
 1 

MODEL FORM CALIBRATION IN DRIFT-DIFFUSION SIMULATION USING 
FRACTIONAL DERIVATIVES 

 

Yan Wang 
School of Mechanical Engineering 

Georgia Institute of Technology 
Atlanta, GA 30332 

 

 

ABSTRACT 
In modeling and simulation, model-form uncertainty arises from the lack of knowledge and 

simplification during modeling process and numerical treatment for ease of computation. 

Traditional uncertainty quantification approaches are based on assumptions of stochasticity in 

real, reciprocal, or functional spaces to make them computationally tractable. This makes the 

prediction of important quantities of interest such as rare events difficult. In this paper, a new 

approach to capture model-form uncertainty is proposed. It is based on fractional calculus, and 

its flexibility allows us to model a family of non-Gaussian processes, which provides a more 

generic description of the physical world. A generalized fractional Fokker-Planck equation 

(fFPE) is used to describe the drift-diffusion processes under long-range correlations and 

memory effects. A new model calibration approach based on the maximum mutual information is 

proposed to reduce model-form uncertainty, where an optimization procedure is taken.  

1. INTRODUCTION 
Two types of uncertainty are recognized in modeling and simulation. Aleatory uncertainty is 

due to pure randomness of physical world, whereas epistemic uncertainty is because of the lack 

of complete knowledge about the world. The major component of epistemic uncertainty is 

model-form uncertainty, which arises from the simplification during modeling process and 

numerical treatment for ease of computation. During the abstraction procedure, truncation is 

always applied to make simulation and computation tractable. As a result, error or bias is 

introduced. The difference between the model prediction of a quantity of interest (QoI) and its 

true value in the real physical world is the accumulative effect of model-form uncertainty and 

other input uncertainties such as variability and bias in the parameters and variables.  

Classical uncertainty quantification (UQ) methods to model output uncertainty propagated 

from inputs, such as generalized polynomial chaos [1], moment and characteristic function [2], 

have relatively restrictive assumptions of stochasticity, i.e. the types of distributions to sample 

and the forms of polynomials in expansion. These methods are very effective in analyzing 

systems with low-dimensional parameter space that follow simple physics. However, when we 

are interested in multi-physics systems with nonlocal long-range correlations and memory 

effects, or extreme events under heavy-tailed distributions, these UQ methods can lead to 

inaccurate conclusion because the distributions have the bias toward traditional Gaussian 

process. The error is largely due to the selected model form. Although methods such as Bayesian 

model average are available to calibrate the model, they rely on the assumptions that all possible 

models and the corresponding probabilities that the models are correct are readily available.  
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In this paper, a new UQ method is proposed to describe multi-physics systems with model-

form uncertainty incorporated, where the physics does not follow traditional partial differential 

equation (PDEs) or ordinary differential equations (ODEs). It is based on the concept of 

fractional calculus. Fractional calculus [3, 4] is a generalization of classical real analysis by 

introducing non-integer power and differentiation operators. As a result, classical differentiation 

equations that model system dynamics can be extended to fractional differentiation equations 

with fractional derivatives defined. Fractional calculus has been applied in the regimes of system 

dynamics and control [5, 6], signal processing [7], mechanics of quasi-brittle materials [8], non-

local continuum and viscoelastic mechanics [9], space-time fractional diffusion equation [10, 11, 

12], characterizing probability distributions with complex fractional moments [13, 14, 15, 16, 

17], and fractional Schrödinger equation [18]. The uniqueness of fractional diffusion equation is 

that the solution can be deviated from the Gaussian process as in traditional diffusion equation. 

Therefore, heavy tails as in Lévy α-stable white noise processes can be obtained. Similarly, 

fractional Fokker-Planck equation with fractional derivatives models Lévy flights. Fractional 

Schrödinger equation generalizes the classical description of quantum system dynamics with 

Lévy stochastic process.  

Based on fractional calculus, a generalized fractional Fokker-Planck equation is proposed in 

this paper to describe the general drift-diffusion process with multi-physics complexity. This 

approach does not need the assumption of the possible choices of models and associated 

probabilities. Rather, the form of model may vary dynamically based on the control of several 

parameters. In other words, the model form may change parametrically during simulation.  

