
INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, APRIL 2018 1

Trust Quantification for Networked Cyber-Physical
Systems

Yan Wang

Abstract—Cyber-physical systems (CPS) are highly integrated
hardware-software devices that electro-mechanical components
are tightly coupled with advanced computational algorithms
for data collection, processing, communication, and control.
Internet of Things is the emerging application of CPS. The main
research challenge in designing CPS devices and systems is the
quantification of complex system behaviors such as conscious-
ness, adaptation, and evolution. Particularly trust becomes an
important element that affects system behavior in the networked
society. To capture the unique human societal and systems
aspects of trustworthiness quantification for CPS systems, in
this paper, trustworthiness is measured by the perceptions of
ability, benevolence, and integrity quantitatively. Ability measures
one’s sensing and reasoning capability and influence to others.
Benevolence captures the genuineness of intention and the extent
of reciprocity in information exchange. Integrity provides the
confidence about system dependability and predictability. A
generic probabilistic graph model is developed to represent CPS
system functionality at mesoscale and demonstrate the perception
based quantification of ability and benevolence. Trust-based CPS
network design and optimization are also demonstrated with the
metrics of ability and benevolence.

Index Terms—Cyber-Physical Systems, Information Exchange,
Sensor Fusion, Graph Theory, Network Architecture, Security
and Privacy, Trustworthiness, Trust, Ability, Benevolence, and
Integrity.

I. INTRODUCTION

CYBER-physical systems (CPS) are highly integrated
hardware-software devices that electro-mechanical com-

ponents are tightly coupled with advanced computational algo-
rithms for data collection with sensor and actuator on-board,
data processing and reasoning with embedded processors, and
communication via Internet. They have the integrated capa-
bilities of information collection, processing, and exchange.
Compared to traditional mechatronics systems, CPS have
much higher levels of complexities and functionalities for
sensing and control, especially with advanced communica-
tion capability. They also possess more computational power
than traditional sensor networks, where data collection and
communication are the main functions. Examples of CPS are
smart appliances for home and office, intelligent manufactu-
ring systems with sensing and control units, personal devi-
ces for health monitoring, disruption-free energy supply and
transportation infrastructure, and situation-aware automotive
vehicles. With the advancement of novel materials for sensing,
actuation, computation, and communication, future CPS may
have different physical forms and properties, including those
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with self-adaptive, self-organizational, biomorphological, and
soft structures [1]. CPS may also be created at different size
scales and can exist at micro- and nano-scales. Therefore,
future CPS can be highly integrated with vehicles, machines,
and consumer products, as well as attached on or embedded
in human bodies, and work collectively and collaboratively.

The unique value of CPS is their collaborative functions
with information shared over the networks formed by them-
selves, which is being implemented and known as Internet
of Things (IoT). Data are constantly collected and shared
in a geographically distributed environment. Processing and
reasoning for decision making are also done locally in a
distributed fashion. This provides the infrastructure of cro-
wdsourcing, where information is no longer processed in
centralized locations.

Information crowdsourcing can improve the resilience of
systems. In such a federated environment, fewer subsystems
or nodes in the network play dominant roles in processing.
The negative effects of the breakdown of some nodes thus
can be minimized. The costs of maintaining such systems can
also be reduced because of the less restrictive requirements
on reliability of certain nodes. Nevertheless, there are new
technical issues associated with crowdsourcing in IoT, such as
interoperability, scalability, adaptability, usability, resilience,
security, trust, and privacy [2]. Particularly, most of the CPS
functions rely on information exchange. How to design a trus-
table network so that the data can be shared more freely inside
the network than outside. Data security is critical for trust.
However, security along cannot guarantee the trustworthiness.
Although security protocols and policies can prevent data
from being compromised during transmission, they provide no
guarantee against the misuse by the receiving party or fraud by
the transmitting party. In a secured network, partners could still
avoid sharing necessary information because of competitions
or conflicts of interests. In those cases, trustable relationship
still cannot be established even in a secured environment.

