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Resilience Quantification
for Probabilistic Design of
Cyber-Physical System Networks
Cyber-physical systems (CPS) are the physical systems of which individual components
have functional identities in both physical and cyber spaces. Given the vastly diversified
CPS components in dynamically evolving networks, designing an open and resilient
architecture with flexibility and adaptability thus is important. To enable a resilience
engineering approach for systems design, quantitative measures of resilience have been
proposed by researchers. Yet, domain-dependent system performance metrics are
required to quantify resilience. In this paper, generic system performance metrics for
CPS are proposed, which are entropy, conditional entropy, and mutual information asso-
ciated with the probabilities of successful prediction and communication. A new proba-
bilistic design framework for CPS network architecture is also proposed for resilience
engineering, where several information fusion rules can be applied for data processing
at the nodes. Sensitivities of metrics with respect to the probabilistic measurements are
studied. Fine-grained discrete-event simulation models of communication networks are
used to demonstrate the applicability of the proposed metrics. [DOI: 10.1115/1.4039148]

1 Introduction

Cyber-physical systems (CPS) [1] are the physical systems of
which individual components have new capabilities of data collec-
tion, information processing, network communication, and even
control mechanism, and have functional identities in both physical
and cyber spaces. Internet of things (IoT) is an example applica-
tion of CPS. IoT refers to uniquely identifiable physical objects
that form an internet-like structure in cyber space [2]. The original
idea of IoT was to extend the capability of radio-frequency identi-
fication chips with Internet connectivity. Later, the concept
was generalized to any physical objects with data collection, proc-
essing, and communication capabilities. We can imagine that in
the future, any object we interact with in our daily lives would
probably have the functions of data collection and exchange, be it
thermostat, pen, car seat, or traffic light. The objects in the physi-
cal environment also form a virtual space of information gathering
and sharing. This information can affect every decision we make
daily, such as which jacket to wear, which medicine to take, and
which commute route to follow. These physical objects are real-
izations of CPS, and IoT is formed by the networked CPS objects
or components.

There are some new challenges in designing CPS components.
The complexity of CPS components has increased from traditional
products. Designing each product requires the consideration of
hardware, software, as well as network connectivity, which is
beyond the existing mechatronics systems, where hardware and
software are simultaneously designed but with much lower com-
plexity. CPS components are meant to be internet-ready. Each
component is an open system that can be re-configured and re-
adapted into the evolution of the internet itself. Therefore, the
concept of open system design with robust and diverse connectiv-
ity becomes important. In addition, the functions of networked
CPS are collected efforts from individual components. The con-
federated systems formed by individuals do not have centralized
control and monitoring units. Ad hoc networks are formed by
vastly different and heterogeneous components. The reliabilities
as well as working conditions of the individual components can
be highly diverse. It would also be common that CPS networks

experience disruptions because of harsh working environment or
security breach. Good adaptability and resilience are important in
designing the architecture of such networked systems. Yet, differ-
ent from traditional communication networks, CPS networks do
not just transfer information. Each node of the networks also gen-
erates new information through its sensing units. CPS networks
are also different from traditional sensor networks, where the
main task of sensors is collecting information whereas the logical
reasoning for decision making is still done at centralized com-
puters. In CPS networks, the level of computational intelligence
and reasoning capability of the nodes are much higher and a major
portion of decisions are done locally at individual nodes.

In this work, resilience of CPS network architecture is studied.
The term resilience had been loosely used and semantically
overloaded, until recently researchers started looking into more
quantitative and rigorous definitions [3–11]. Generally speaking,
resilience refers to the capability of a system that can regain its
function or performance after temporary degradation or break-
down. Different definitions of how to measure resilience
have been developed. All available quantitative definitions of
resilience rely on some metrics of system function or perform-
ance. Nevertheless, how to quantify functionality or performance
of systems such as communication and transportation networks
still remains at a very abstract level in these studies. The perform-
ance metrics can be domain dependent. There is a need of devel-
oping quantitative performance metrics for systems of CPS.
Based on the performance metrics, resilience of CPS networks
then can be measured and compared. In this paper, formal metrics
to quantify the functionality and performance of CPS networks
are proposed, which are based on entropy and mutual information
associated with the prediction and communication capabilities of
networks. The performance metrics are defined based on a generic
probabilistic model of CPS networks and demonstrated with
detailed network simulations. The design and optimization of CPS
network architecture based on the performance metrics for resil-
ience is also demonstrated.

In the remainder of this paper, an overview of resilience
research is provided in Sec. 2, which includes the quantitative
studies of resilience and the applications in engineering and net-
works. It is seen that resilience is a common and interdisciplinary
subject for complex system study across many domains. Yet, the
effort of quantitative analysis for resilience engineering and
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system design is still very limited. A probabilistic model of CPS
networks is described in Sec. 3, where the performance metric to
quantify resilience is proposed. In Sec. 4, the metrics are applied
in system design and sensitivity studies. In Sec. 5, the proposed
metrics are demonstrated and the applicability is verified from
detailed network simulations. Section 6 are the discussions and
Sec. 7 concludes the paper.

2 Background

2.1 The Multidisciplinary Concept of Resilience. The his-
tory of systematic resilience study can be retrieved back to early
1960s by ecologists, who were interested in ecosystem stability.
The ecosystem may be stabilized at more than one stable equilib-
rium. In contrast, resilience studied in engineering focuses on the
system behavior near one stable equilibrium and studies the rate
at which a system approaches the steady-state following a pertur-
bation. The studies are about how to improve the ability to resist
the change and how to reduce the time of recovery.