In addition, the flexibility of the fractional Fokker-Planck equation allows us to represent the 

evolution of probability distributions with heavy tails, since the results of fractional calculus can 

be geometrically interpreted as fractals, physically as long-range interaction or long-term 

memory, and probabilistically as heavy-tailed stable distributions. Rare event with extreme 

impact has been a classical interest in statistics. Extreme value distribution functions [19,20] 

(e.g. Fréchet, Gumbel, and negative Weibull) are typically used in modeling long tails. Yet, they 

are general enough to capture the variation of the distribution form. In this paper, a new model 

calibration approach is proposed to reduce model-form uncertainty. It is based on the mechanism 

of maximizing a new criterion, accumulative mutual information, such that the accumulative 

difference between the target distribution and the predicted probability evolution from the 

fractional Fokker-Planck equation is minimized.  

In the remainder of the paper, the application of fractional calculus in diffusion is introduced 

in Section 2. The generalized fractional Fokker-Planck equation is proposed and the analytical 

solution is provided in Section 3. The sensitivity analysis based on the analytical solution for 

drift-diffusion processes is presented in Section 4.1. The new model calibration approach is 

described in Section 4.2. 

2. FRACTIONAL DERIVATIVES AND FRACTIONAL DRIFT-DIFFUSION 
Several forms of fractional integrals and derivatives have been developed. The definitions of 

left and right Riemann-Liouville fractional integrals are 

 11
( ) ( ) ( )

( )

x

D f x x f d   (1) 

and 

 11
( ) ( ) ( )

( ) x
D f x x f d   (2) 
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respectively. 

The definitions of left and right Riemann-Liouville fractional derivatives are 

 11
( ) ( ) ( )

( )

n x
n

n

d
D f x x f d

n dx
  (3) 

and 

 1( 1)
( ) ( ) ( )

( )

n n
n

n x

d
D f x x f d

n dx
  (4) 

where integer n  or 1n n .  

The Riesz fractional integral is defined as 

 
1

( ) [ ( ) ( )]
2cos( / 2)

D f x D f x D f x   (5) 

and the Riesz fractional derivative is defined as .  

 
1

( ) [ ( ) ( )]
2cos( / 2)

D f x D f x D f x   (6) 

The Fourier transform of Riemann-Liouville and Riesz fractional derivatives are 

 { ( ); } ( ) { ( ); }D f x k ik f x k   (7) 

and 

 { ( ); } | | { ( ); }D f x k k f x k   (8) 

respectively with 0  and 2 1i , where 

 ˆ{ ( ); } ( ) ( ) ( )ikxf x k f k e f x dx k   (9) 

and  

 1 1ˆ ˆ{ ( ); } ( ) ( ) ( )
2

ikxf k x f x e f k dk x   (10) 

Notice that  

 sgn( ) /2( ) | | i kik k e   (11) 

and sgn( ) 1x  if 0x , sgn( ) 0x  if 0x , and sgn( ) 1x  if 0x . 

Analogously, the Fourier transforms of Riemann-Liouville and Riesz fractional integrals are 

given by  

 { ( ); } ( ) { ( ); } (0 1)D f x k ik f x k   (12) 

 { ( ); } | | { ( ); } (0 1)D f x k k f x k   (13) 

For order 0 2  and skewness min( ,2 ) , the Riesz-Feller derivative is defined as  

 
10

10

( ) ( ) ( )
sin

(1 ) 2
( )

( ) ( ) ( )
sin

2

x

f x f x
d

D f x
f x f x

d

  (14) 

so that its Fourier transform is 

 sgn( ) /2{ ( ); } | | { ( ); } (0 2)i k

x
D f x k k e f x k   (15) 

The Caputo fractional derivative of order , with 1m m and m  as an integer, is 

defined as 
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Its Laplace transform is  

 
1

1

*
0

{ ( ); } ( ) (0 )
m

k

t
k

D f t s s f s s f   (17) 

Different versions of fractional Fokker-Planck equation (fFPE) have been proposed. Wyss 

[21] introduced time fractional derivative into the diffusion equation. Fogedby [10] introduced a 

fractional diffusion term as a spatially nonlocal integral operator into the original FPE to model 

lévy flights and long-range steps. Meerschaert et al. [22, 23] used the Riesz fractional derivative 

in the diffusion term of spatial fFPE. Metzler et al. [24] applied the Riesz fractional derivative to 

the spatial diffusion term and the left Riemann-Liouville fractional derivative to time. Mainardi 

et al. [11] formulated the space-time fFPE with the Caputo fractional derivative in Eq.(16) for 

time derivative with 0 1 and the Riesz-Feller derivative in Eq.(14) for the diffusion term 

with 0 2 . Liu et al. [25] applied fractional time derivative to FPE.  Huang and Liu [26] 

extended the space-time fFPE by inserting the traditional drift term with the integer order 

derivative back to the equation. Liu et al. [27] further generalized with the left Riemann-

Liouville fractional derivatives for both drift and diffusion, in addition to the Caputo fractional 

derivative for time. Yıldırım and Koçak [28] introduced the fractional order of drift as a half of 

the fraction order of diffusion.  

