher interface mobility Mφ generally result

in higher κ. However, as shown previously in Figure 6c, the Cu segregation κ is more sensitive to
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Figure 7: Dendritic morphology at di�erent thermodynamic parameters on SG, where other para-

meters are �xed at
∂T

∂t
= −15K/s, T0 = 917.5, and σ∗0 = 0.24.
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(a) Dendritic area (µm)2 as a function of thermo-

dynamic parameters.

(b) Dendritic perimeter (µm) as a function of

thermodynamic parameters.

(c) Cu segregation as a function of thermodyna-

mic parameters.

(d) Dendritic primary arm length (µm) as a

function of thermodynamic parameters.

Figure 8: Dendrite QoIs as functions of thermodynamic parameters. Other process parameters are

�xed at
∂T

∂t
= −15K/s, T0 = 917.5, and σ∗0 = 0.24.
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the initial temperature T0, compared to other thermodynamic parameters. It has been shown that

high κ promotes the θ phase Al2C on the grain boundary or inside the grain, consequently resulting

in a higher mechanical strength of material. Figure 12 presents the dendritic primary arm length,

showing a mild dependence on the initial temperature T0 and the interface mobilityMφ, as in Figure

6d and Figure 8d, respectively. Readers are referred to the online version of color plots.

(a) Dendritic area as a function of thermodyn-

amic parameters. Cooling rate
∂T

∂t
and initial

temperature T0 are �xed at -10K/s and 915K, re-

spectively.

(b) Dendritic area as a function of thermodyn-

amic parameters. Cooling rate
∂T

∂t
and initial

temperature T0 are �xed at -20K/s and 915K, re-

spectively.

(c) Dendritic area as a function of thermodyn-

amic parameters. Cooling rate
∂T

∂t
and initial

temperature T0 are �xed at -10K/s and 920K, re-

spectively.

(d) Dendritic area as a function of thermodyn-

amic parameters. Cooling rate
∂T

∂t
and initial

temperature T0 are �xed at -20K/s and 920K, re-

spectively.

Figure 9: 3D contours of dendritic area as a function of thermodynamic parameters, with di�erent

�xed values of process parameters.
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(a) Dendritic perimeter as a function of thermo-

dynamic parameters. Cooling rate
∂T

∂t
and initial

temperature T0 are �xed at -10K/s and 915K, re-

spectively.

(b) Dendritic perimeter as a function of thermo-

dynamic parameters. Cooling rate
∂T

∂t
and initial

temperature T0 are �xed at -20K/s and 915K, re-

spectively.

(c) Dendritic perimeter as a function of thermo-

dynamic parameters. Cooling rate
∂T

∂t
and initial

temperature T0 are �xed at -10K/s and 920K, re-

spectively.

(d) Dendritic perimeter as a function of thermo-

dynamic parameters. Cooling rate
∂T

∂t
and initial

temperature T0 are �xed at -20K/s and 920K, re-

spectively.

Figure 10: 3D contours of dendrite parameter as a function of thermodynamic parameters, with

di�erent �xed values of process parameters.
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(a) Cu segregation as a function of thermodyn-

amic parameters. Cooling rate
∂T

∂t
and initial

temperature T0 are �xed at -10K/s and 915K, re-

spectively.

(b) Cu segregation as a function of thermodyn-

amic parameters. Cooling rate
∂T

∂t
and initial

temperature T0 are �xed at -20K/s and 915K, re-

spectively.

(c) Cu segregation as a function of thermodyn-

amic parameters. Cooling rate
∂T

∂t
and initial

temperature T0 are �xed at -10K/s and 920K, re-

spectively.

(d) Cu segregation as a function of thermodyn-

amic parameters. Cooling rate
∂T

∂t
and initial

temperature T0 are �xed at -20K/s and 920K, re-

spectively.

Figure 11: 3D contours of Cu segregation as a function of thermodynamic parameters, with di�erent

�xed values of process parameters.
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(a) Dendritic primary arm length as a function

of thermodynamic parameters. Cooling rate
∂T

∂t
and initial temperature T0 are �xed at -10K/s

and 915K, respectively.

(b) Dendritic primary arm length as a function

of thermodynamic parameters. Cooling rate
∂T

∂t
and initial temperature T0 are �xed at -20K/s

and 915K, respectively.

(c) Dendritic primary arm length as a function

of thermodynamic parameters. Cooling rate
∂T

∂t
and initial temperature T0 are �xed at -10K/s

and 920K, respectively.

(d) Dendritic primary arm length as a function

of thermodynamic parameters. Cooling rate
∂T

∂t
and initial temperature T0 are �xed at -20K/s

and 920K, respectively.

Figure 12: 3D contours of dendritic primary arm length as a function of thermodynamic parameters,

with di�erent �xed values of process parameters.
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5.2 PDFs and statistics of the QoIs with respect to random thermodynamic

parameters

In this section, non-intrusive spectral projection is applied to compute the PCE coe�cients and the

distribution of the QoIs. The process parameters, T0 and
∂T

∂t
, are set to be �xed assuming that those

variables are controllable in practice. The thermodynamic parameters, σ∗0, ε
∗, and Mφ, however, are

assumed to be random, and uniformly distributed between the lower and upper bounds according

to Table 3.