The resilience perspective emerged in ecology more than four
decades ago through the study of interacting population of preda-
tor and prey in an ecosystem [12–15]. Resilience is regarded as
the capacity to absorb shocks and maintain dynamic stability in
the constant transient states. The accepted definition of resilience
in ecology is the capacity to persist within one or several stability
domains. Resilience determines the persistence of relationships
within an ecosystem and is a measure of the ability of these sys-
tems to absorb changes of state variables, driving variables, and
parameters, and still persist [15]. The measure of resilience is the
size of stability domains, or the amount of disturbance a system
can take before its controls shift to another set of variables and
relationships that dominate another stability region [16]. The con-
cept of slow and fast variables at multiple time scales is observed
in ecosystems. Because of the dynamics nature of the ecosystem, the
terms “regimes” and “attractors” were proposed to replace “stable
states” and “equilibria” [17]. The resilience of ecosystems empha-
sizes not only persistent and robustness upon disturbance, but also
adaptive capacity to regenerate and renew in terms of recombination
and self-reorganization. Ecosystem resilience has also been proposed
to be a major index of environmental sustainability during economic
growth. Economic activities are sustainable only if the life-support
ecosystems on which they depend are resilient [18].

The resilience of regional economics is generally considered as
the capability of returning to a preshock state, as defined and
measured by employment, output, and other variables, after dis-
turbances or adverse events such as economic crisis, recessions,
and natural disasters [19,20]. Several notions of regional resil-
ience have been proposed. For example, Foster [21] defined
regional resilience as the ability of a region to anticipate, prepare
for, respond to, and recover from a disturbance. Hill et al. [22]
defined it as the ability of a region to recover successfully from
shocks to its economy that either throw it off its growth path or
have the potential to throw it off its growth path. Yet, there is no
standard and precise definition and measurement. Unlike physical
or ecological systems, a regional economy may never be in an
equilibrium state. It can grow continuously. Therefore, regional
economics resilience emphasizes on returning to the preshock
path or state, regardless whether it was in equilibrium or not. The
four dimensions of regional resilience are resistance (the vulner-
ability or sensitivity of a regional economy to disturbances and
disruptions), recovery (the speed and extent to return to the pre-
shock state), re-orientation (the adaptation and re-alignment of
regional economy and its impact to the region’s output, jobs, and
incomes), and renewal (the resumption of the growth path) [20].

The term resilience has been used in materials science for deca-
des. A material with good resilience is similar to a spring. It reacts
on compression, tension, or shearing forces elastically and
rebounds to its original shape. The term appeared in the literature
of textile material [23–25] and rubber [26–28] as early as in

1930s. The resilience of a material is generally regarded as the
energy dissipation property of storing and releasing energy elasti-
cally, and can be characterized as the ratio of energy given up in
recovery from deformation to the energy applied to produce the
deformation, which is measured through the energy loss during
repeated load and unload cycles [28].

With the continuing downscaling of complementary metal–oxide–
semiconductor technologies and reduction of power voltage, spo-
radic timing errors, device degradation, and external environment
radiation may cause the so-called single-event transient errors in
computer chips and microelectronic systems. Designers of such com-
puting systems use resilience to describe the systems’ fault tolerance
[29–32]. The main approaches to enhance error resilience include
error checking for recovery, co-design of hardware and software,
and application-aware hardware implementation. Hardware resil-
ience can be achieved by applying machine learning algorithms to
process data collected from fault-affected hardware and perform
classification for inference and decision making [33,34]. Statistical
error compensation [35] can be applied to maximize the probability
of correct prediction given hardware errors.

The reliability and resilience of cyberinfrastructure and
cybersecurity have been the research focus for decades [36,37].
Resilience of computer network is regarded as the ability of the
network to provide and maintain an acceptable level of service in
the face of various faults and challenges to normal operation [38].
The considered factors for computer network resilience include
fault tolerance due to accidents, failure, and human errors; disrup-
tion tolerance due to external environment such as weather, power
outage, weak connectivity, and malicious attacks; and traffic toler-
ance because of legitimate flash crowd or denied of service
attacks. Fault tolerance typically relies on redundancy if the
failures of components are independent, whereas survivability
depends on diversity for correlated failures.

To improve the reliability and safety of socio-technical systems
with a proactive and systems engineering approach, resilience
engineering is a term people coined to promote the concept of
enabling the capability of anticipating and adapting to the poten-
tial accidents and system failures [39]. It is the intrinsic ability of
a system to adjust its functioning prior to, during, or following
changes and disturbances, so that it can sustain required opera-
tions under both expected and unexpected conditions. The empha-
sized capabilities are anticipation, learning, monitoring, and
responding. It is concerned with exploiting insights on failures in
complex systems, organizational contributors to risk, and human
performance drivers in order to develop proactive engineering
practices. In resilience engineering, failure is seen as the inability
to perform adaptations to cope with the dynamic conditions in
real world, rather than as breakdown or malfunction [40]. The
scope of systems includes both physical and humans, as human
error is one of the major sources of system failures. Domain
experts’ over-confidence could also impede the proper develop-
ment of anticipation of unexpected severe situations [41]. The
important issues of resilience engineering include the dynamics
and stability of complex systems.