Different methods were also developed to solve fFPEs. Fox functions [21] were applied to 

find analytical solutions of fractional diffusion problems. Finite difference approximation [29, 

27] can be applied to either space, time, or both, and the solving process is similar to the one for 

ordinary differential equations. Homotopy perturbation method [30, 28] approximates solutions 

analytically. Fourier transform [23, 31] and Mellin transform [32] can be applied to space fFPEs. 

Similarly Laplace transform [25] can be applied to time fFPEs. Both Fourier and Laplace 

transforms [11, 26] are needed for space-time fFPEs. 

3. FRACTIONAL FOKKER-PLANCK EQUATION FOR DRIFT-DIFFUSION MODEL 
The fFPE proposed here is 

 
*
( , ) ( , ) ( , )

t x
D p x t K D p x t K D p x t  (18) 

is a generalization of classical drift-diffusion equation that describes drift-diffusion processes, 

where ( , )p x t  is the probability that a particle is found at x  at time t  or the spatial distribution of 

fluid density or solute concentration at a particular time. K  and K  are the respective 

coefficients for drift and diffusion. In addition, 0 1  and 1 2  are the fractional orders 

of spatial derivatives, 0 1  is the fractional order of temporal derivative. As a result, 

 
1

( , ) ( ) ( , )
(1 )

xd
D p x t x p t d

dx
  (19) 

Also on the right hand side of Eq.(18), 
x
D  is the Riesz-Feller derivative of order . On the left 

side of Eq.(18),  

Note that the fFPE proposed here includes an independent fractional drift term in addition to 

the fractional diffusion term, which is slightly different from the fFPEs in Refs.[27, 28]. The 

fractional order diffusion is observed as subdiffusive or superdiffusive phenomena, and the 
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fractional order time derivative is used to model memory effects. The fractional order drift is 

considered as the spatial effect of external velocity or force fields in anomalous diffusion, which 

introduces heterogeneity of advection or drift. The introduction of fractional order parameters 

increases the flexibility of FPEs.  

Applying Laplace transform to both sides of Eq.(18), we receive 

 1( , ) ( ,0) ( , ) ( , )
x

s p x s s p x K D p x s K D p x s   (20) 

Applying Fourier transform further to both sides of Eq.(20) yields 

 1 sgn( ) /2ˆ ˆ ˆ ˆ( , ) ( ,0) ( ) ( , ) | | ( , )i ks p k s s p k K ik p k s K k e p k s  (21) 

Therefore,  

 
1

sgn( ) /2
ˆ ˆ( , ) ( , 0)

( | | ( ) )i k

s
p k s p k

s K k e K ik
 (22) 

The inverse Laplace transform of Eq.(22) is  

 sgn( ) /2

,1
ˆ ˆ( , ) ( | | ( ) ) ( ,0)i kp k t K k e t K ik t p k  (23) 

where 
,1
 is the Mittag-Leffler function of order ( ,1) . The general Mittag-Leffler function of 

order ( , )  is defined as 

 
,

0

( )
( )

n

n

z
z

n
 (24) 

The inverse Fourier transform of Eq.(23) is  

 

sgn( ) /2

,1

sgn( ) /2

,1

( ) sgn( ) /2

,1

1
ˆ( , ) ( | | ( ) ) ( , 0)

2
1

( | | ( ) ) ( , 0)
2

1
( | | ( ) ) ( , 0)

2

ikx i k

ikx i k iky

ik x y i k

p x t e K k e t K ik t p k dk

e K k e t K ik t e p y dydk

e K k e t K ik t dkp y d

, ,

, ,

( , ) ( , 0)

( , ) ( , 0)

y

G x y t p y dy

G x t p y

 (25) 

where  

 sgn( ) /2

, , ,1

1
( , ) ( ( ) | | )

2
ikx i kG x t e K ik t K k e t dk  (26) 

is the Green or kernel function. Its Fourier transform is  

 sgn( ) /2

, , ,1
ˆ ( , ) ( ( ) | | )i kG k t K ik t K k e t  (27) 

 

The analytical solution in Eq.(25) for fFPE can be approximated by continuous-time random 

walk or path integrals. Notice that the kernel function in Eq.(26) is a generalization of traditional 

Gaussian kernel. When 1 , 2 , 1 , and 0 , the kernel function becomes Gaussian.  