Here, how to quantify trustworthiness in the context of
systems of CPS and apply the concept to design IoT are
studied. Although trust has been studied in the fields of
computer science, psychology, marketing, and management,
most of the studies remain qualitative. In order to be useful
for system design, quantification of trust is necessary so that
quantitative criteria can be used for design optimization.

In recent research of trust quantification for networked
systems, two approaches are taken to quantify trustworthiness.
In the top-down approach, trustworthiness is treated as an
overall perception or belief about an individual’s reputation or
ability. It is quantified with probabilistic or non-probabilistic
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measures. In the bottom-up approach, trustworthiness is not
treated as one single concept. Rather, it consists of multiple
factors such as availability, dependability, and quality of ser-
vices, each of which can be calculated from the statistics of
physical systems, e.g. data transmission rates, executed routing
protocols, and positive recommendations. For applications,
the metrics of trustworthiness were used in assessing system
availability or designing dynamic routing protocols.

Compared to traditional computational hardware and soft-
ware systems, trustworthiness for CPS has some unique pro-
perties and challenges. The first one is the system-oriented
quantification and its complexity. CPS networks formed by
industrial or consumer products are exposed to severe threats
of malicious attacks. Security breach at individual components
levels cannot be completely prevented. Working along with
disrupted services or compromised information is becoming a
norm in networked CPS. Furthermore, CPS have highly inte-
grated and autonomous functions of sensing, data processing,
predictive modeling, decision making, and control. Therefore,
to be meaningful for CPS systems design and engineering,
the quantification of trustworthiness in CPS needs to target
at the systems level with multiple functions and networked
communities, instead of only at individual components or
functions. The complexity of quantification at systems level
is increased with more factors to be considered, such as
availability, resilience, and adaptability of networks. These
factors further increase the complexity of trust quantification
and management.

The second uniqueness of CPS trustworthiness is the in-
fluence of perception in a human societal context. Trust
is a state of mind, subjective and multi-faceted. Given the
intensive interaction between humans and CPS, user-centric
trust management is essential for CPS. Traditional security
procedures (e.g. for authentication, nonrepudiation, confiden-
tiality, data integrity, privacy protection, etc.) can enhance trust
level based on the assumption that security control is always
available. However, complete control of information access by
content owners in CPS networks is impossible, because there is
deep interdependency of transactions between heterogeneous
subsystems, implementation of full security procedures for
traditional computers on low-cost CPS units is infeasible, and
the controllability can be quickly diminished as information
is more likely to propagate through CPS networks than tradi-
tional computer networks. As a result, people’s perception of
trust is likely to change and become more tolerable for security
and privacy related challenges, as new CPS technologies are
adopted gradually in the society and new regulations or other
social insurance for protection are available. Therefore, the
dynamics of human perception and subjectivity needs to be
emphasized in trustworthiness quantification for CPS. Since
perception is influenced by social activities and interactions
between people, the social behavior aspect of trust also needs
to be captured.

To address the above challenges, especially the second
one, in this paper a perception-oriented approach is taken
to quantify trustworthiness. Trustworthiness is measured by
perceptions of three major metrics instead of an abstract
one. The three metrics, which include perceptions of ability,

benevolence, and integrity, are carefully chosen based on the
concepts studied in social sciences and to avoid redundancy. To
model large-scale CPS networks, a probabilistic graph model
is proposed to capture the functions of sensing, prediction,
and communication. This mesoscale model provides a generic
abstraction of CPS networks with scalability consideration.
The proposed three trustworthiness metrics are calculated
based on the probabilistic graph model. It is demonstrated that
these three perception-level metrics can be calculated with the
combination of Bayesian and statistical methods. Compared
to other trustworthiness quantification approaches, the uni-
queness of the proposed approach includes the considerations
of different CPS functions including sensing, prediction, and
communication. The perception based quantification method
directly models subjectivity of beliefs and the influence of
social behavior, with quantitative measures of ability, benevo-
lence, and integrity, which have not been considered in other
quantitative approaches.