2.2 Quantification of Resilience. Most of the existing stud-
ies in resilience focus on the conceptual and qualitative level of
system analysis. Although various definitions of resilience have
been proposed [3,4], there are limited quantification methods to
measure the resilience of systems for analysis and comparison.
These methods calculate resilience based on the curve of recov-
ery. The curve of recovery shows the dynamic process that the
function or performance of a system degrades during a shock and
recovers afterward. The typical concepts are illustrated in Fig. 1
by which Francis and Bekera [4] used to define resilience factors.
In the figure, Fo is the original stable system performance level,
Fd is the performance level immediately postdisruption, F�r is the
performance level after an initial postdisruption equilibrium state
has been achieved, Fr is the performance at a new stable level

031006-2 / Vol. 4, SEPTEMBER 2018 Transactions of the ASME



after recovery efforts have been exhausted, td is the slack time
before recovery ensues, and tr is the time to final recovery. Other
researchers used the curves with minor variations, for instance,
without explicit consideration of the initial postdisruption equilib-
rium state F�r , or the new stable state Fr being the same as the
original stable state Fo. Definitions of resilience from the perspec-
tive of reliability are also available. For example, Youn et al. [5]
and Yodo and Wang [6] defined resilience as the sum of system
reliability and probability of restoration, which can be estimated
from the information of probabilities that a system is at different
states. Hu and Mahadevan [7] defined resilience with the consid-
erations of probability of failure, probabilities of failure and
recovery times, and performance.

Several resilience metrics based on the recovery curve have
been proposed. Francis and Bekera [4] proposed a resilience mea-
surement based on the ratios between the new stable states and the
original state as

q ¼ Sp
Fr

Fo

Fd

Fo
(1)

where Sp is the speed recovery factor calculated from recovery
times to new equilibrium. In this metric of resilience, Fd/Fo cap-
tures the absorptive capacity of the system and Fr/Fo expresses
the adaptive capability. Therefore, the more functionality retained
relative to the original capacity, the higher the resilience is.

Bruneau and Reinhorn [8,9] quantified resilience by

R1 ¼
1

tr � ti

ðtr

ti

Q tð Þdt (2)

where Q(t) is a dimensionless functionality function that has the
value between 0 and 1, ti is the time when the adverse event
occurs that causes the loss of functionality, and tr is the time of
full recovery. That is, resilience is the area under the curve of
performance divided by the time of duration, which is the average
functionality. Among four factors of resilience that authors pro-
posed, rapidity, robustness, resourcefulness, and redundancy, the
first two are quantified. Rapidity is the slope of the functionality
curve during recovery as dQðtÞ=dt, whereas robustness is quanti-
fied as 1 � L where L is a random variable that represents the loss
of functionality due to the adverse event.

Ouyang et al. [10] proposed a resilience metric based on the
expected area under the performance curve as

R2 ¼

ðtr

ti

F tð Þdtðtr

ti

F� tð Þdt

(3)

where F is the performance curve as a stochastic variable, and F*

is the target performance curve. The resistant, absorptive, and
restorative capabilities are considered all together in the integral
form.

To provide more granularity for different failure and recovery
modes, Ayyub [11] proposed the metric

R3 ¼

Td

ðtd

ti

F tð Þdtðtd

ti

F� tð Þdt

2
6664

3
7775þ Tr

ðtr

td

F tð Þdtðtr

td

F� tð Þdt

2
6664

3
7775

Td þ Tr
(4)

where Td ¼ td � ti and Tr ¼ tr � td are the disruption and recov-
ery time periods, respectively. This metric provides the additional
measures of failure and recovery speeds.

Notice that the above resilience definitions are based upon
some performance measure F or Q. This measure can be domain
specific. The performance metrics proposed in this paper provide
a formal way to quantify the performance of CPS networks so that
the resilience can be assessed according to most of the above
quantities.

2.3 Resilience of Networks. The most relevant domain to
CPS network resilience is the resilience of telecommunication net-
works such as internet, wireless networks, and vehicular networks
[38,42]. Resilience can be qualitatively measured in a state space
formed by service parameters and operational state. The quantita-
tive approaches measure system resilience by message delivery
failure probabilities due to packet loss [43], payload error [44], or
delay [45] during transmission. For topological analysis, the com-
munication failures are quantified based on the connectivity in the
Erd€os–R�enyi random graph [46]. Simulation models [47] have
also been developed. The performance and resilience of networks
are measured by packet delivery ratio [47], route diversity [48],
node valence and connectivity [49,50], or quality of service
[51,52].

The resilience of supply chain, logistics, and transportation
networks has also been studied in the recent decade [53–56]. Most
of the studies remain conceptual. In addition to the concepts of
response and recovery, supply chain management also emphasizes
proactive approach for readiness before and growth after disrup-
tion. Only limited efforts are given to quantitative analysis, partic-
ularly on resource allocation optimization under uncertainty, such
as with differentiation between disruption and regular supply vari-
ability [57], facility location design [58,59], postdisaster recovery
[60], multisourcing [61], and inventory control [62–64]. For net-
works design, node valence and topological distances are used to
quantify accessibility, robustness, flexibility, and responsiveness
of networks [65].

Different from the above efforts which focus only on the capa-
bility of information exchange or material supply in networks,
both communication and reasoning capabilities of CPS networks
are considered in this study. A probabilistic model is proposed to
quantify the capabilities of CPS networks, which is described in
Sec. 3.

3 Probabilistic Model of Cyber-Physical Systems

Network Architecture

The architecture of CPS networks is modeled as a graph G ¼
fV; Eg in which V ¼ fvig is a set of N nodes representing IoT-
compatible products and E ¼ fðvi; vjÞg is a set of edges that indi-
cate the information flow from node vi to node vj. An adjacency
matrix A 2 IN�N is used to model the topology and its elements
defined as

Fig. 1 System performance curve used by Francis and Bekera
[4]
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Aij ¼
1; ðvi; vjÞ 2 E
0; otherwise

�

In the probabilistic model, the correlations among nodes are
represented with the correlation probability matrix C 2 ½0; 1�N�N

and its elements are conditional probabilities Cij ¼ PðxjjxiÞ with
random state variables x’s associated with the nodes. Therefore,
the edges in the probabilistic graph model are directed.