The fFPE in Eq.(18) provides a parametric approach to represent model-form uncertainty. 

Different combinations of , , , and  lead to distributions with heavy tails or skewness. 

Orders   and  capture the uncertainty related to spatial distribution, whereas  provides the 

sense of uncertainty in time domain. Skewness  represents the anisotropic property of diffusion 

so that dispersion is orientation-dependent.  

To provide a sense of how the parameters affect the simulation results, here some plots of 

probability density functions (pdf’s) with different model-form parameters are given. Figure 1 

shows the effect of skewness , and Figure 2 illustrates the effect of . It is seen that  provides 
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skewness of distributions with direction determined by its sign. A smaller diffusion order  

indicates a slower diffusion process. The effect of fractional order  is further shown in Figure 

3, where smaller  damps the influence of external field on drift process. The effect of time 

fractional order  is illustrated in Figure 4. Small orders of  lead to long-tailed distributions, 

which captures the slowly decaying memory effect.  

 
Figure 1: The effect of skewness θ on probability density functions 

 

 
Figure 2: The effect of β on probability density functions 

 

 
Figure 3: The effect of α on probability density functions 

 

(a) (b) 

(a)  (b)  

(b)  (a)  (c)  
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Figure 4: The effect γ on probability density functions 

 

4. QUANTIFICATION OF MODEL-FORM UNCERTAINTY IN DRIFT-DIFFUSION 
PROCESSES 
As shown in Section 3, model-form parameters , , , and  provide a variety of possible 

probability distributions which cannot be obtained by simply changing drift and diffusion 

coefficients of classical FPE. The flexibility provides a new approach to quantify model-form 

uncertainty. In this section, a new approach of model selection based on calibration is proposed, 

where an optimization formulation is developed to reduce model-form uncertainty. It uses the 

local sensitivity analysis of model prediction with different model forms.  

4.1 Local Sensitivity Analysis 
For global sensitivity analysis, we may choose statistical [ 33 ] or non-statistical [ 34 ] 

approaches. Here, the local sensitivity of the model prediction in Eq.(25) is analyzed by 

estimating the first derivatives with respect to the model-form parameters.  

If the probability in Eq.(25) is denoted as ( , | )P x t  where ( , , , )  is the combination of 

model-form parameters, then  

 
, ,

, ,

( , | ) ( ) ( , 0)

( , ) ( , 0)

P x t G x p y

G x y t p y dy
 (28) 

Specifically, 

 

 
1

sgn( ) /2

, , ,0sgn( ) /2

( )1
( , ) ( ( ) | | )

2 ( ( ) | | )
ikx i k

i k

K ik
G x t e K ik t K k e t dk

K ik K k e
(29) 

1 sgn( ) /2

sgn( ) /2

, , ,0sgn( ) /2

| |1
( , ) ( ( ) | | )

2 ( ( ) | | )

i k

ikx i k

i k

K k e
G x t e K ik t K k e t dk

K ik K k e
(30) 

1 sgn( ) /2

, , ,0

1
( , ) ( ( ) | | )

2
ikx i kG x t e t K ik t K k e t dk  (31) 

sgn( ) /2

sgn( ) /2

, , ,0sgn( ) /2

sgn( ) | |
1 2( , ) ( ( ) | | )
2 ( ( ) | | )

i k

ikx i k

i k

i k K k e
G x t e K ik t K k e t dk

K ik K k e
(32) 

The respective Fourier transforms are 

(a) (b) (c) 
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1
sgn( ) /2

, , ,0sgn( ) /2

( )
{ ( , ); } ( ( ) | | )

( ( ) | | )
i k

i k

K ik
G x t k K ik t K k e t

K ik K k e
 (33) 

1 sgn( ) /2

sgn( ) /2

, , ,0sgn( ) /2

| |
{ ( , ); } ( ( ) | | )

( ( ) | | )

i k

i k

i k

K k e
G x t k K ik t K k e t

K ik K k e
 (34) 

1 sgn( ) /2

, , ,0
{ ( , ); } ( ( ) | | )i kG x t k t K ik t K k e t  (35) 

sgn( ) /2

sgn( ) /2

, , ,0sgn( ) /2

sgn( ) | |
2{ ( , ); } ( ( ) | | )

( ( ) | | )

i k

i k

i k

i k K k e
G x t k K ik t K k e t

K ik K k e
 (36) 

 

 

Notice that [35]  

 , 1 ,

,

( ) ( 1) ( )
( )

z zd
z

dz z
  

Therefore, 

 ,0

,1

( )
( )

zd
z

dz z
  

The sensitivity formulation is used in the calibration process described in the following section. 

