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Model
Variability is the inherent randomness in systems, whereas incertitude is due to lack of
knowledge. In this paper, a generalized hidden Markov model (GHMM) is proposed to
quantify aleatory and epistemic uncertainties simultaneously in multiscale system analy-
sis. The GHMM is based on a new imprecise probability theory that has the form of
generalized interval. The new interval probability resembles the precise probability and
has a similar calculus structure. The proposed GHMM allows us to quantify cross-scale
dependency and information loss between scales. Based on a generalized interval Bayes’
rule, three cross-scale information assimilation approaches that incorporate uncertainty
propagation are also developed. �DOI: 10.1115/1.4003537�
Introduction
Multiscale systems are the ones consisting of hierarchical struc-

ures with different sizes and exhibit patterns of behaviors as the
iagnostics of interactions among subsystems at lower levels re-
ursively. Human cells, atmospheric turbulence, ecosystems, and
roduct/materials hierarchies are such examples. Among other re-
earch issues, uncertainty is an unavoidable artifact of modeling
nd observation of physical processes and should be assessed in
he context of multiscale systems.

The unique challenge in characterizing uncertainty of multi-
cale systems is how to quantify its propagation across scales
ccurately and efficiently. Most of the existing stochastic models
nly focus on one length scale. For multiscale systems, uncertain-
ies propagate between scales and are interdependent. For in-
tance, distributions of defects in crystals determine the reliability
f alloy structures. Physical properties of materials are manifesta-
ions of atomic-level electron densities and distributions. There-
ore, cross-scale correlation should be studied in order to fully
nderstand physical phenomena and support engineering design.

Uncertainty concerns variability and incertitude, which appear
niversally. The need to quantify variability and incertitude sepa-
ately has been well recognized �1–3�. Variability is the inherent
andomness in a system because of fluctuation and perturbation.
ariability is also referred to as aleatory uncertainty, stochastic
ncertainty, simulation uncertainty, and irreducible uncertainty. In
ontrast, incertitude is due to lack of perfect knowledge or enough
nformation about the system. It is also known as epistemic un-
ertainty, reducible uncertainty, and model form uncertainty.

The need of separating aleatory and epistemic uncertainties is
ore noticeable in multiscale system analysis. Measurement data

or very small �e.g., nanoscale physical properties� or very large
ystems �e.g., global temperature change� are usually scarce, vary-
ng greatly in terms of form and quality, or even impossible to be

easured. The effect of epistemic uncertainty thus is more evident
han in traditional system analysis. The two types of uncertainty
eed to be represented explicitly if we want to increase the con-
dence of modeling or simulation results. Neglecting epistemic
ncertainty may lead to decisions that are not robust. The typical
ay to assess robustness is sensitivity analysis �4�, which is to
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check how much variation the analysis result may have if input
distribution parameters or types deviate from the ones used in the
analysis. Mixing epistemic and aleatory uncertainties may in-
crease the cost of risk management. If extra knowledge or infor-
mation of the collected data is available, they can be further clus-
tered into smaller groups or intrinsic mathematical relationships
can be identified so that variance can be reduced, which reflects
pure randomness more accurately for risk analysis.

Therefore, aleatory and epistemic uncertainties need to be
quantified simultaneously in multiscale system analysis. In this
paper, an imprecise probability approach is proposed to represent
the two types of uncertainties. Instead of a precise value of prob-
ability P�E�= p associated with an event E, a pair of lower and
upper probabilities P�E�= �p� , p̄� is used to include a set of values.
The range of the interval �p� , p̄� captures the epistemic uncertainty
component. Imprecise probability thus differentiates incertitude
from variability both qualitatively and quantitatively, which is an
alternative to the traditional sensitivity analysis in probabilistic
reasoning.

The interval bounds p� and p̄ can be solicited as the lowest and
highest subjective probabilities about a particular event from a
domain expert, where probability represents the degree of belief.
Different experts may have different beliefs. Even one expert may
hesitate to offer just a precise value of probability. In these cases,
the range of probabilities gives the interval bounds. Incorporating
more beliefs may increase the interval width. When used in data
analysis with frequency interpretation, the interval bounds can be
confidence intervals that are calculated from data. For instance,
the Kolmogorov–Smirnov confidence band to enclose the cumu-
lative distribution function �c.d.f.� can be used, where the width of
the band captures epistemic uncertainty because of the lack of
information and knowledge. If extra data are collected, the inter-
val width can be reduced, and the confidence band converges
toward a precise c.d.f.

The purpose of using imprecise probability in system analysis
is to improve the robustness of prediction. The existing sampling-
based simulation mechanisms, such as second-order Monte Carlo
�5�, cannot provide such information efficiently, where a double-
loop sampling procedure is used so that the inner loop simulates
variability and the outer loop simulates the incertitude associated
with models and parameters. There is a need of generic and effi-
cient mathematical framework to study aleatory and epistemic un-
certainties in multiscale complex systems. In this paper, we pro-

pose a generalized hidden Markov model �GHMM� with a new
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eneralized interval probability that is based on generalized inter-
al for multiscale uncertainty quantification. The generalized in-
erval has good algebraic properties, which significantly simplifies
he calculus structure of the interval probability.

In the remainder of this paper, overviews of relevant work in
ultiscale simulation, uncertainty quantification, imprecise prob-

bility, and generalized interval are given in Sec. 2. In Sec. 3, the
ew imprecise probability theory based on the generalized inter-
als is described. In Sec. 4, the GHMM is proposed. Three cross-
cale information assimilation approaches are developed and dem-
nstrated in Sec. 5.