3.1 Probabilistic Model. In CPS networks, each node has its
own sensing, computation, and reasoning capabilities. The predic-
tion probability that node vi detects the true state of world h is

Pðxi ¼ hÞ ¼ pi (5)

where xi is the state variable of the ith node. The information
dependency between nodes is modeled with P-reliance
probability

Pðxj ¼ hjxi ¼ hÞ ¼ pij (6)

which is the probability that node vj predicts the true state of
world given that node vi predicts correctly. Similarly, we also
have Q-reliance probability

P xj ¼ hjxi 6¼ h
� �

¼ qij (7)

The entropy corresponding to the prediction probability of the
ith node is

H xið Þ ¼ �pi log pi � 1� pið Þlog 1� pið Þ (8)

and the ones to reliance probabilities are

H xijð Þ ¼ �pij log pij � 1� pijð Þlog 1� pijð Þ

H xC
ij

� �
¼ �qij log qij � 1� qijð Þlog 1� qijð Þ

(9)

Additionally, the conditional entropies that quantify the informa-
tion inter-dependency between state variables xi’s are defined as

H xjjxi

� �
¼ �

X
xi

X
xj

P xjjxi

� �
P xið ÞlogP xjjxi

� �
¼ �pijpi log pij � ð1� pijÞpi log ð1� pijÞ
� qijð1� piÞlog qij � ð1� qijÞð1� piÞlogð1� qijÞ

(10)

The mutual information between state variables xi and xj is
defined as

M xi; xjð Þ ¼ H xjð Þ � H xjjxi

� �
¼ H xið Þ � H xijxj

� �
(11)

which measures the extent that knowing one variable influences
the knowledge about the other. It is zero if the two variables are
independent. Mutual information thus can give an estimate of how
much information exchange occurs among nodes in CPS net-
works. In a normal situation, the system is functioning at a stable
level of information exchange. When the system is disrupted with
connections broken down, the amount of information exchange
will reduce. Therefore, mutual information is proposed here to
measure the performance of CPS networks, described in Sec. 3.2.

3.2 Performance Metrics of Cyber-Physical Systems
Networks. A metric that measures the performance of a system
should have the following properties [66]. First, the metric should
be deterministic and monotone so that one-to-one correspondence
between systems and measures can be established. Mutual

information of two random variables x and y is non-negative. It is
zero when the two variables are totally uncorrelated. It reaches
maximum when the two are the same variable. That is, 0 �
Mðx; yÞ � Mðx; xÞ. In addition, mutual information is a symmetric
metric and M x; yð Þ ¼ Mðy; xÞ.

Second, the metric should be dimensionality independent so
that the performances of systems can be compared regardless of
their sizes. Calculating the average value of pairwise mutual infor-
mation is necessary so that the measure is independent of the
number of nodes. In addition, mutual information of random vari-
ables with discrete probability distributions also depends on the
number of possible values for the random state variables, i.e., the
size of state space or the probability mass functions associated
with the state variables. A dimensionless measure for probabilistic
design should incorporate the degrees-of-freedom for the system
and the sizes of the state space.

Third, the metric should be sensitive to the change of systems
when used for resilience measurement. The function and reliabil-
ity of a system are sensitively dependent on those of subsystems
and components. The metric should also be sensitive enough to
reflect the changes at the component level.

Based on the above requirements, the proposed performance
metric for a CPS network with N nodes and D-nary state variables
is

F ¼ 1

DN2

XN

i¼1

XN

j¼1

M xi; xjð Þ (12)

which is the average pairwise mutual information of the system.
In the current setting of probabilistic design, D¼ 2 (i.e., xi ¼ h or
xi 6¼ h).

To demonstrate and evaluate the applicability of the proposed
entropy and mutual information based performance metric to
resilience measurement, a simulation study is conducted. In this
study, the prediction and reliance probabilities for a network are
first randomly generated. Then, samples of the random state varia-
bles are generated based on the prediction and reliance probabil-
ities. Within each iteration, for each state variable xi, its value as
either true or false prediction is sampled based on prediction prob-
ability pi in Eq. (5). The prediction of xj is then updated to a sam-
ple that is drawn based on reliance probability either pij in Eq. (6)
or qij in Eq. (7), depending on the value of xi. The update of pre-
diction is based on the following best-case rule of information
fusion:

P xj ¼ h
� �

¼ 1�
YN
i¼1

1� Pðxj ¼ hjxiÞ
� �

(13)

where any correct prediction as a result of the information cue
from any connected node leads to a success. The sampling itera-
tions continue until enough numbers of samples for all nodes are
drawn for one time-step. The prediction probabilities for all nodes
are then updated based on the frequencies of correct predictions
from the samples. The mutual information for each pair is calcu-
lated and the system performance in Eq. (12) is estimated. With
the updated prediction probabilities, the system moves on to the
next time-step, and the same sampling and update procedures con-
tinue until the predetermined time limit is reached.

During the simulation, the system disruption and recovery
occur at certain time steps, which are modeled with the changes
of reliance probabilities. When the disruption occurs, the reliance
probabilities (both pij and qij) of some randomly selected pairs are
set to be zeros. At the recovery stage, these disconnected pairs are
reconnected with the previous reliance probabilities recovered.

Figure 2 shows the performance measures from the simulation
of a system with 10 nodes. For each iteration, 500 samples are
drawn. The disruption starts at time-step 50 and ends at time-step
100, during which a number of connections are randomly selected
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as disrupted edges at each time-step. By the time-step of 100, the
total number of disrupted connections is 39 for the case in
Fig. 2(a) and is 76 for the case in Fig. 2(b). The recovery period
starts from time-step 150 and ends at time-step 200. The system is
fully recovered by time-step 250 and reaches the new equilibrium.
It is seen that the proposed performance metric can sensitively
detect disruptions from its trend. The volatility is mostly due to
the relatively small number of nodes and sample sizes.

