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ABSTRACT 

 A hierarchical multiscale model of plasticity in single crystal bcc Fe, framed at the 

mesoscale pertaining to a statistically representative set of dislocations for each slip system, 

relies on specification of a set of parameters which are informed using both bottom-up 

(atomistic) and top-down (experimental) information. We term this specification process a 

“connection” between bottom-up and top-down pathways to inform the mesoscale model. The 

connection is considered in the presence of error, uncertainty, and discrepancy between the 

models. We expand upon a previously developed reconciled top-down and bottom up calibration 

method to account for anticipated discrepancy between information from different length scales. 

The results of a previously formulated likelihood-based connection test of the multiscale model 

suggest a “missing link” may be responsible for part of the inter-scale discrepancy. In this case, 

this link is assumed to be a relation between the unit-process (single dislocation line) of 

coordinated kink-pair nucleation on a screw dislocation segment and the many-body dislocation 

process which manifests in the onset of experimentally observed plastic deformation in a single 

crystal. A physics-informed discrepancy layer is formulated to improve the connection in the 

presence of additional persistent uncertainties. This physics-informed hypothesis testing is 
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demonstrated as an alternative to fully data-driven search methods, particularly applicable to 

datasets of limited size that are often encountered in such multiscale material modeling 

applications. Discrete dislocation dynamics simulations are used to investigate the effect of the 

Peierls stress on straight screw dislocations and in the operation of Frank-Read sources. 

Discussion concerns the critical role of uncertainty quantification in providing a basis for this 

form of incremental hypothesis testing.  

1 INTRODUCTION 

 Computational modeling of materials involves simulations at a variety of length and time 

scales (Andrade et al., 2011; Blanc et al., 2002; Ellis and McDowell, 2017; McDowell, 2010, 

2010; Roters et al., 2010). Increasingly, multiple scales of modeling are used in conjunction to 

capture connections across scales between mechanisms and performance. This is typically 

approached by using a set of distinct, scale-specific models. The complexity of hierarchical 

multiscale model (HMM) development suggests that methods for improving plausible models 

are needed to arrive at suitable multiscale formulations. The development of such HMMs 

requires inter-scale connections. These connections are made in the presence of uncertainty 

(Koslowski and Strachan, 2011; Rizzi et al., 2012). 

 The practice of evaluating a connection in a HMM between top-down (TD) and bottom-

up (BU) information pathways is a recent development (Tallman et al., 2017). In the approach, 

discrepancies in the TD and BU estimates of model parameters which reflect given physical 

quantities are reconciled through the use of a statistical likelihood framework. The application of 

the framework in the reconciliation and later evaluation of the TD and BU pathways constitutes 

an empirical or data-driven method. The method quantifies the average magnitude of the 
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distances in the parameter domain across which the combined TDBU posterior density is 

distributed. Reducing this average distance, and thereby the variance in the probabilistic 

parameter distributions, is necessary to the identifying and refining of connections between 

scales. 

 Physical knowledge can be used to refine a connection between length scales. In cases 

where inconsistencies can be explained through the physical differences between models of a 

given quantity, the effects of those differences can be quantified and accounted for in the 

reconciliation process. For instance, in the simulation of yielding in bcc Fe, atomistic predictions 

and top-down experimental fits of the Peierls stress in a continuum crystal plasticity model differ 

by a factor of 2 to 3 (Gröger and Vitek, 2007). The difference may be a result of configurations 

of a network of dislocations which are susceptible to glide at resolved shear stresses in 

experiments, which can be well below the values determined through atomistic simulations of 

nucleation of double kinks on a single segment of a screw dislocation using periodic boundary 

conditions. The influence of many-body dislocation configurations on glide has been further 

explored with discrete dislocation dynamics (DDD) modeling (Arsenlis et al., 2012).  

 In this work, a physics-based discrepancy layer is introduced to capture discrepancy 

between physical descriptions at different scales such that the model calibration based on TD and 

BU information pathways is improved. It is demonstrated with a crystal plasticity (CP) model, 

where parameters are calibrated with discrepancy between TD (experimental observations) and 

BU (atomistic simulations) descriptions. The discrepancy layer is applied to capture the 

discrepancy between the modeling scales with regard to one of the parameters (thermal slip 

resistance). DDD simulations are used to illustrate the discrepancy captured. It is shown that the 

inter-scale discrepancy treatment can improve precision of the inter-scale connection. This 
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connection refinement, using additional physical considerations and uncertainty quantification to 

allow for model discrepancy, contrasts with traditional search methods in this application. 