Background

2.1 Stochastic Models to Simulate With Variability. Vari-
us stochastic models to accommodate variability have been de-
eloped at different scales. At the traditional macro- or bulk-scale
f engineering, stochastic or probabilistic finite element analysis
ith random fields has been extensively studied. The basic idea is

o incorporate variabilities of geometry, material properties, and
oads in finite element analysis �FEA� �6�. Analysis methods of
umerical approximations �7�, spectral approximations by the
arhunen–Loève �KL� decomposition �8�, as well as its generali-

ations �9–11�, and optimization �12� have been developed.
At the mesoscale, dislocation dynamics �13� is a popular tool to

imulate plastic deformation of crystalline structures. Extended
rom deterministic models, stochasticity was introduced into dis-
ocation dynamics simulation to incorporate the fluctuation effects
f internal stress �14� and spatial distributions �15,16� caused by
ong-range dislocation interaction and thermal dissipation �17�
uring plastic flow.

The models reviewed above only consider variability within
ne scale. Assumptions are made such that randomness at mac-
oscale is independent of that at microscale. This homogenization
pproach does not always model the real world. For example, the
ffective variance of moduli obtained by averaging over small
omains of composite materials does not agree with the one ob-
ained from a sufficiently large representative volume element.
urthermore, damage and fracture are highly sensitive to very

ocal defects �18�. Decoupling variational information between
ength scales will compromise the accuracy of predictions.

2.2 Multiscale Simulation With Variability. Plenty of re-
earch has been done on deterministic multiscale simulation,
hile relatively little research is focused on stochastic information

ntegration. Recently, Choi et al. �19� represented variabilities as
ultiscale Gaussian models with a pyramid graph structure. Mul-

iscale information assimilation was achieved by a so-called walk-
um analysis for both long-range and local dependencies. As an
xtension of Arlequin coupling framework, Chamoin et al. �20�
roposed a stochastic coupling approach based on homogeniza-
ion of material properties between length scales for Monte Carlo
imulation. Ganapathysubramanian and Zabaras �21� developed
n upscaling approach to derive coarse-scale probability distribu-
ions from fine-scale distributions based on sampling in low-
imensional space. Arnst and Ghanem �22� took another upscaling
pproach to approximate fine-scale probability distributions by the
L decomposition. Chen and co-workers �23,24� also developed

n upscaling approach based on the KL decomposition and inte-
rated it with stochastic FEA.

The above methods are intended to solve the issue of multiscale
ariability information exchange. Domain specific assumptions of
robability distributions were made so that analysis is computa-
ionally tractable. More importantly, aleatory and epistemic uncer-
ainties were not differentiated. Consequently, the effects of lack
f information versus fluctuation are indistinguishable. Given the
ery different nature of variability and incertitude, independent
uantification of the two is useful to understand the analysis re-
ults and make appropriate decisions accordingly. The GHMM

roposed here is generic enough to support both parametric and
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nonparametric probabilistic modeling without the assumption of
distributions, at the same time differentiating aleatory and
epistemic uncertainties with imprecise probability.

2.3 Imprecise Probability. Probability theory provides com-
mon ground to quantify uncertainty and so far is the most popular
approach. Uncertainties are quantified by precise values of prob-
ability measures and their parameters �e.g., means and higher-
order moments�. However, precise probability theory has limita-
tions in representing epistemic uncertainty. The most significant
one is that it does not differentiate total ignorance from other
probability distributions. Total ignorance means that the analyst
has zero knowledge about the system under study. Based on the
principle of maximum entropy, uniform distributions are usually
assumed when traditional probability theory is applied in this
case. A problem arises because introducing a uniform or any par-
ticular form of distribution has itself introduced extra information
that is not justifiable by the zero knowledge. The commonly used
uniform distribution where all possible values are equally likely is
not guaranteed to be true because we are totally ignorant. This
leads to the Bertrand-style paradoxes such as the van Fraassen’s
cube factory �25�. “Knowing the unknown” does not represent the
total ignorance. In imprecise probability P= �0,1� accurately rep-
resents the total ignorance.

Another limitation of precise probability is representing inde-
terminacy and inconsistency in the context of subjective probabil-
ity. When no data are available and people have limited ability to
determine the precise values of their own subjective probabilities,
precise probability does not capture indeterminacy. When subjec-
tive probabilities from different people are inconsistent, it does
not capture a range of opinions or estimations adequately without
assuming some consensus of precise values on the distribution of
opinions. “Agreeing the disagreed” is not the best way to capture
inconsistency.

Imprecise probability �p� , p̄� combines epistemic uncertainty �as
an interval� with aleatory uncertainty �as probability measure�,
which is regarded as a generalization of traditional probability.
Gaining more knowledge can reduce the level of imprecision and
indeterminacy, i.e., the interval width. When p� = p̄, the degener-
ated interval probability becomes a traditional precise one. Our
proposed approach uses imprecise probabilities to quantify alea-
tory and epistemic uncertainties simultaneously. Many forms of
imprecise probabilities have been developed. For example, the
Dempster–Shafer evidence theory �26,27� characterizes evidence
with discrete probability masses associated with a power set of
values. The behavioral imprecise probability theory �1,28� models
uncertainties with the lower and upper previsions following the
notations of de Finetti’s subjective probability theory. The possi-
bility theory �29� represents uncertainties with necessity-
possibility pairs. Probability bound analysis �30� captures uncer-
tain information with pairs of lower and upper distribution
functions or p-boxes. F-probability �31� represents an interval
probability as a set of probabilities with the Kolmogorov proper-
ties. A random set �32� is a multivalued mapping from the prob-
ability space to the value space. Interval probability �33� computes
imprecision with interval analysis. Fuzzy probability �34� consid-
ers probability distributions with fuzzy parameters. A cloud �35� is
a combination of fuzzy sets, intervals, and probability
distributions.

One common problem of the above set-based imprecise prob-
ability theories is that the calculation is cumbersome. Linear and
nonlinear optimization methods are depended on to search lower
and upper bounds of probabilities during reasoning. Different
from them, we recently proposed an imprecise probability with a
generalized interval form �36,37�, where the calculus structure is
greatly simplified based on the algebraic properties of the Kaucher
arithmetic �38� for the generalized interval.