The dynamics of entropies and probabilities in the system in
Fig. 2(b) is shown in Fig. 3. The average values of conditional
entropies calculated from Eq. (10) and the average values of
entropies calculated from the prediction probabilities in Eq. (8)
are shown in Fig. 3(a). During the disruption, the conditional
entropies decrease, while the entropies associated with the predic-
tion probabilities increase. The entropies have small values during
the normal working period, because the prediction probabilities
are relatively high. This is illustrated in Fig. 3(b) where the maxi-
mum and minimum values of prediction probabilities among the
ten nodes are compared. The highest prediction probability is one.
During the disruption, the differences between the prediction
probabilities significantly increase. In other words, disruption
affects the prediction capabilities of some nodes, and their predic-
tion probability drop. This in turn affects other nodes. It is seen

that the highest value of prediction probability among the nodes
becomes less than one.

The number of nodes affects the overall performance and reli-
ability of the system. Figure 4 shows the simulation results when
the number of nodes increases to 30 and the total number of con-
nections is 870. It is seen in Fig. 4(a) that the system performs
fairly robustly when the maximum number of disrupted connec-
tions is 49. The mutual information increases slightly instead of
decrease during the disruption. This is because mutual informa-
tion includes two components, entropy and conditional entropy,
according to Eq. (11). During the disruption period, the condi-
tional entropies associated with those disrupted edges reduce to
zeros, whereas the prediction probabilities thus entropies of the
relevant nodes are not affected. As a result, the mutual informa-
tion increases. This phenomenon is also observed in Fig. 4(b),
where the maximum number of disrupted connections is 828.
Shortly after the disruption starts at time-step 50, the average
mutual information increases. Again, this is due to the reduction
of conditional entropies while entropies associated with prediction
probabilities remain unchanged, which is verified by plotting the
average entropies and conditional entropies in Fig. 5(a) and the
maximum and minimum prediction probabilities in Fig. 5(b). As
the number of disconnected edges keeps increasing, prediction

Fig. 2 Performance measure in Eq. (12) for a simulated CPS network with 10 nodes: (a) the maximum number of disconnected
edges is 39 and (b) the maximum number of disconnected edges is 76

Fig. 3 The entropies and prediction probabilities of the simulated system in Fig. 2(b), where the maximum number of discon-
nected edges is 76: (a) the average conditional entropy calculated from Eq. (10) and the average entropy calculated from pre-
diction probability in Eq. (8) and (b) the minimum and maximum values of prediction probabilities among ten nodes
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probabilities are affected. Mutual information starts decreasing
until the maximum number of 828 disconnections is reached at
time-step 100. The system is stabilized in the next 50 time steps
until recovery starts. During recovery, mutual information returns
to the level prior to disruption reversely. After time-step 200, the
system is fully recovered.

Notice that the average entropies are zeros at the normal work-
ing condition for the large network of 30 nodes in Fig. 5(a). This
is because the prediction probabilities of all nodes are ones before
disruption, as shown in Fig. 5(b). The network is fully connected
at the beginning because all pair-wise reliance probabilities are
randomly generated. The predictions by all nodes are accurate.
The predictions become not reliable after the number of discon-
nected edges reaches certain level after disruption has started.
Some of the prediction probabilities reduce. As a result, the aver-
age entropy increases. The prediction capabilities of the nodes
quickly recover after some of the connections resume. Intuitively,
the system should become more resilient to disruption when the
number of nodes increases. It is confirmed by the simulation
results. The examples show that the mutual entropy based per-
formance measure is sensitive to the system topological change. It
provides detailed information about the changes of prediction and
reliance probabilities. The entropy and mutual information based

metrics allow us to quantify the resilience of CPS networks or IoT
systems described with the probabilistic model. These perform-
ance metrics can be applied in further studies of system resilience
and probabilistic design of the system architecture.

4 Probabilistic Design of Cyber-Physical Systems

Network Architecture

With the performance metric quantitatively defined, system
design and optimization can be performed. The overall goal of the
system architecture design for CPS networks is to find the opti-
mum network topology such that the system performance is
maximized.

It is seen that the reliability of prediction is related to the
number of nodes in the system and connections that are available
during disruption. Larger systems with more nodes and more con-
nections tend to be more robust and give correct predictions than
smaller systems. Therefore, the design decision variables need to
include the number of nodes, the respective prediction probabil-
ities, and pair-wise reliance probabilities. Note that the topology
of networks in the proposed probabilistic model is quantified by
reliance probabilities instead of binary connectivity. In addition,
the performance of prediction is also related to the information

Fig. 4 Performance measure of a simulated CPS network with 30 nodes: (a) the maximum number of disconnected edges is
49 and (b) the maximum number of disconnected edges is 834

Fig. 5 The entropies and prediction probabilities of the simulated system in Fig. 4(b), where the maximum number of discon-
nected edges is 834: (a) the average conditional entropy and the average entropy and (b) the minimum and maximum values of
prediction probabilities among 30 nodes
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fusion rules, based on which the prediction probabilities are
updated. Design decisions also include the selection of the rules.

In this section, several information fusion rules for reasoning at
the CPS component level are described. The sensitivities of sys-
tem performance with respect to the prediction and reliance prob-
abilities are also analyzed. Sensitivity analysis of design variables
provides some insight of search domains in design optimization.

4.1 Information Fusion Rules at Cyber-Physical Systems
Component Level. The prediction probabilities are also sensi-
tively dependent on the rules of information fusion during predic-
tion update. When receiving different cues from topologically
correlated neighbors, a node needs to update its prediction proba-
bility to reflect the true state of the world. Several rules can be
devised in addition to the best-case rule in Eq. (13). They are
listed as follows.