2 Background 

 Hierarchical multiscale models (HMM) of materials depend on assumed connections 

between independently validated models at different length and time scales (McDowell, 2010; 

Narayanan et al., 2014; Tallman et al., 2017). In a HMM, a mapping between parameters is used 

to establish this connection. In materials modeling, uncertainty affects any model and thus 

affects the connections between models (Arendt et al., 2012; Chernatynskiy et al., 2013). The 

concept of missing physics (Smith, 2013) has been used in model discrepancy approaches 

(Brynjarsdóttir and OʼHagan, 2014; Ling et al., 2014). In propagation studies, the effects of 

parametric uncertainties are quantified for the case  where a HMM connection is held fixed 

(Peherstorfer et al., 2018; Rizzi et al., 2012). The confluence of parameter and model-form 

uncertainty that arises in HMM connection-making requires multiple distinct and relevant 

sources of information to disentangle, in addition to a strategy for isolating the connection. Here, 

hypothesis testing, where a presupposed mechanism is used instead of a best-fit, supports the 

isolation of connection-effects in this complicated uncertainty condition, where uncertainty of 

multiple model-forms and parameters must be considered at once. 

 An estimate of the Peierls stress of a bcc Fe crystal may be approached from both 

continuum and atomistic scales. In a continuum crystal plasticity model, a Kocks-type activation 

enthalpy-based flow rule for dislocation glide can be calibrated to experiments (cf. Patra et al., 

2014). This flow rule includes the thermal slip resistance as a parameter, whose value reflects the 

effective level of stress required to activate slip in certain dislocation arrangements present in the 
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single crystal. Atomistic simulations examine a single screw dislocation exhibiting a coordinated 

kink-pair nucleation process (Narayanan et al., 2014). The energy barrier at zero applied stress is 

used to inform predictions of the Peierls stress. In this study, the dissimilarity of the two 

mechanisms through which the Peierls stress is estimated by either continuum or atomistic 

treatment is used to refine a connection made between the two pathways for estimation in an 

empirical sense.  

 The evaluation of a connection in a HMM is often made under data-scarce conditions. 

Consequentially, model evaluation techniques that rely on partially withholding data (e.g. cross-

validation (Braga-Neto and Dougherty, 2004; Efron and Gong, 1983)) are more challenging to 

implement. In the case of the current application, omitting a proportion of the available data 

would result in substantial variations in maximum likelihood estimates of parameters. When data 

are plentiful, such variations indicate an unreliable model. In data-scarce scenarios, the variations 

are largely a consequence of the small number of data points. Nevertheless, calibrations and 

evaluations are needed under data-scarce conditions just as urgently as in the other case, and 

such conditions are often brought about by virtue of constraints on cost of experiments and/or 

simulations. This work builds on previous efforts to evaluate a connection under data-scarce 

conditions by including a model discrepancy layer.  

 Missing physics is a noteworthy cause of model discrepancy. It can either reflect 

limitation of a given model form or may reflect a key missing spatial or temporal level in the 

HMM. In the Bayesian calibration of physics models (Kennedy and O’Hagan, 2001), treatment 

of model discrepancy is critical to minimizing bias (Brynjarsdóttir and OʼHagan, 2014) and 

maximizing the identifiability (Ling et al., 2014) of calibration parameters, and is accomplished 

through including an explicit additive term that adjusts model response or by adjusting 
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parameters to account for discrepancy (Sargsyan et al., 2015). Discrepancy formulations rely on 

informative priors to yield results, and in the case of missing physics approaches, the 

hypothetical impact of those physics is used to provide those informative priors. In the current 

work, discrepancy between the two length scales is attributed to differences between the analysis 

of a single dislocation at the atomistic scale and the longer length scale dislocation 

configurations that give rise to observed experimental behavior in bcc Fe. The formulation of a 

discrepancy layer is informed by this prior assumption, as opposed to a least-squares fitting. In 

this work, we examine a discrepancy formulation that involves a mapping between parameters of 

the BU and TD model, rather than introducing an explicit additive discrepancy correction to the 

model output. 