4.2 Model Form Calibration 
Here a new approach for model calibration is proposed, which is based on mutual 

information. Given two random variables X  and Y , the mutual information of the two variables 

is defined as  

 
( , )

( , ) ( , )log
( ) ( )

p X Y
I X Y p X Y dXdY

p X pY
  (37) 

The new calibration process is based on the criteria of the maximum accumulative mutual 

information between the model prediction and experimental observation. Given the model 

prediction ( , )p x t  from a particular form and the observation ( , )p z t  from experiment, the 

accumulative mutual information between the two is defined as 

 
( , , )

( , ) ( , , )log
( , ) ( , )

p x z t
x z p x z t dxdzdt

p x t p z t
  (38) 

where the joint probability  

 ( , , ) ( | , ) ( , )p x z t p z x t p x t  (39) 

Here, the likelihood ( | , )p x z t  characterizes the difference between the observation and model 

prediction. The likelihood is 

 
, ,

, ,

( | , ) (( ) , ) ( , 0)

( ) ( , 0)

( , | )

p z x t G x z y t p y dy

G x z p y

P x z t

  (40) 

The proposed criteria for model calibration is to find the optimum parameters  , , , and  

as the solution of 

 
, , ,
max ( , )x z   (41) 
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Given Eqs.(25) and (39), the accumulative mutual information in Eq.(38) becomes 

 
, , , ,

, ,

( , )

( | , )
( | , ) ( , ) log

( , )

( , ) ( , 0) ( , ) ( , 0)

( , ) ( , 0)
log

( , )

( , | )
( , | ) ( , | ) log

( , )

x z

p z x t
p z x t p x t dxdzdt

p z t

G x z t p y G x t p y

dxdzdtG x z t p y

p z t

P x z t
P x z t P x t dxdzdt

p z t

 (42) 

The local search direction to find the optimum solution of Eq.(41) is the first derivative of 

Eq.(42) with respect to the model-form parameters, which is 

 

( , )

( , | )
( , | ) 1 log ( , | )

( , )
( , | )

( , | ) log ( , | )
( , )

x z

P x z t
P x t P x z t

p z t dxdzdt
P x z t

P x z t P x t
p z t

 (43) 

Notice that 

 
, ,

( , | ) ( ) ( ,0)P x z t G x z p y  (44) 

which is similar to Eq.(28). The calibration process will follow the algorithm of optimization in 

Table 1. A simplified version of calibration is obviously based on mutual information instead of 

accumulative mutual information in Eq.(38). 

A numerical example is used to demonstrate the proposed calibration procedure. 2,000 

samples are randomly drawn from a Gaussian distribution. The simpler criterion of maximizing 

mutual information is applied. The histogram of experimental data is shown in Figure 5(a). An 

initial set of parameters ( 1 , 1.9 , 0.8 , and 0.4 ) are first given and the 

corresponding pdf is shown as the dash line in Figure 5(a). After 137 iterations of searching 

procedure in the algorithm in Table 1, the updated and final pdf are shown as the solid lines in 

Figure 5(a). The optimized parameters are 1 , 1.901 , 1.147 , and 0.741 . The search 

histories of  and  are shown in Figure 5(b) and (c) respectively. The value of mutual 

information gradually increases until it converges, as shown in Figure 6. 

 

Table 1: The algorithm of model calibration 

1. Provide the distribution ( , )p z t  from observation data; 

2. Provide an initial guess of ; 

3. Calculate ( , | )P x t  based on Eq.(25); 

4. Calculate ( , | )P x z t  based on Eq.(40); 

5. Calculate /  based on Eq.(43); 

6. IF | / |  

7.        Choose a step size , ( / ) ; 

8.        Go to Step 3; 

9. ELSE 

10.         Stop. 
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Figure 5: The search history of model-form parameters in the calibration process against random 

samples from a Gaussian distribution. (a) pdf evolution. (b) γ. (c) θ. 