� Best-case (optimistic)

P xjð Þ ¼ 1�
YM
i¼1

1� PðxjjxiÞ
� �

(14)

If any of the M correlated nodes provides a positive cue,
the prediction of the node is positive. Some variations of the
rule include when the cases of negatively correlated nodes
are also considered, as

P xjð Þ ¼ 1�
YM
i¼1

1� PðxjjxiÞ
� �

1� PðxjjxC
i Þ

� �
(15)

as well as when the node’s own observation is excluded, as

P xjð Þ ¼ 1�
YM

i¼1;i6¼j

1� PðxjjxiÞ
� �

(16)

� Worst-case (pessimistic)

P xjð Þ ¼
YM
i¼1

PðxjjxiÞ (17)

The prediction of the node is positive only if all of the M
correlated nodes provide positive cues. Similarly, there could
be some variations of the rule, such as

P xjð Þ ¼
YM

i¼1;i6¼j

PðxjjxiÞ (18)

� Bayesian

P’ xjð Þ / PðxjÞ PðxjÞ
� �r

1� P xjð Þ
� �M�r (19)

The prediction of the node is updated to P0 from prior predic-
tion P and the cues that the M correlated nodes provide among
which r of them provide a positive cue.

Figure 6 shows the simulation results based on the Bayesian
fusion rule, where the update of prediction probabilities is gradual
and much slower than the update based on the other two rules.
Some other rules can be defined for information fusion, such as
product-sum, weighted average, and evidence-based. Those
empirical rules are less restrictive than the above three conven-
tional ones.

4.2 Sensitivities of Performance Metrics With Respect to
Probabilities. The closed-form local sensitivities of conditional
entropies with respect to prediction and reliance probabilities can
be obtained as

@HðxjjxiÞ
@pij

¼ pi log
1� pij

pij
(20)

@HðxjjxiÞ
@qij

¼ 1� pið Þ log
1� qij

qij
(21)

@HðxjjxiÞ
@pi

¼ pij log
1� pij

pij
þ qij log

qij

1� qij
þ log

1� qij

1� pij
(22)

It is seen in Eqs. (20) and (21) that the first derivatives of condi-
tional entropy with respect to reliance probabilities are monotoni-
cally positive when pij < 0:5 and qij < 0:5. That is, for small
reliance probabilities, increasing their values would increase the
conditional entropies. On the other side, the derivatives become
negative when pij > 0:5 and qij > 0:5, and the trend is the
opposite.

The first derivatives of conditional entropies with respect to
prediction probabilities are not monotonic, as seen in Eq. (22).
They are functions of reliance probabilities, which have (0.5,0.5)
as a saddle point, as shown in Fig. 7. When qij < 0:5 and

Fig. 6 Simulation results based on the Bayesian fusion rule for a system of 30 nodes with a maximum of 826 disrupted con-
nections: (a) average mutual information performance measure and (b) average conditional entropy and entropy
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qij < pij < 1� qij, or qij > 0:5 and 1� qij < pij < qij, the sensi-
tivities are in the positive domain.

Understanding the local sensitivity of conditional entropies is
useful for local adjustment of probabilities especially when the
system’s prediction probabilities are not sensitive to the changes
of reliance probabilities. Either increasing the large reliance prob-
abilities that are greater than 0.5 or decreasing the small ones that
are less than 0.5 for those uninterrupted nodes will reduce the con-
ditional entropies. Figure 7 also suggests that it is better to focus
the adjustment of reliance probabilities in either the upper right
quarter of the domain where both P- and Q-reliance probabilities
are larger than 0.5, or the lower left quarter where both P- and Q-
reliance probabilities are less than 0.5. Because the individual
effect of adjusting probabilities in other two quarters could be
similar. But with the combination, the overall trend can be com-
promised and dampened.

The sensitivity analysis is verified by the simulation results
shown in Fig. 8. The sensitivity analysis is done by varying the
levels of reliance probabilities. Six different situations are tested,
including increasing and reducing all reliance probabilities by
25%, increasing and reducing only those large probabilities that

are greater than 0.5 by 25%, and increasing and reducing only
those small probabilities that are less than 0.5 by 25%. In case a
probability value after such perturbation exceeds 1, it is set to be
the value of 1 as the upper bound. It is seen in Fig. 8(a) that
increasing the reliance probabilities will reduce the average condi-
tional entropy, whereas reducing them will increase the condi-
tional entropy. Increasing or reducing only the large reliance
probabilities will have the same effect on the conditional entropy.
That is, adjusting only the large reliance probabilities is sensitive
enough to obtain desirable system performance. The trend of
adjusting small reliance probabilities is the opposite. Increasing
only the small reliance probabilities will increase conditional
entropy. However, in this case, the end effect of adjusting small
probabilities is not as significant as adjusting large ones. The end
effect of adjusting probabilities on average entropy is the same.
Both conditional entropies and entropies are more sensitive to the
large reliance probabilities than to the small ones. Similarly, in
Fig. 8(b), changing large reliance probabilities gives the similar
results of changing all of the probabilities on the mutual
information.

Therefore, improving those relatively reliable connections or
sources of information with large reliance probabilities is more
effective to optimize the system performance than simultaneously
considering all connections in a system. In other words, the atten-
tion of resilience engineering for these networks needs to be
focused more on the relatively good and trustable communication
channels instead of the weakest links, as we usually do for reli-
ability consideration.

The sensitivity of the system is also dependent on the informa-
tion fusion rules. When the Bayesian rule is applied, the system is
not sensitive to the changes of reliance probabilities any more. As
shown in Fig. 9, the variation of the average mutual information
as a result of different reliance probabilities is small.