UQToolKit [81, 82] is utilized to calculate PCE coe�cients, which are obtained by Galerkin

projection in theory. Orthogonal Legendre polynomials of the sixth order are used in constructing

the PDFs of the QoIs. A two-dimensional SG is constructed for process parameters. A PDF is

constructed at each node of the SG. The mean and standard deviation are then calculated for each

node, i.e. each �xed couple of values of process parameters. These quantities are then reconstructed

on the whole two-dimensional process parameter space using SG formulation.

Figures 13a, 13b, 13c, and 13d show the PDFs of the dendritic area, dendritic perimeter, Cu

segregation, and the dendritic arm length, respectively, where the thermodynamic parameters in

Table 3, namely σ∗0, ε
∗, and Mφ are considered to be uniformly distributed between the lower

and upper bounds. Several observations are made. First, the dendritic area and perimeter are

highly correlated. Second, as shown in Figure 13a and Figure 13b, the initial temperature T0 is the

dominant factor for the dendritic growth in terms of size, that decreasing the initial temperature T0

corresponding to larger dendrite size. The cooling rate
∂T

∂t
also a�ects the dendrite size, but is a less

dominant factor. The same observation can be made for the Cu segregation κ, as shown in Figure

13c. It is also observed that the standard deviation of the Cu segregation κ only changes mildly,

with di�erent process parameters, as opposed to substantial changes in the standard deviations of

dendritic area and dendritic perimeter. The dendritic primary arm length is more unpredictable,

as shown in Figure 13d, where the mean deviates slightly around 100µm. The observations are

consistent with the previous observation in Section 5.1.

Figure 14 and Figure 15 show the prediction map of the mean and standard deviation, respecti-

vely. The predicted mean is similar to the prediction shown in Figure 6. Figure 15 indicates that

there is a weak correlation between the statistical standard deviation and the statistical mean for

the �rst three QoIs, namely the dendritic area, the dendritic perimeter, and the Cu segregation.
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(a) PDF of dendritic area (µm2). (b) PDF of dendritic perimeter (µm).

(c) PDF of Cu segregation. (d) PDF of dendritic primary arm length.

Figure 13: Probability density function of QoIs at di�erent process parameters, where the ther-

modynamic parameters are distributed uniformly between the lower and upper bounds in Table

3.
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The dendritic primary arm length appears to be a nonlinear function, and weakly dependent on the

initial temperature.

(a) Mean of dendritic area (µm2). (b) Mean of dendritic perimeter (µm).

(c) Mean of Cu segregation. (d) Mean of dendritic primary arm length.

Figure 14: Statistical means of the QoIs, where PDFs are shown in Figure 13.

6 Discussion

In this study, we investigate the dendrite properties with respect to thermodynamic and process pa-

rameters. While process parameters can be controlled, the thermodynamic parameters are materials
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(a) Std of dendritic area (µm2). (b) Std of dendritic perimeter (µm).

(c) Std of Cu segregation. (d) Std of dendritic primary arm length.

Figure 15: Standard deviations (std's) of the QoIs, where PDFs are shown in Figure 13.
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properties and cannot be controlled, but can be quanti�ed with certain variation ranges. Di�erent

thermodynamic parameters result in di�erent dendritic morphology and properties.

The variation of dendrite properties with respect to the thermodynamic parameters can be used

as a guide for thermodynamic parameters calibration. Qualitative analysis includes comparison

between experimental and simulated dendritic morphology, and rough estimation of dendrite size

with respect to solidi�cation time. The dendrite shape can also be quantitatively measured by

shape descriptors, which are extracted via image processing techniques. Figure 16 presents the

shape analysis based on the medial axis method. The extracted skeleton contains shape information,

which can be used for shape matching. However, one of the main challenges in shape matching is

the inherent randomness in composition and interface distributions.

(a) Dendrite skeleton at timestep 3000. (b) Dendrite skeleton at timestep 6000.

Figure 16: Skeletonization of the dendrite in Figure 3 at di�erent snapshots.

The process parameters are typically controlled during the manufacturing process, where sensors

can be embedded and controllers are activated. However, �uctuation still exists for controllable

process parameters, which leads to imperfect control conditions.
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7 Conclusion

In this work, the e�ects of parameter uncertainty on the PFM prediction of process-structure re-

lationships in alloy solidi�cation are investigated. Five input parameters for PFM simulations are

included, two of which are process parameters, and the other three are thermodynamic parame-

ters. Image processing techniques are utilized to extract structural descriptors analyze the dendritic

morphology quantitatively. The UQ study is conducted based on SG with a high-dimensional inter-

polation framework. 19313 PFM simulations are performed with di�erent input parameters, where

the bounds are chosen a priori. It is shown that the count of secondary arm necessarily corre-

lates with the dendritic area and dendritic perimeter. The dendritic area is positively correlated

with the dendritic perimeter, i.e. dendrite with larger area also has a longer perimeter. The UQ

study aims to establish the structure-property relationship between the dendritic morphology and

the high-dimensional process and thermodynamic input parameter space. The variation of dendrite

properties has also been explored, in which thermodynamic parameters play a major role. Both pro-

cess and thermodynamic parameters are shown to a�ect the dendritic growth, resulting in di�erent

microstructure, and thus di�erent materials properties.
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