 

 
Figure 6: The search history of mutual information with different step sizes for Gaussian 

distribution. (a) step size λ = 1.0. (b) step size λ = 2.0. 

 

(b)  

 

(a)  

(b)  

(c)  

Final pdf 

Initial pdf 

Exp. data 

(a)  
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Notice that the number of iterations is directly related to the threshold value ε in the stop 

criteria as well as the step size λ during the search. The threshold value used in Figure 6(a) is 

5e−6 and the step size is 1.0. A larger threshold value or a larger step size will lead to fewer 

iterations. For instance, when the step size is increased to 2.0, the number of iterations is reduced 

to 87 with the same threshold value, as shown in Figure 6(b). 

The proposed calibration approach can also be applied dynamically as an incremental 

calibration procedure when data are collected sequentially and the model can be re-estimated 

accordingly.  

Compared to Bayesian model average, there is no need to assume the probabilities associated 

with different model choices. The calibration process is continuous for model-form parameters.  

The second example is to calibrate the model against a Fréchet distribution with the pdf as 

 
1 1 1/ 1/

0 ( )
( )

[1 ( )] exp{ [1 ( )] }

x
f x

x x
otherwise

 

with parameters 0.0 , 1.0 , and 0.5 . The result of calibration is shown in Figure 7, 

where the solid line with star markers denotes the pdf of Fréchet distribution, the dash line is the 

initial pdf, and the solid lines show the update process of calibrated pdf. The change of mutual 

information is shown in Figure 8. 

 

 
Figure 7: pdf evolved in the calibration process against a Fréchet distribution 

 

Final pdf 

Initial pdf 

Fréchet 
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Figure 8: The search history of mutual information for Fréchet distribution 

 

A third numerical example is the calibration process based on 2,000 samples randomly drawn 

from a lognormal distribution with 1.0  and 1.0 . The result is shown in Figure 9. 

 

 
Figure 9: pdf evolved in the calibration process against random samples from a lognormal 

distribution 

 

In the above three examples, only one-step mutual information was applied. If accumulative 

mutual information is used, the model is calibrated based on the complete history of pdf 

evolution simultaneously. Figure 10 shows such an example, where histograms for three time 

steps (t=0.1, 0.2, and 0.3) are used to calibrate the model, the dash line shows the initial pdf, and 

the solid lines indicate the calibrated ones at the three time steps respectively. 
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Figure 10: pdf’s at three time steps are calibrated simultaneously against histograms of a 

diffusion process based on accumulative mutual information. (a) time step t=0.1. (b) time step 

t=0.2. (c) time step t=0.3. 

 

 

5. DISCUSSIONS AND CONCLUSION 
The method to quantify model-form uncertainty in simulating drift-diffusion phenomena is 

generic enough to capture the advection-diffusion and probability evolution driven by complex 

physical mechanisms. Therefore, the modeled processes are not restricted to Gaussian any more. 

Long-range correlations and memory effects are commonly observed in physical world. The 

simplification involved in Gaussian process modeling has inherent errors in its description. 

Fractional calculus provides a versatile tool to quantify and reduce the model-form uncertainty. 

Except for a few simple pdf’s that have analytical forms subject to fractional operators, most 

of fractional integrals and derivatives have to rely on numerical approaches to estimate. 

Fractional derivatives can be approximated by series of integer-order derivatives [36, 3], integer-

order moments [37, 38], or finite difference [12]. The general analytical solution provided in 

Section 3 enables us to employ other numerical methods to find the solution. Numerical method 

is not the focus of this paper. Yet the approximated solutions obtained in the paper are based on 

fast Fourier transform with relatively low computational costs.  

It is seen in Section 4.2 that the model calibration works well for some classical distributions. 

However, it should be aware that the four model-form parameters are not completely 

independent. It leads to the possibility that multiple optimum combinations of parameters 

produce the same distributions. This issue will become less apparent when multiple time steps of 

probability evolution are involved in the calibration process.  

In the future work, numerical methods to enhance both the efficiency and accuracy for 

approximated solutions need to be studied. The discretization in real and reciprocal spaces for 

fast Fourier transform requires a large number of values to reduce the approximation error. A 

combination of approximations in real and functional spaces may improve the efficiency by 

reducing the density of discretization. How to incorporate multiple time steps efficiently in 

model calibration also requires more investigation. 

 

 

 

 

(b)  

 

(a)  (c)  
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