 Separately from model discrepancy methods, various latent variable modeling approaches 

have been developed to capture hidden causal relationships. These include statistical structural 

equation modeling (Bentler and Weeks, 1980), Kalman filtering (Meinhold and Singpurwalla, 

1983), non-parametric hidden Markov modeling (Gordon et al., 1993), Gaussian process latent 

variable modeling (Titsias and Lawrence, 2004), causal modeling (Pearl, 2009), and their 

extensions. Instead of using these approaches to identify the coefficient pC  between TD and BU 

parameter spaces in Eq. (2), the value of coefficient is obtained from the scaling factor identified 

by Groger and Vitek (2007), which was derived according to physical knowledge about the 

mutual interaction between emitted dislocations. 

 Frank-Read dislocation sources in bcc Fe have been explored (Gröger and Vitek, 2007) 

for the potential explanation of the Peierls stress and the related discrepancy found between its 

atomistic predictions and experimentally-informed continuum estimates. To approach this 
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problem, we appeal to physical arguments that may explain why screw dislocations in networks 

at mesoscales may activate at applied stress levels much lower than the atomistic estimates of the 

Peierls barrier. One such mesoscale model of Gröger and Vitek (2007) assumes that mixed 

character dislocations will glide to form loops within a certain distance of the source. Thereafter, 

the screw segments which come to dominate the activity of the loops beyond that distance are 

assumed to glide at resolved stresses below the Peierls stress due to assistance from the stress 

fields of the mixed character loops in their wake. In order for the Frank-Read source mechanism 

to operate, the screw segments that form on the first generated dislocation must not prevent the 

dislocation from completing a glide loop. In this work, DDD simulations are performed to 

examine the Frank-Read source as a mesoscopic explanation of discrepancy in the Peierls stress 

between scales. 

 DDD simulations allow a variety of dislocation configurations to be examined (Amodeo 

and Ghoniem, 1990; Sobie et al., 2017a, 2017b). In this work, the simulations are used to 

investigate the two dislocation structure idealizations relevant to the scale discrepancy argument 

of Gröger and Vitek (2007). These include a simulation of periodic parallel straight screw 

dislocations and a simulation of periodically placed Frank-Read sources. The high atomistic 

prediction of Peierls stress for screw segments is included in the simulations. An in-depth DDD 

study of this problem is left to future work, as the intent here is to explain the concept of the 

discrepancy layer. 

3  Methodology 

 The previously used top-down (TD) and bottom-up (BU) likelihood functions are 

augmented with an inter-scale discrepancy layer. In this section, the likelihood functions are 
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described and the inter-scale discrepancy is formulated. The data from TD and BU are combined 

using the method of reconciliation previously detailed (Tallman et al., 2017), which 

multiplicatively combines surrogate model-based TD likelihood functions and BU penalty 

functions of Gaussian form to inform a TDBU posterior for parameters. In the TDBU calibration 

approach, a standard likelihood formulation for the top-down model (or its surrogate) is 

multiplied by a function which penalizes large differences between BU and TD parameters. The 

total likelihood represents how much the top down calibration process is informed and 

influenced by bottom up parameters. Thus, it is not a direct combination of TD and BU data but 

an updating of TD data by how much information the BU parameters bring to the TD calibration. 

A brief summary of the method is provided here.  

 Data from experiments on the temperature and crystallographic loading orientation 

dependent stress-strain behavior of single crystal bcc Fe (Keh, 1965; Spitzig and Keh, 1970) are 

gathered. The yield strength (proportional limit) is identified in the experimental data for use in 

calibrating a set of parameters of the flow rule, i.e., 
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in a crystal plasticity model, where �   is the crystallographic shearing rate on slip system  , �
0
 

is the pre-exponential factor, F
g
 is the activation enthalpy of thermally activated dislocation 

glide at zero resolved shear stress, 
f
  is the driving force on the slip system which includes non-
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Schmid stresses, s
a
  is the athermal resistance to slip, s

t
  is the thermal resistance to slip, and p 

and q  are shape parameters. 