2.4 Generalized Interval. Generalized interval �39,40� is an

extension of the set-based classical interval �41� with better alge-
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raic and semantic properties based on the Kaucher arithmetic
38�. A generalized interval xª �x� , x̄��x� , x̄�R� is not constrained
y x� � x̄ anymore. Therefore, �0.2,0.1� is also a valid interval and
alled improper, while the traditional interval �0.1,0.2� is called
roper. Based on the theorems of interpretability �39�, a general-
zed interval provides more semantic power to help verify com-
leteness and soundness of range estimations by logic interpreta-
ions. A complete range estimation of possible values includes all
ossible occurrences. A sound range estimation does not include
mpossible occurrences. More information of generalized interval
an be found in Refs. �42–44�.

Compared with the semigroup formed by the classical set-based
ntervals, generalized intervals form a group. This property sig-
ificantly simplifies the computational structure. The set of gener-
lized intervals is denoted by KR= ��x� , x̄� �x� , x̄�R�. The set of
roper intervals is IR= ��x� , x̄� �x� � x̄�, and the set of improper in-
erval is IR= ��x� , x̄� �x� � x̄�. The relationship between proper and
mproper intervals is established with the operator dual as

dual�x� , x̄� ª �x̄,x�� �2.1�
he less than or equal to partial order relationship between two
eneralized intervals is defined as

�x� , x̄� � �y� , ȳ� ⇔ x� � y� ∧ x̄ � ȳ �2.2�

ased on the generalized interval, the new form of imprecise
robability resembles the classical precise probability.

Generalized Interval Probability
DEFINITION 1. Given a sample space � and a �-algebra A of

andom events over �, the generalized interval probability p
KR is defined as p :A→ �0,1�� �0,1�, which obeys the axioms

f Kolmogorov: �1� p���= �1,1�, �2� �0,0��p�E�� �1,1��∀E
��, and �3� for any countable mutually disjoint events Ei�Ej

� �i� j�, p��i=1
n Ei�=�i=1

n p�Ei�. Here “�” is defined in Eq.
2.2�.

DEFINITION 2. The probability of union is defined as p�A�
�S�A�−dual��A�−�S�p�S� for A��.
The most important property of the generalized interval prob-

bility is the logic coherence constraint �LCC�: for a mutually
isjoint event partition �i=1

n Ei=�, �i=1
n p�Ei�=1. The LCC ensures

hat the generalized interval probability is logically coherent with
he precise probability. For instance, given that p�down�
�0.2,0.3�, p�idle�= �0.3,0.5�, and p�working�= �0.5,0.2� for a

ystem’s working status, we can interpret it as

∀p1 � �0.2,0.3���∀p2 � �0.3,0.5���∃p3 � �0.2,0.5���p1 + p2 + p3

= 1�
ccordingly, we differentiate nonfocal events �working in this ex-

mple� from focal events �down and idle�. An event E is focal if
he associated semantics for p�E� is universal �∀ �. Otherwise, it is
onfocal if the associated semantics is existential �∃ �. While the
pistemic uncertainty associated with a focal event is critical to
he analyst, the one associated with a nonfocal event is not.

The concepts of conditional probability and independence are
ssential for the classical probability theory. With them, we can
ecompose a complex problem into simpler and more manageable
omponents. Similarly, they are critical for imprecise probabili-
ies. Different from all other forms of imprecise probabilities,
hich are based on convex probability sets, our conditional prob-

bility is defined directly from marginal probability.
DEFINITION 3. If p�C��0, the conditional probability p�E �C�
or all E, C�A is defined as
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p�E�C� ª
p�E � C�
dualp�C�

= 	 p� �E � C�
p� �C�

,
p̄�E � C�

p̄�C�

 �3.1�

Thanks to the unique algebraic properties of generalized intervals,
this definition can greatly simplify computation in applications.
Only algebraic computation is necessary.

DEFINITION 4. For A ,B ,C�A, A and B are said to be condi-
tionally independent given C if and only if

p�A � B�C� = p�A�C�p�B�C� �3.2�

DEFINITION 5. For A ,B�A, A and B are said to be independent if
and only if

p�A � B� = p�A�p�B� �3.3�
The independence in Definition 5 is a special case of conditional
independence in Definition 4, where C is the complete sample
space �. The conditional independence in Eq. �3.2� can also have
a second form, as shown in Theorem 3.1. The proofs of all theo-
rems are included in the Appendixes A and F.

THEOREM 3.1. p�A�B �C�=p�A �C�p�B �C�⇔p�A �B�C�
=p�A �C�.

4 Generalized Hidden Markov Model (GHMM)
We propose a new and generic probabilistic model to account

for aleatory and epistemic uncertainties in complex systems. The
proposed GHMM essentially captures spatial dependency. Figure
1 is an illustration of GHMM for multiscale systems, where the
spatial domains in three length scales �x, �y, and �z are subdi-
vided into cells. The state of each cell is represented as a random
variable, denoted as xi, yj, zk, respectively, at three scales. If the
state value of a cell is dependent on those values of neighboring
cells, the dependencies or correlations are denoted by the connec-
tions between cells in the graphical model.

The spatial dependency or correlation relationships are ex-
pressed as conditional probabilities. For instance, p�xi=a �xi,1
=b1 ,xi,2=b2 , . . . ,xi,l=bl� is the probability that the state variable
xi has value of a given that its l neighboring cells have the respec-
tive state values of �b1 , . . . ,bl�. In the example of Fig. 1, xi has
l=4 neighbors. Notice that neighbors do not necessarily mean that
they are spatially close. If long-range couplings exist, one cell
could be dependent on or correlated with another even when they
are spatially far apart.