According to the quantitative definitions of resilience in
Sec. 2.2, the systems with the Bayesian rule are more robust,
however less resilient, than the ones with the best-case rule.
Notice that robustness, instead of resilience, is directly related to
sensitivity. A system is less resilient if its performance is more
likely to deteriorate under small disruption. The less resilient sys-
tem can also be robust at the same time if it is not sensitive to
the change or adjustment of system parameters and its perform-
ance always deteriorate quickly. In the above sensitivity studies,
common random numbers are used in the comparison among dif-
ferent systems. This is to reduce the variance introduced in the
simulation.

Fig. 7 Sensitivity of conditional entropy with respect to predic-
tion probability

Fig. 8 Sensitivity analysis based on the best-case fusion rule by increasing all reliance probabilities by 25% (125%), reducing
all by 25% (225%), increasing only those large probabilities that are greater than 0.5 by 25% (Large 1 25%), reducing only
these large probabilities (Large 225%), increasing only those small probabilities that are less than 0.5 by 25% (Small 1 25%),
and reducing only those small probabilities (Small 225%): (a) average conditional entropies and entropies and (b) average
mutual information
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5 Demonstration With Discrete-Event Simulations

To demonstrate how the proposed performance metrics can be
applied to actual CPS networks and how effective the metrics can
be used in measuring network performance, discrete-event simula-
tion models for computer networks are used here to illustrate. The
fine-grained simulation models, which are built with ns-2 [67], are
detailed as the physical networks with the models of data packets
and different Internet protocols such as transmission control pro-
tocol and user datagram protocol. Data are generated and trans-
mitted from one node to another.

In the first example, a ring network with nine nodes is modeled,
as shown in Fig. 10(a). transmission control protocol is used as the
communication protocol. Application data flows with file transfer
protocol sources are modeled from nodes #0 to #5, #2 to #6, #4 to
#8, #7 to #3, #5 to #1, and #8 to #3. All connections have a packet
loss rate of 0.01. The model is run to simulate the traffic for 10 s of
time. At clock time 3.0 s, a network disruption occurs, where either
one, two, or three edges are disconnected. The connections are
resumed at clock time 5.0 s. The numbers of packets that are sent
and received for each data flow path are summarized in Table 1.
Each column in the table corresponds to a flow path. Four scenarios
(no disruption, one-edge, two-edge, and three-edge disconnections
during disruption) are simulated. In this model, sensing and predic-
tion capabilities of CPS are not simulated. Only communication is
modeled. It is assumed that only positive prediction information is
transferred between nodes. Therefore, the prediction probability

associated with each source node is estimated as the ratio between
the number of packets sent and a reference number, assuming that
sending more implies a higher capability of prediction. The com-
mon reference number can be set as the theoretical upper limit by
which the maximum number of packets can be sent by a source
under any circumstance for the time period under consideration.
The upper limit used in this example as the reference is 5000. The
P-reliance probability for each path is estimated as the ratio
between the number of packets received by sink and the one sent
by source. The ratio can be less than one because of packet loss
and traffic jam. Assuming that Q-reliance probabilities are zeros,
entropy, conditional entropy, and mutual information are calculated
from the prediction and P-reliance probabilities. The average
entropy, conditional entropy, and mutual information for all paths
are also listed in the last column of Table 1.

It is seen from this example that the proposed metrics of entropy,
conditional entropy, and mutual information are sensitively depend-
ent upon the change of network traffic pattern. From scenarios of
no disruption to three-edge disruption, the performance of network
is reduced gradually. The average values of entropy, conditional
entropy, and mutual information also change monotonically.

As the further comparison, the ring network in Fig. 10(a) is
modified to Fig. 10(b), where a new node and four edges are
inserted. The same four scenarios are simulated in the second ring
network, and the statistics of packets are collected in the same
way. The calculated metrics are average entropy (0.8869, 0.7524,
0.7524, and 0.7524), conditional entropy (0.0150, 0.0194, 0.0194,
and 0.0194), and mutual information (0.8719, 0.7331, 0.7331, and
0.7331), respectively, for four scenarios. The metrics between the
two examples are compared in Fig. 11. The metrics indicate that
model 2 is more resilient than model 1, which is easy to verify
from the topology since model 2 includes more edges and is less
susceptible to disruptions.

6 Discussions

The simulation studies in this research demonstrated that
entropy and mutual information can be applied as the metrics for
functionality and performance measures for CPS systems in order
to assess resilience. The proposed probabilistic design framework
requires prediction and reliance probabilities as the inputs. These
quantities may be derived from historical data or solicitation.
Obtaining reliable and consistent estimations of probabilities is a
challenging research issue itself. The studies here mostly focus on
communication. More comprehensive investigations are needed
for sensing, reasoning, and prediction capabilities.

At individual node level, several information fusion rules such
as best-case, worst-case, and Bayesian can be defined so that the
prediction probability associated with a node is updated based on

Fig. 9 Sensitivity of a simulated system based on the Bayesian
rule

Fig. 10 Two ring models simulated in ns-2 for demonstration
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the received information from neighboring nodes during reason-
ing. It is seen that the system resilience and robustness are sensi-
tively dependent on the fusion rules. During the system design
process, information aggregation rules also need to be optimized
based on the expected dynamics of performance.

The proposed metrics perform reasonably well with the simple
reasoning scheme based on the information fusion rules. As future
extensions, the proposed performance metrics need to be further
tested with some other information fusion rules. Choosing appro-
priate rules is expected to be an important task in designing CPS
networks and systems.

The sensitivity studies also show that the system performance
is influenced more by the tightly coupled nodes, where reliance

probabilities are high, than those loosely coupled ones. The opti-
mization of systems is more effective if efforts are focused on
these connections with high reliance probabilities, if the available
resource is limited for improvement. Design optimization methods
also need to be further explored based on the preliminary result of
sensitivity analysis. The system design and optimization based on
the performance and resilience metrics mostly requires a multi-
objective optimization approach, since these metrics provide mul-
tifacet assessment. If system dynamics needs to be considered,
dynamic programing approaches can also be taken.