  The CP model is executed for a set of values for each calibration parameter. A set of 

second-order polynomial regression models is used to interpolate across the calibration 

parameter space. Each of these models defines a relationship between calibration parameters and 

the predicted yield strength of the CP model at a specific temperature and crystallographic 

orientation, i.e., 
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where   are regressive coefficients,   are calibration parameters, iT  is the i-th temperature, and 

ig  is the i-th orientation of i experimental observations of the response. Through a standard sum 

of squared errors comparison with the experimental values of yield strength, likelihood functions 

are generated in terms of the calibration parameters. These likelihood functions are used as the 

basis of TD information in calibration parameter space. The BU information is contained in a 

reference estimate of parameters, labeled as ‘reference’ to signify that the estimate originates 

externally to the model being calibrated. The reference estimate is used to inform some penalty 

functions in a form which can be combined with the TD likelihood functions. 

 The new model discrepancy layer changes the relationship between the BU and TD 

parameter spaces. In the previous study, the TD and BU parameter spaces were defined as 

identical; in other words, the same set of mesoscale CP model parameters were estimated via 

information from both BU and TD pathways. In the present study, the additional information 
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involving discrepancy relates to the Peierls stress alone; accordingly, the model discrepancy 

layer here is demonstrated with a single parameter: the thermal slip resistance, s
t
. A linear 

relation between the BU and TD parameter spaces is defined as  

 , ,t BU p t TDs C s   (3) 

where s
t ,BU

 is the BU-defined thermal slip resistance and s
t ,TD

 is the TD-defined thermal slip 

resistance.  

 The value pC = 2 is taken from the calculations of Gröger and Vitek (2007) of the stress 

barrier for dislocation glide in a configuration of Frank-Read sources at a dislocation density of 

the order of 1012 m2. Their calculations, based in the isotropic elastic theory of dislocations, 

reflect the effects of interactions of Frank-Read emissions on the effective barrier to dislocation 

glide. While the Peierls barrier of screw dislocations is unchanged, the configuration of 

dislocations allows glide to occur at a steady state, at resolved shear stresses of one half the 

Peierls barrier of screw dislocations. The annihilation of emitted dislocations occurs at a given 

radius from the Frank-Read sources (which depends on dislocation density). Dislocations are 

emitted as mixed character and are assumed to become pure screw after gliding for some 

distance. If there exist sN  screw dislocations at distances ix  from a source and mN  mixed 

character dislocations at distances k iy x i   the i -th screw dislocation will glide when 

 

1 1

1 1 1

2 2 2

s mN N

a P
j ki j i k i
j i

b b b

x x x y x

   
   



   
     (4) 



11 

where a  is the applied stress, P  is the Peierls barrier of screw b  is the Burgers vector of the 

emitted dislocations,   is the shear modulus, and   is a constant. The stress exerted by the 

mixed character dislocations on the screw dislocations allows the Frank-Read source to be active 

at applied stressed below P . The value pC  = 2 taken in this work corresponds to one of many 

dislocation densities and source spacings considered in the work of Gröger and Vitek (2007). 

 In the HMM formulation, the value pC  = 2 is intended to account for the difference in 

the Peierls stress levels, between the prediction from atomistic simulations (Narayanan et al., 

2014) of purely screw character dislocations, as high as 1000 MPa, and the effective value 

gathered from experimental observations (Keh, 1965; Patra et al., 2014) which governs larger 

patterns of dislocations, as low as 390 MPa. The other four parameters ( �  , F
g
, p, and q ) 

remain identical in the calibration set from BU to TD. Given the fixed nature of the relationship 

that we assume from Eq. 2, the rest of our analysis considers the improvement to the TDBU 

calibration rendered by this discrepancy approach. After the adjustment, the remaining steps of 

the TDBU reconciliation are executed.  

 The likelihood functions are combined multiplicatively with the penalty functions in a 

constrained likelihood function (CLF). The addition of the discrepancy layer forces the decision 

of which parameter basis (TD, BU, or another) to use to formulate the CLF. The maximum 

likelihood estimate is unaffected by the choice; however, the inferred values of parameter 

uncertainty based on the CLF will vary. The uncertainty estimates are calculated in terms of 

calibration parameters normalized to intervals, i.e.,  0,1 . This prevents the units of the 

parameters from influencing outcomes. However, it also leads to a situation where the results 

depend on the values chosen to determine admissible parameter ranges. Given that the goal of 
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this study is to determine if a physics-informed discrepancy layer is sufficient to allow a 

connection to be made between TD and BU data, it is appropriate to maintain consistent 

admissible ranges to make such a comparison. 