Between different scales, there are also dependency relation-
ships. The scale dependency is also represented as a conditional
probability. For instance, in Fig. 1, the state of cell yj at scale Y is
dependent on the state values of the corresponding subdomain �x,
i.e., p�yj �x1 , . . . ,xi , . . . ,x9�.

In general, the true state values of cells may or may not be
directly observable. Theoretically, all observed values in experi-

Fig. 1 The generalized hidden Markov model for multiscale
systems to capture spatial and scale dependency
ments contain the effects of aleatory and epistemic uncertainties.
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herefore, the observed states are just another set of random vari-
bles that are dependent on true state values. Here, the observation
ependency is included in the GHMM. Without loss of generality,
e assume that each of the cells in different scales has its corre-

ponding observable state. For instance, in Fig. 1, the true states
f the cells on the left-hand side are hidden, and the corresponding
bservations are on the right-hand side. The probability of observ-
ng Xi=b given that xi=a is p�Xi=b �xi=a�. Similarly, we have
�Y j �yj� and p�Zk �zk� at other length scales. If there are states that
re not observable, the number of observation dependency rela-
ionships is reduced.

The proposed GHMM is a generalization of hidden Markov
odels �HMMs� �45,46� to analyze systems under both aleatory

nd epistemic uncertainties. Even though there has been some
esearch to extend HMM to hierarchical models and apply them to
attern recognition such as natural language �47� and image clas-
ifications �48,49�, epistemic uncertainty is not explicitly captured
n these Markov models. The most important and unique gener-
lization of the proposed GHMM is that imprecise probabilities
ased on generalized intervals are used in the model. With impre-
ise probabilities, both types of uncertainties can be explicitly
ncorporated. With generalized intervals, inference and reasoning
an be significantly simplified. Therefore, the proposed model im-
roves computational efficiency while gaining more information
rom analysis results. Notice that the model illustrated in Fig. 1
hows spatial dependency only. To capture temporal dependency,
tate transitions can also be achieved. That is, a GHMM with
ne-dimensional neighborhood relationships will represent state
ransition history within one cell in Fig. 1.

We call the GHMM generalized because of three levels of gen-
ralizations. First, our multiscale Markov model is a generaliza-
ion of commonly used Markov chains and hidden Markov mod-
ls. Second, our Markov model with imprecise probabilities is a
eneralization of traditional models with precise probabilities.
hird, our new form of imprecise probability based on generalized

ntervals is also a generalization of interval probabilities. The
HMM is generally applicable to various uncertainty quantifica-

ion problems. In this paper, we apply it in multiscale system
esign and analysis.

With the incorporation of generalized interval probability, a
oncise form of GHMM properties similar to the traditional pre-
ise probability can be achieved. The most important properties
re localities. These include the locality of observation and the
ocality of scale.

THEOREM 4.1 �locality of observation�. For two disjoint subdo-
ains Ai and A j at scale X, if the hidden states xi�Ai

and xj�A j
re independent and the corresponding observations are also in-
ependent, then

p�XAi
,XA j

�xi�Ai
,xj�A j

� = p�XAi
�xi�Ai

�p�XA j
�xj�A j

�

heorem 4.1 provides the algebraic convenience to decompose a
omplex system into smaller subsystems within one scale. Inde-
endent experimental measurements can be performed without
osing the grand picture of aleatory and epistemic uncertainties of
he whole system.

THEOREM 4.2 �locality of scale�. If Ai, B j , and Ck are subdo-
ains at scales X , Y , and Z, respectively, with Ai�B j �Ck, then

p�xAi
�yBj

,zCk
� = p�xAi

�yBj
� and p�zCk

�yBj
,xAi

� = p�zCk
�yBj

�

heorem 4.2 allows us to simplify the analysis with multiple
cales. The propagation of uncertain information between scales is
nly limited to the two that are adjacent or closely related. It also
ndicates that the information exchange in the GHMM is in both
op-down and bottom-up directions. For instance, in a polycrys-
alline piezoelectric ceramic material, the variation of lattice dis-
ortion for individual unit cells is correlated with the polarization
f the grain which the cells belong to. Given that the dependency
etween lattice-level and grain-level uncertainties has been con-

idered, the variation of lattice-level local distortion can be re-

31004-4 / Vol. 133, MARCH 2011
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garded as being independent of the overall anisotropic electrome-
chanical properties of the whole piezoelectric disk because the
macroscopic properties of the polycrystalline solid are the homog-
enization of all grains, whereas those of each grain in turn are the
manifestation of average structural properties from all cells within
it.

The simplicity of the scale and observation localities is due to
the definition of conditional probability in Eq. �3.1� as well as the
group properties of the generalized interval.

5 Cross-Scale Information Assimilation
When small-scale �or large-scale� experiments are not possible,

or the measurements are not feasible or dependable at one particu-
lar scale, we may conduct experiments at a larger �or smaller�
scale to measure system properties so that information can be
combined to validate models or assumptions. For instance, in de-
sign of new devices using nanomaterials, instead of directly mea-
suring atomic-level properties, which is usually expensive or even
impossible, the measurement of aggregated properties at macros-
cale can be easier and more accurate. In contrast, it is impossible
to measure global temperature change. We only depend on re-
gional ocean water temperature changes to predict the global pic-
ture. Cross-scale information assimilation thus is an important
tool in studying multiscale systems, which is based on a general-
ized interval Bayes’ rule �GIBR�.

THEOREM 5.1 �GIBR�. The generalized interval Bayes’ rule
states that

p�Ei�A� =
p�A�Ei�p�Ei�

� j=1

n
dual p�A�Ej�dual p�Ej�

�5.1�

where Ei�i=1, . . . ,n� are mutually disjoint event partitions of �

and � j=1
n p�Ej�=1.