Although the proposed metrics and probabilistic measure are in
the context of CPS networks, the methodology can potentially be
extended for other networked systems where strong interdepend-
ency exists among individual components. Information, energy,
and material flows can all be modeled similarly. For instance, in
supply chain or transportation networks, prediction probability
can correspond to the probability that goods or supplies satisfy the
demand at a node, probability distribution of demand, or the dis-
tribution of inventory levels at a node, whereas reliance probabil-
ities characterize the correlations between demands at different
nodes (percentage of supply from one node goes to another), per-
centage of transport capacities being employed, or probability that
transportation is not interrupted. Different node types (source,
sink, warehouse, hub, retailer, etc.) and edge types (shortest path,
minimum cut, etc.) can be differentiated with different types of
prediction and reliance probabilities.

7 Conclusion

In this paper, generic CPS network performance metrics are
proposed based on entropy, conditional entropy, and mutual infor-
mation to allow for quantitative resilience engineering of such
networks. In CPS networks, each node corresponds to a CPS com-
ponent. The processes of communication during information

Table 1 The simulation results and performance metrics of a ring network with four different scenarios

#0 to #5 #2 to #6 #4 to #8 #7 to #3 #5 to #1 #8 to #3 Average

(a) No disruption
Packets sent by source 2079 1264 1191 1177 1226 734
Packets received by sink 2055 1247 1191 1160 1211 727
Prediction probability 0.4158 0.2528 0.2382 0.2354 0.2452 0.1468
P-reliance probability 0.9885 0.9866 1.0 0.9856 0.9878 0.9905
Entropy 0.9794 0.8157 0.7920 0.7873 0.8036 0.6018 0.7966
Conditional entropy 0.0378 0.0260 0.0 0.0257 0.0234 0.0114 0.0207
Mutual information 0.9417 0.7897 0.7920 0.7617 0.7802 0.5904 0.7759

(b) Disruption (edges 6–7)
Packets sent by source 1490 1436 466 484 1034 569
Packets received by sink 1481 1419 466 476 1027 567
Prediction probability 0.2980 0.2872 0.0932 0.0968 0.2068 0.1138
P-reliance probability 0.9940 0.9882 1.0 0.9835 0.9932 0.9965
Entropy 0.8788 0.8651 0.4471 0.4588 0.7353 0.5113 0.6494
Conditional entropy 0.0159 0.0266 0.0 0.0118 0.0121 0.0038 0.0117
Mutual information 0.8629 0.8384 0.4471 0.4470 0.7232 0.5074 0.6377

(c) Disruption (edges 6–7, 2–3)
Packets sent by source 1471 586 721 909 225 205
Packets received by sink 1435 579 715 897 218 195
Prediction probability 0.2942 0.1172 0.1442 0.1818 0.045 0.041
P-reliance probability 0.9925 0.9881 0.9917 0.9868 0.9689 0.9512
Entropy 0.8741 0.5213 0.5951 0.6840 0.2648 0.2469 0.5310
Conditional entropy 0.0187 0.0110 0.0100 0.0184 0.0090 0.0115 0.0131
Mutual information 0.8554 0.5103 0.5851 0.6656 0.2558 0.2353 0.5179

(d) Disruption (edges 6–7, 2–3, 0–8)
Packets sent by source 1045 966 285 484 230 343
Packets received by sink 1037 964 280 476 222 336
Prediction probability 0.2090 0.1932 0.0570 0.0968 0.0460 0.0686
P-reliance probability 0.9923 0.9979 0.9825 0.9835 0.9652 0.9796
Entropy 0.7396 0.7081 0.3154 0.4588 0.2692 0.3607 0.4753
Conditional entropy 0.0135 0.0041 0.0073 0.0118 0.0100 0.0099 0.0094
Mutual information 0.7260 0.7040 0.3082 0.4470 0.2592 0.3508 0.4659

Fig. 11 Comparison of metrics for the two simulated ring
models
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exchange between nodes and reasoning at individual nodes are
characterized with reliance and prediction probabilities, respec-
tively, in a probabilistic design framework. The resilience of the
system then can be quantified with the proposed performance met-
rics of entropy and mutual information. Simulation studies show
that these metrics are reasonable and consistent quantities to mea-
sure how communication and reasoning capabilities are affected
during network disruption. The metrics are shown to be sensitive
to the changes of network topology.
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Appendix

In information theory, Shannon entropy is typically used to
measure the amount of uncertainty or how much information a set
of possible values, each of which has a corresponding probability,
would contain. For a discrete random variable X, which may have
a finite set of possible values X , Shannon entropy is defined as

HðXÞ ¼ �
X
x2X

pðX ¼ xÞlog pðX ¼ xÞ (A1)

For continuous variable, integral operator is used instead of sum-
mation in Eq. (A1)

Conditional entropy defined as

HðXjYÞ ¼
X
y2Y

pðY ¼ yÞHðXjY ¼ yÞ

¼ �
X
x2X

X
y2Y

pðX ¼ x;Y ¼ yÞlogðX ¼ xjY ¼ yÞ (A2)

quantifies how much additional information random variable X
can provide if the value of random variable Y is known.

Mutual information defined as

M X;Yð Þ ¼ H Xð Þ � H XjYð Þ ¼ H Yð Þ � H YjXð Þ

¼
X
x2X

X
y2Y

p X ¼ x;Y ¼ yð Þlog
p X ¼ x;Y ¼ yð Þ

p X ¼ xð Þp Y ¼ yð Þ

 !

(A3)

measures the mutual dependency between random variables X
and Y.
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