 The connection test is performed for the model which includes the discrepancy layer. In 

the formulation of this test, the discrepancy layer adjusts the BU reference parameter estimate 

which is incorporated in the calculation of TDBU parameter uncertainty. The difference in the 

parameter values is shown in Table 1. The original BU values are used in both cases and are 

translated into a TD native basis using Eq. (2) in the case of the discrepancy inclusive approach. 

In the approach without discrepancy, the TD basis is arrived at using a one-to-one 

correspondence.  

Table 1. The original and discrepancy adjusted reference estimates used as the BU penalty. 

 �
0
  F

g
  p  q   s

t
  

Original 3.19107 s1  0.57 eV  0.67   1.18 1040 MPa  

Discrepancy 
Adjusted 3.19107 s1 0.57 eV 0.67  1.18 520 MPa   

 

 The TDBU calibration method requires evaluations of the uncertainty in TD information 

through an experimental variance term, 
exp
2  for each data point and the uncertainty in BU 

information through the variance of the penalty, 
p
2 . Both of these parameters influence the 

results of a connection test, as the test checks for uncertainty reduction, and a lower uncertainty 

level in inputs leads to a smaller tolerance for mismatch in data sources. In the extreme case, 
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fully certain TD observations mean that new BU data do not add additional information or value. 

This sensitivity to input uncertainties, as is common in Bayesian methods, is a useful capacity of 

the method. Given that not all data are accompanied by uncertainty estimates, additional effort 

may be needed to ensure the test results appropriately reflect the available information. The 

connection test involves quantifying the cost and benefit of using BU information to inform the 

TD parameters. The connection may be very helpful or may be not helpful at all (e.g. the TD and 

BU parameters conflict or completely disagree with each other). 

 Here, a summary of the connection test is given, which is described in more detail 

elsewhere (Tallman et al., 2017). The BU penalty functions and TD likelihood functions are 

included in a constrained likelihood function (CLF). This CLF is raised to an exponent, the value 

of which is informed using the assumed cost of the connection, u . A value of   1u   reflects no 

connection cost where the TD and BU data agree, and a value of   0 u   reflects an infinite 

connection cost, where complete disagreement exists between the TD and BU data. The result is 

normalized to satisfy the law of total probability over the admissible parameter space to give a 

probability density function (PDF) in the parameter space. A quadrature-based Bayesian 

approach is used to calculate the  PDF θ . The calibration variance is calculated by finding the 

square Euclidean distance of the PDF from the centroid of the PDF. These equations are given in 

Table 2.  
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Table 2. Equations defining the terms of the TDBU connection test. 

, 

 

Penalty functions and sum square 
error calculations using surrogates 
f

j
 in place of CP model, physical 

parameter value x  at data point j , 

experimental response Y E  

 Constrained Likelihood Function 

 
Connection cost u  is evaluated at 
the maximum likelihood estimate, 

 

 Probability density function 

  Calibration variance 
2  evaluated 

from centroid of parameter space,   

 

 DDD simulations were pursued to provide a mechanistic description of the scale 

discrepancy layer introduced in this work. The DDD simulations are performed using a fast-

Fourier transform accelerated DDD code (Bertin et al., 2015). Edge dislocations in bcc Fe have 

been shown to be highly mobile at low applied stresses (Monnet and Terentyev, 2009). The 

simulations assign the Peierls stress to be 1 GPa for screw dislocation segments, consistent with 

atomistic modeling results, and 10 MPa for edge and mixed character dislocation segments. An 

overdamped mobility law is used for all dislocation segments. The simulations are carried out 
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using periodic boundary conditions. Shear stress is applied at three levels: the stress at which a 

straight screw dislocation begins to glide (here 1 GPa), 75% (750 MPa), and 50% of that stress 

(500 MPa). The simulation volume is a cube of 10,000 unit cells in length (2.87 m). A Frank-

Read source of width 160 nm is assumed.  

 The DDD simulations of a Frank-Read source are carried out using a prismatic 

dislocation loop. The glissile portions of the loop are initially pure edge dislocation segments on 

1
2 111 110   slip systems. As a result, these segments are initially highly mobile under resolved 

shear stress. The simulations are carried out to examine whether or not the screw segments which 

form as the dislocation bows out will inhibit the formation of glide loops. This step is identified 

as critical to the feasibility of the explanation provided by Gröger and Vitek (2007). 