Based on the GIBR, the problem of cross-scale information
assimilation under aleatory and epistemic uncertainties can be for-
mulated in several ways, including single-point observation, mul-
tipoint observation, and multipoint multiscale observation. The
general process of cross-scale information assimilation based on
the GIBR is illustrated in Fig. 2. Prior probabilities and likeli-
hoods are constructed or solicited. If data are available, we may
use the Kolmogorov–Smirnov confidence bands as p-boxes and
calculate interval probabilities. If no data are available, domain
experts may give estimates of interval probabilities. In either case,
the logic coherence constraint in Sec. 3 should be satisfied. If no
knowledge is available at all, p= �0,1� should be used.

5.1 Single-Point Observation. The simplest cross-scale as-
similation is by the single-point observation. This approach allows
that the uncertainty estimation at one scale is used to either vali-
date the model prediction or update the information at a different
scale. Suppose that the states of one or more variables x1 , . . . ,xl at
scale X are not directly observable, and the system can be ob-
served via the variable Y corresponding to the unobservable y at

Fig. 2 The illustration of cross-scale information assimilation
based on GIBR
scale Y instead. Then the estimation is calculated as follows.

Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



s

t
a
s
b
p
t
s
a
o
i

o
e
r
c
o
c
t
o
s
e
t
e

i
p
t
t
r
a
t
s
a

J

Downloa
THEOREM 5.2. Given p�y �x1 , . . . ,xL� for variables x1 , . . . ,xL at
cale X and y at scale Y, p�Y �y� for observable Y corresponding
Fig. 3 CNT composites in design of biomimetic actuator †50‡
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to y , and the prior estimate p�x1 , . . . ,xL�, the posterior imprecise
probability p�x , . . . ,x �Y� is obtained as
1 L
p�x1, . . . ,xL�Y� =

p�x1, . . . ,xL�� p�Y�y�p�y�x1, . . . ,xL�dy

dual�¯

/
p�Y�y�p�y�x1, . . . ,xL�p�x1, . . . ,xL�dydx1 ¯ dxL
5.2 An Example of Single-Point Observation. Carbon nano-
ubes �CNTs� have unique electrical and mechanical properties,
nd CNT polymer composites have been applied in various de-
igns of sensors and actuators. In design of biomimetic actuators
ased on ionic polymer composite, the incorporation of CNT in
olymer matrix can improve the electromechanical property. In
he design of Deshmukh and Ounaies �50� as shown in Fig. 3,
ignificant forces can be generated with CNTs when low dc volt-
ges are applied on the polymer composite actuators. The amount
f CNT, the conductivity of polymer composites, and the level of
nduced strain are correlated.

Designer may want to know whether the electrical conductivity
f the nanotube itself in composites meets the specification, and
xperimental studies are needed. Instead of directly measuring the
esistivity of individual CNTs with diameters of about 10 nm, we
an measure those from CNT composites with the sizes of 1 �m
r more, which is much easier and more accurate. The electrical
onductivity of CNTs is sensitively dependent on the geometry of
ubes, particularly diameter and helicity. Because of the variation
f geometry and defects during the fabrication process, the mea-
ured quantities are stochastic in nature. At the same time,
pistemic uncertainty is associated with measurement because of
he lack of data, inconsistent observations, and measurement
rrors.

Relatively limited data are available for direct measurement of
ndividual CNTs’ resistivity. Table 1 lists two sets of samples that
ublished in Refs. �51,52�. Notice that the first paper as shown in
he left column reported measurement errors or uncertainty with
he	 ranges. The second paper used a different form and did not
ecord ranges. Yet the first and fifth samples are right censored
nd recorded with “�.” The imprecise and incomplete informa-
ion is the source of epistemic uncertainty. Both of the sample
izes �6 and 8� are small. It is obvious that these two sets of data
re inconsistent, which also shows the importance of imprecise
probability in such applications.
We can use observations of CNT composite conductivity at

mesoscale to assess the individual CNT’s resistivity at nanoscale.
First, we construct prior probabilities of individual CNT’s resis-
tivity. For simplicity, only the data in the first column of Table 1
are used. The empirical c.d.f. for each of the lower, middle, and
upper observations are solid lines in Fig. 4. If a parametric distri-
bution is required, we can fit the data by the lognormal distribu-
tion, plotted as dotted curves in Fig. 4, for three sets of data �lower
bound, middle, and upper bound� in terms of maximum likeli-
hood. However, given the very limited number of samples, the
parametric models are not plausible. We would rather use a non-
parametric model with the empirical c.d.f.’s without the assump-
tion of the distribution type. Therefore, the empirical interval
c.d.f. or p-box is constructed based on the Kolmogorov–Smirnov
confidence band �30�. The 95% confidence lower and upper limits
from the middle observation �red line� are shown as the blue and
green dashed lines, respectively, in Fig. 4. They are calculated by

Table 1 Resistivity measurements of individual CNTs

Resistivity �51�
�� m�

Resistivity �52�
�� m�


	� -6 samples 
 -8 samples

19.5	2.0 �80
7.8	1.0 0.012

46.0	1.8 0.0075
37.6	1.0 580
48.9	4.3 �0.4
117	19 0.00051

0.098
0.020

Fig. 4 Empirical c.d.f.’s and the distributions of data from Ref.

†51‡
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in�1,max�0,
	D�,n��, where D�,n depends on the sample size
and confidence level �. Here, n=6, �=0.025, and D0.025,6

0.51926. This confidence band ensures that the probability of the
nknown distribution function being within the band is at least
5%.

With the p-box formed by the Kolmogorov–Smirnov confi-
ence band and the Dempster–Shafer’s structure of basic prob-
bility assignment �BPA� m :2A→ �0,1�, we can determine the
ower and upper probabilities of the resistivity. Specifically, the
-box is viewed as a stack of rectangles. The width of each rect-
ngle is the focal element that defines the interval range of a BPA,
hereas the height of the rectangle is the value of the BPA. The
PAs are m�0�
46.0�=3 /6−D0.025,6=0.1474, m�0�

48.9�=1 /6, m�0�
117�=1 /6, m�0�
��=D0.025,6− �1

D0.025,6�=0.0385, m�7.8�
��=1 /6, m�19.5�
��=1 /6,
nd m�37.6�
��=1−2 /6−D0.025,6=0.1474.

Based on the Dempster–Shafer’s belief function

p� �A� = �
i:Ai�A

m�Ai� �5.2�

nd plausibility function

p̄�A� = �
i:Ai�A��

m�Ai� �5.3�

e can find the lower and upper probabilities. For instance, the
ower and upper probabilities that the individual CNT resistivity
re less than 50 � m are p� �
50�=m�0�
46.0�+m�0�


48.9�=0.3140 and p̄�
50�=1, respectively. Thus the prior

able 2 Conductivity measurements of CNT polymer compos-
tes with CNT concentration of 1.0 wt %

Maximum conductivity �
�� m−1� No. of samples

1.0�10−4 1
1.0�10−3 1
5.0�10−3 1
2.0�10−2 2
1.0�10−1 3
2.0�10−1 1
3.0�10−1 1
4.0�10−1 1

2.0 1
5.0 1

1.0�101 2
5.0�101 1
1.0�102 1

ig. 5 Empirical c.d.f. of composites conductivity with 1.0

t % of CNT from Ref. †53‡

31004-6 / Vol. 133, MARCH 2011

ded 01 Mar 2011 to 130.207.50.192. Redistribution subject to ASM
probability is p�x�= �0.3140,1�.
Compared with individual CNT measurement, the measurement

for CNT polymer composites is much easier to achieve. More than
200 publications have reported on the electrical properties of CNT
polymer composites. Bauhofer and Kovacs �53� recently summa-
rized those experimental results. The conductivity of composites
with CNT concentration 1.0 wt % is compiled and listed in Table
2. The empirical c.d.f. is plotted in Fig. 5 as the red line. Similarly,
the 95% Kolmogorov–Smirnov confidence limits �dash lines� are
calculated as lower and upper probability bounds.

Similarly, the lower and upper probabilities can be determined
based on Eqs. �5.2� and �5.3�. For instance, we have

p�conductivity with 1%CNT  0.1�
  50� = p�y1�x�

= �0.1526,0.6121�
which is the probability that the CNT composite conductivity is
less than 0.1 � m−1 given that the resistivity of the used indi-
vidual CNTs is less than 50 � m.

No information is available for the composite conductivity if
the individual CNT resistivity used is greater than 50 � m. That
is, p�y1 �xC�= �0,1�, and it represents the total ignorance. In addi-
tion, p�xC�=1−dualp�x�= �0.6860,0�, p�y1

C �x�=1−dualp�y1 �x�
= �0.8474,0.3879�, and p�y1

C �xC�=1−dualp�y1 �xC�= �1,0�. Fur-
ther, we can reasonably assume the measurement of composite
conductivity is fairly reliable with p�Y1 �y1�= �0.8,0.9� and
p�Y1

C �y1
C�= �0.8,0.9�. Thus, p�Y1

C �y1�= �0.2,0.1� and p�Y1 �y1
C�

= �0.2,0.1�.
If an additional observation of Y1 �conductivity 0.1� is ob-

tained, then based on Theorem 5.2 we can assert that

p�x�Y1� =
p�x��p�Y1�y1�p�y1�x� + p�Y1�y1

C�p�y1
C�x��

dual�
p�Y1�y1�p�y1�x�p�x�
+ p�Y1�y1�p�y1�xC�p�xC�
+ p�Y1�y1

C�p�y1
C�x�p�x�

+ p�Y1�y1
C�p�y1

C�xC�p�xC�


= �0.4002,1�

This posterior probability shows that the epistemic uncertainty
level of individual CNT property is reduced to 1−0.4002
=0.5998 from the prior estimate of 1−0.3140=0.6860.

Notice that interval probability allows us to calculate posterior
probabilities even when no data are available. When the total ig-
norance of p= �0,1� is applied, there is no risk of assuming certain
prior probabilities. In addition, the calculation of interval posterior
probabilities based on our generalized interval probability has a
much simpler form than other forms of imprecise probabilities.

In summary, the example in this section demonstrates that the
observation or measurement at one scale can be used to update
and assess uncertainties of a relevant quantity at a different scale.
Notice that all random variables with imprecise probabilities in-
clude both aleatory and epistemic uncertainties. This process is

Table 3 Conductivity measurements of CNT polymer compos-
ites with CNT concentration of 2.0 wt %

Maximum conductivity �
�� m−1� No. of samples

3.0�10−6 1
1.0�10−4 1
1.0�10−3 1
1.0�10−2 2
3.0�10−2 1
4.0�10−2 1
5.0�10−2 2
1.0�10−1 2

1.0 1
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lso useful to validate models or hypotheses concerned with quan-
ities that are difficult or costly to measure if intrinsic dependen-
ies between quantities of two scales exist.

5.3 Multipoint Observation. If there are multiple points of
bservation Y1 , . . . ,YM available instead of just one, the estimates

f x1 , . . . ,xL may be more accurate.