 

4 Results 

 The impact of the discrepancy layer is evaluated in this section. To provide a point of 

comparison, the uncertainty estimates made in previous work without a model discrepancy 

treatment are included (Tallman et al., 2017). As mentioned above, DDD simulations of a Frank-

Read source in bcc Fe are also included to highlight the assumptions which underlie the 

mechanistic description of the scale discrepancy used to motivate this work.  

 The parameter 
p
 in the penalty function (listed in Table 2) controls the influence of the 

BU information on the probability density of the calibration parameters. As a result, the 

comparison of the variance of the TDBU calibration and the TD calibration depends strongly on 
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the value of 
p
. In Figure 1, the calibration variance 

2  is shown as a function of 
p
 for both 

connection formulations considered in this work. The calibration variance is a monotonic 

function for the case of TDBU with the discrepancy layer, decreasing as BU information is 

included. For the TDBU without the discrepancy layer, the parameter uncertainty increases as 

BU information is included, up until the BU information begins to outweigh the TD information 

(at 
p
 values < 0.1). 

 
Figure 1. Plot of the calibration variance as function of the penalty parameter. Limits are plotted 
for context. 
 
 

 DDD simulations were carried out at 3 applied shear stress levels, 1000, 750, and 500 

MPa. The limited mobility of screw dislocation segments is observed to control the operation of 

the Frank-Read source. Snapshots of the dislocation lines are taken normal to the glide plane at 

arbitrary times during the simulations to highlight the mechanism present at each stress level. 

These images are included in Figure 2. The dislocation line in Figure 2a continues to bow out, 

but the applied stress does not drive screw segments to glide. In Figures 2b and 2c, the applied 
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stress is sufficiently high to cause screw segments to glide such that the Frank-Read source may 

generate glide loops. In Figure 2c, the screw dislocations are generated as a result of the glide 

loops annihilating at the periodic boundary in the direction of the edge dislocation motion. These 

screw dislocations were able to glide as necessary for the Frank-Read source to operate, however 

the simulation was not continued long enough to approach conditions of source saturation.  Still, 

they illustrate the key point of the mesoscopic configuration controlling the effective value of the 

lattice resistance that one would interpret from experiments based on operation of distributed 

Frank-Read sources. The results support the discrepancy layer assignment pC = 2 in Eq. (2) 

qualitatively if not quantitatively. 

 

Figure 2. Snapshots of DDD simulations of Frank-Read sources under applied shear stress of 500 
MPa (a.), 750 MPa (b.), and 1000 MPa (c.). 
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5 Discussion 

 The benefits of the discrepancy layer are discussed. The dislocation configurations which 

allow a reduction in the thermal resistance to slip in bcc Fe are explored in this section. 

Additionally, the difficulty of adjusting connections in HMMs without informative prior 

estimates is addressed. Atomistic modeling which would increase the precision of predictions is 

suggested. 

 The addition of the discrepancy layer allows for the BU information to contribute to a 

reduction of uncertainty in the HMM. In previous work (Tallman et al., 2017), the combination 

of TD and BU information was concluded to increase uncertainty, once connection cost was 

considered. Here, the discrepancy layer allows for a reconciliation of TD and BU information 

which amounts to a reduction of the parametric uncertainty, as seen in Figure 1. At the preferred 

value of 
p
 0.1, the value for the TDBU uncertainty estimate,  ,TDBU

2  0.30, is a reduction 

from the TD only estimate,  ,TD
2  0.34. The interpretation of this result follows. 

 The immediate result of the including the discrepancy layer is to achieve a connection 

which adds mesoscale information to the calibration of the HMM. This result is predicated on the 

uncertainty of each data source (TD via 
exp
2  and BU via 

p
2 ). As more data or more reliable 

data become available, the initial uncertainties associated with the TD-only and BU-only 

calibrations may reduce. The surrogate model used to define likelihood functions in parameter 

space might lead to reductions in initial uncertainty. All of these reductions make further 

reductions to uncertainty from a TDBU calibration more difficult. In other words, as the model 

improves, the connection must also improve to continue to be of value.  
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 A longer-term result is the suggested importance of the discrepancy between the 

atomistic parameter estimates and the continuum values in HMM development. This is to say 

that more investigation may return analogous discrepancy formulations for other parameters in 

the original TDBU calibration parameter set, further reducing uncertainty in connections. 