�0.8,0.9�, and p�Yi �yi �= �0.8,0.9� for i=1,2 and based on

ournal of Mechanical Design
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THEOREM 5.3. Given p�y1 , . . . ,yM �x1 , . . . ,xL� for variables
x1 , . . . ,xL at scale X and y1 , . . . ,yM at scale Y,
p�Y1 , . . . ,YM �y1 , . . . ,yM� for observable Ym corresponding to ym

�m=1, . . . ,M� , and the prior estimate p�x1 , . . . ,xL�, the posterior
imprecise probability p�x1 , . . . ,xL �Y1 , . . . ,YM� is obtained as
p�x1, . . . ,xL�Y1, . . . ,YM� =

p�x1, . . . ,xL��¯� ��m=1

M
p�Ym�ym�

��m=1

M
p�ym�x1, . . . ,xL� dy1 ¯ dyM

dual�¯� ��m=1

M
p�Ym�ym�

��m=1

M
p�ym�x1, . . . ,xL�

�p�x1, . . . ,xL�
dy1 ¯ dyMdx1 ¯ dxL
5.4 An Example of Multipoint Observation. We still use the
NT composite example in Sec. 5.2 to illustrate. The conductivity
f the composite material is correlated with the concentration of
NT or the ratio of weights between CNT and polymer. The gen-
ral trend for low concentrations is that more CNT leads to higher
onductivity. Therefore, if the conductivities of two composites
ith different CNT concentrations, e.g., 1.0% and 2.0%, are mea-

ured as Y1 and Y2, respectively, the estimate p�x� can be updated
ased on Theorem 5.3.

From the data in Ref. �53�, the conductivity of composite with
NT concentration 2.0% is compiled and listed in Table 3. Simi-

arly,

p�conductivity with 2%CNT  0.1�
  50� = p�y2�x�

= �0.5412,1�
s calculated based on Eqs. �5.2� and �5.3�.

With combined information including the one gained in Sec.
.2, i.e., p�x�= �0.3140,1�, p�y1 �x�= �0.1526,0.6121�, p�y2 �x�
�0.5412,1�, p�y1 �xC�= �0,1�, p�y2 �xC�= �0,1�, p�Yi �yi�

C C
Theorem 5.3, we can find p�x �Y1 ,Y2�= �0.6364,1�.
Compared with the single-point observation in Sec. 5.2, the

epistemic uncertainty level is reduced faster with more informa-
tion of observation used to assess the small scale property. This
multipoint observation is an enhancement of the single-point ob-
servation and provides more information.

5.5 Multipoint Multiscale Observation. As a further exten-
sion of the multipoint observation approach, the experimental
measures can be conducted at two or more scales for data
analysis.

THEOREM 5.4. Given p�y1 , . . . ,yM �x1 , . . . ,xL� for variables
x1 , . . . ,xL at scale X and y1 , . . . ,yM at scale Y,
p�z1 , . . . ,zN �y1 , . . . ,yM� for variables y1 , . . . ,yM at scale Y and
z1 , . . . ,zN at scale Z, p�Y1 , . . . ,YM �y1 , . . . ,yM� for observable Ym

corresponding to ym �m=1, . . . ,M�, p�Z1 , . . . ,ZN �z1 , . . . ,zN� for
observable Zn corresponding to zn �n=1, . . . ,N�, and the prior
estimate p�x1 , . . . ,xL�, the posterior probability

p�x1 , . . . ,xL �Y1 , . . . ,YM ,Z1 , . . . ,ZN� is obtained as
p�x1, . . . ,xL�Y1, . . . ,YM,Z1, . . . ,ZN� =

p�x1, . . . ,xL��¯� �
p�Z1, . . . ,ZN�z1, . . . ,zN�
p�Y1, . . . ,YM�y1, . . . ,yM�
p�z1, . . . ,zN�y1, . . . ,yM�
p�y1, . . . ,yM�x1, . . . ,xL�

dz1 ¯ dzNdy1 ¯ dyM

dual�¯� �
p�Z1, . . . ,ZN�z1, . . . ,zN�
p�Y1, . . . ,YM�y1, . . . ,yM�
p�z1, . . . ,zN�y1, . . . ,yM�
p�y1, . . . ,yM�x1, . . . ,xL�
p�x1, . . . ,xL�

dz1 ¯ dzNdy1 ¯ dyMdx1 ¯ dxL
5.6 An Example of Multipoint Multiscale Observation. In
he design of actuator in Fig. 3, a bending strain rate �M2 /mV2� is
sed as one of the major metrics to measure the extent of bending
movement for an actuator with respect to the squared electric field
intensity. With the data in Ref. �50� and following the same pro-
cedure used in Secs. 5.2 and 5.4, we have
MARCH 2011, Vol. 133 / 031004-7
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P�bending _ strain _ rate  0.06�conductivity with 1%CNT

 0.1� = p�z�y1� = �0.2924,1.0�

nd

P�bending _ strain _ rate  0.06�conductivity with 2%CNT

 0.1� = p�z�y2� = �0.3761,1.0�

ith p�x�= �0.3140,1�, p�y1 �x�= �0.1526,0.6121�, p�y2 �x�
�0.5412,1�, p�y1 �xC�= �0,1�, p�y2 �xC�= �0,1�, p�z �y1�
�0.2924,1.0�, p�z �y2�= �0.3761,1.0�, p�z �y1

C�= �0,1�, p�z �y2
C�

�0,1�, p�Yi �yi�= �0.8,0.9�, and p�Yi
C �yi

C�= �0.8,0.9� for i=1,2,
�Z �z�= �0.8,0.9�, p�ZC �zC�= �0.8,0.9�, and based on Theorem
.4, we can find p�x �Y1 ,Y2 ,Z�= �0.57,1.0�. Compared with the
ultipoint observation in Sec. 5.4, the epistemic uncertainty level

s increased, which indicates that inconsistency in observations
xists.

Concluding Remarks
The proposed GHMM is to represent aleatory and epistemic

ncertainties simultaneously in analyzing multiscale systems,
hich is unavailable in existing multiscale uncertainty quantifica-

ion methods. It captures coupling and dependency relationships
etween variables across different length scales in a generic way.
he GHMM supports both parametric and nonparametric models
f distributions. When the size or quality of data is not good
nough to build parametric models, the nonparametric approach
an be used without the assumption of distribution types.

The GHMM is based on a new theory of imprecise probability
hat has the form of generalized interval, where proper and im-

roper intervals capture epistemic uncertainty in addition to

endence, we have

31004-8 / Vol. 133, MARCH 2011
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probabilistic distributions for aleatory uncertainty. No assump-
tions of precise probability models and distribution types are re-
quired in imprecise probability if there is limited or no knowledge
available. With an algebraic structure similar to the precise prob-
ability, the new generalized interval probability significantly sim-
plifies the inference and reasoning compared with other forms of
imprecise probabilities. The precise probability becomes a special
case of the generalized interval probability, where the widths of
interval probabilities are reduced to zeros. The proposed GHMM
allows us to compute the propagation of uncertainties across
length scales efficiently. Cross-scale information assimilation is
enabled by a new definition of generalized interval Bayes’ rule.

The proposed model and inference mechanisms help quantify
multiscale uncertainty in system design and analysis. The simplic-
ity of the reasoning based on the proposed model shows the ad-
vantages and potentials for a wide variety of applications. How-
ever, further investigation of fundamental properties of the
generalized interval probability and GIBR is required in order to
understand the completeness and soundness of interval estima-
tions with respect to epistemic uncertainty. One limitation of the
GIBR is that the completeness of the posterior probability cannot
be checked directly by logic interpretation. In Eq. �5.1�, p�A �Ei�
and p�Ei� appear twice �the original and its dual respectively�.
One associated interpretation is ∀, and the other is ∃. The concat-
enation of the two predicates will be always ∃. As a result, the
completeness of the epistemic component of p�Ei �A� cannot be
checked directly, even though soundness can be done efficiently
�37�. Therefore, some algorithmic approaches are required.
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ppendix A: Proof of Theorem 3.1
Proof.

p�A � B�C� = p�A�C�p�B�C� ⇔ p�A � B � C�/dualp�C� = p�A�C� · p�B � C�/dualp�C� ⇔ p�A � B � C�/dualp�B � C�

= p�A�C� ⇔ p�A�B � C� = p�A�C� .

�

ppendix B: Proof of Theorem 4.1
Proof. By the definitions of conditional probability in Eq. �3.1�

nd independence in Eq. �3.3�, we have

p�XAi
,XA j

�xi�Ai
,xj�A j

� =
p�XAi

,XA j
,xi�Ai

,xj�A j
�

dualp�xi�Ai
,xj�A j

�

=
p�XAi

,xi�Ai
�p�XA j

,xj�A j
�

dual�p�xi�Ai
�p�xj�A j

��

=
p�XAi

,xi�Ai
�p�XA j

,xj�A j
�

dualp�xi�Ai
�dualp�xj�A j

�

= p�XAi
�xi�Ai

�p�XA j
�xj�A j

�

�

ppendix C: Proof of Theorem 4.2
Proof. By the definitions of conditional probability and inde-
p�xAi
�yBj

,zCk
� =

p�xAi
,yBj

,zCk
�

dualp�yBj
,zCk

�
=

p�xAi
,yBj

�p�zCk
�

dualp�yBj
�dualp�zCk

�
= p�xAi

�yBj
�

since p�zCk
� /dualp�zCk

�=1. Similarly we derive p�zCk
�yBj

,xAi
�

=p�zCk
�yBj

�. �

Appendix D: Proof of Theorem 5.1
Proof.

p�A�Ei�p�Ei�

� j=1

n
dualp�A�Ej�dualp�Ej�

=
p�A�Ei�p�Ei�

dual� j=1

n
p�A�Ej�p�Ej�

=
p�A � Ei�

dual� j=1

n
p�A � Ej�

=
p�A � Ei�
dualp�A�

= p�Ei�A�
�
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ppendix E: Proof of Theorem 5.2
Proof.

p�x1, . . . ,xL�Y� =
p�Y,x1, . . . ,xL�

dualp�Y�
=

� �Y,y,x1, . . . ,xL�dy

dualp�Y�

ecause of the logic coherent constraint �p�y�dy=1.

� p�Y,y,x1, . . . ,xL�dy

dualp�Y�
=

p�x1, . . . ,xL�� p�Y�y�p�y�x1, . . . ,xL�dy

dual�¯

/
p�Y�y�p�y�x1, . . . ,xL�p�x1, . . . ,xL�dydx1 ¯ dxL

ecause of Theorem 3.1. �

ppendix F: Proof of Theorem 5.3
Proof.

p�x1, . . . ,xL�Y1, . . . ,YM� =
p�Y1, . . . ,YM,x1, . . . ,xL�

dualp�Y1, . . . ,YM�
=

�¯� p�Y1, . . . ,YM,y1, . . . ,yM,x1, . . . ,xL�dy1 ¯ dyM

dual�¯� p�Y1, . . . ,YM,y1, . . . ,yM,x1, . . . ,xL�dy1 ¯ dyMdx1 ¯ dxL

=

�¯� �p�Y1, . . . ,YM�y1, . . . ,yM�
�p�y1, . . . ,yM�x1, . . . ,xL�
�p�x1, . . . ,xL�

dy1 ¯ dyM

dual�¯� �p�Y1, . . . ,YM�y1, . . . ,yM�
�p�y1, . . . ,yM�x1, . . . ,xL�
�p�x1, . . . ,xL�

dy1 ¯ dyMdx1 ¯ dxL

ecause of Theorem 3.1. If y1 , . . . ,yM and their measurements Y1 , . . . ,YM are mutually independent, from Theorem 4.1, the above can
e simplified further to

p�x1, . . . ,xL�Y1, . . . ,YM� =

p�x1, . . . ,xL��¯� ��m=1

M
p�Ym�ym�

��m=1

M
p�ym�x1, . . . ,xL� dy1 ¯ dyM

dual�¯� ��m=1

M
p�Ym�ym�

��m=1

M
p�ym�x1, . . . ,xL�

�p�x1, . . . ,xL�
dy1 ¯ dyMdx1 ¯ dxL

�

ppendix G: Proof of Theorem 5.4
Proof of Theorem 5.4 is similar to the proof of Theorem 5.3.
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