Furthermore, the development of HMM connections can be incremental and driven by the TDBU 

connection test.  The framework proposed here helps to guide the modeler to seek specific 

arguments and mechanisms for discrepancy to improve the BU and TD model connection, so it 

very much resides in the realm of physics-based modeling. 

 The choice of connection basis parameters is not resolved in this study. The example 

shown used the TD parameters as a basis to allow the admissible parameter space to remain 

consistent with a comparison case. The complication arising from adjusting the admissible 

parameter space is that, in addition to providing a finite space for parameter calibration, the 

admissible parameter space also provides a means of normalizing the magnitude of variations in 

parameter values. To allow for comparisons of information connection scenarios which support 

different admissible parameter ranges, or even different parameter spaces, a different 

normalization scheme is needed. To provide a consistent basis for evaluating parameter 

variations, independent of units, a basis can be made in a model of effects, i.e., the size of a 

parameter value change is considered relative to a change incurred in a quantity of interest (QoI) 

which is some function of the parameters, the model response, or a combination thereof. An 

example is made using model response as the QoI. The unit of normalization is approximated 

   (5) 
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where 
norm

 is the normalizing value for calibration parameter  , and Y  is the model response. 

By normalizing changes in parameters to measured effects, the assumption that changes in 

parameters have magnitudes relative to the admissible ranges may be relaxed.  

 In cases where different parameter sets are considered, an approach to make a like 

comparison may require the consideration of the effects of each parameter in terms of similarity. 

In this case, a QoI with at least as many dimensions as parameters is best. Taken at some 

representative number of points in parameter space, the similarity of effects is calculated as 

 Sim 
1
,

2   1

Y2

Y


1


Y


2

  (6) 

where the similarity value ranges from 0 to 1. The application of the TDBU calibration to 

connections between parameter spaces of different shapes and sizes is left to future work. 

 The DDD simulations were carried out at very low effective dislocation densities 

(~ 31010 m2). At higher dislocation densities, the attraction between dislocation dipoles would 

contribute and assist sessile segments in gliding. This suggests that the Frank-Read source 

explanation of the Peierls stress discrepancy is likely to be plausible at realistic dislocation 

densities (greater than 11012), where dislocations may find sinks, despite the lack of activity 

shown in the DDD simulations of this work at lower applied stress (500 MPa). An investigation 

of the Frank-Read source within more realistic microstructures is left to future work. 

 There is need for atomistic investigation of stress-dependent mobility of mixed character 

dislocations in bcc Fe. The Frank-Read source was shown in this work to be able to operate 
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under an applied stress of 75% of the Peierls stress of screw dislocations. To refine this 

determination further, atomistic simulations will be needed. The DDD simulations rely upon the 

tangent vector of each dislocation segment to determine screw/edge character. As a result, the 

glide of the screw segments which occurred due to the propagation of mixed character regions of 

the dislocation line along screw segments was highly dependent on the angles (between the 

dislocation line and the Burgers vector) at which a segment was considered a screw segment.  

The DDD code is not atomistic, and hence cannot explicitly describe atomistic mechanisms such 

as kink-pair nucleation; such information is heuristically introduced in the segment mobility 

functions. The contribution of DDD simulations here is to match behavior as exhibited by 

dislocations. To provide more accuracy in predicting the relation of the effective Peierls barrier 

to Frank-Read sources to the Peierls stress of pure screw dislocations, atomistic simulations of 

glide loops will be necessary at larger scale such that the DDD code can be made to match the 

behavior shown in atomistic simulation.  

 The discrepancy relation has explored physics-based calculations to restrict flexibility in 

the method. The presence of discrepancy in TD and BU information would be trivial to deal with 

if a discrepancy layer was allowed to modify the BU parameter space such that . The 

arguments against this practice is that such a treatment has no understanding to impart to the 

modeler, and renders the information from BU to be without impact on the calibration itself. On 

the contrary, the method employed here used a connection test to determine that a specific 

multibody explanation of discrepancy in atomistic and continuum predictions of Peierls stress in 

bcc Fe is sufficient to reconcile the BU and TD information in the current HMM.  
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