In the remainder of the paper, a review of relevant work
on trust quantification in the domains of computer and social
sciences is first provided. Then the proposed probabilistic
graph model is introduced in Section II. The metrics of ability,
benevolence, and integrity are provided in Sections III, IV,
and V respectively. The performance of the three metrics is
evaluated with simulation studies in Section VI. In Section
VII, the network design and optimization approach based on
the metrics of ability and benevolence is demonstrated.

A. Trust quantification

In computer science, the study of trust had been traditionally
centered around security policy for exchanging credentials,
controlling access, and referring reputation [3], [4], [5], [6].
Recently, it was expanded to the context of social networks and
semantic web [7], [8]. In the vast majority of the studies, trust
was only treated qualitatively without providing specifications
of how to calculate it. Limited work is on trust quantification.

In the context of social networks and multi-agent environ-
ments, most researchers ( [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18]) model trust as reputation and rely on users’
explicit ratings and recommendations to estimate the levels
of trust. For instance, Beth et al. [19] quantified trust by the
numbers of positive and negative experiences. Yu and Singh
[20] calculated it from scaled reputation ratings in social net-
works. Lee et al. [21] calculated trust as the number of finished
transactions. O’Doherty et al. [22] combined users’ explicit
ratings with the similarities of opinions and preferences for
online recommendation.

In the context of computer networks, trust was mostly
measured by quality of services [23] in a bottom-up fashion.
Trustworthiness has been calculated from weighted metrics
such as the numbers of forwarded data packets, executed
routing protocols, modified packet addresses, etc. [24], [25].
For sensor networks, different approaches to calculate trust
has been proposed. These include weighted average between
local and global success rates of transactions [26], weighted
average of consistency factors including consistency of indi-
vidual nodes from their historical data [27] and consistency
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between nodes in local regions [28], as well as neighbors’
data forwarding behaviors [29].

To capture the stochastic and subjective nature of trust,
probabilistic approaches have been developed. Barber and Kim
[30] modeled trust as belief of information reliability and
the belief update is based on Bayesian networks. Yu and
Singh [31] applied Dempster-Shafer evidence theory to trust
modeling. Patel et al. [32] modeled trust as the expectation
of fulfilled commitments that follows a Beta distribution.
Wang et al. [33] extended this approach to Bayesian modeling
based on the natural conjugate Beta distribution and generic
Bayesian networks [34]. Kim et al. [35] calculated trust as the
probability of resource availability. Li et al. [36] calculated
trust as time averaged information entropy in data exchange.

Fuzzy logic was also applied to capture the linguistic
imprecision of trust description, either as one concept [37],
[38], or a combination of multiple factors such as ability,
availability, motivation, usefulness, honesty, and others [39],
[40], [41], [42].

To quantify trustworthiness in IoT, Chen et al. [43] proposed
a fuzzy model to consider communication reputation factors
including packet forwarding, package delivery, and energy ef-
ficiency. Saied et al. [44] quantified it based on user ratings and
recommendations. Nitti et al. [45] used an weighted average
between quality of service and opinions of credibility in
transactions as a combined objective and subjective measure.
Chen et al. [46], [47] treated trust as the combination of an
overall probabilistic assessment from direct interaction and the
social similarity in a recommendation system. Al-Hamadi and
Chen [48] calculated trust from user ratings aggregated from
different time periods and different locations. Jayasinghe et
al. [49] used a composite trust metric that is consisted of
eight different quantities such as probabilities of successful
execution, cost of execution, completeness and accuracy of
data records, etc. In the above approaches, the perception
of trust in a social environment is not explicitly modeled.
Only the communication function of IoT objects is focused
on, whereas the functions of sensing and reasoning are not
considered.

Intuitively, trust is a willingness to be vulnerable to another.
Different qualitative definitions of trust exist in the domains
of psychology, marketing, human behavior, and organization.
Mayer et al. [50] carefully studied dozens of characteristics
of trust in literature, identified commonality, and defined
trustworthiness as a set of three categories of perception:
ability, benevolence, and integrity. Ability is about perception
of skills, expertise, and competency associated with trustee.
Benevolence is the extent to which the trustor believes that
the trustee acts for the welfare of the trustor, rather than just
maximizes its own profit. Benevolence is a summary of rela-
ted characteristics such as loyalty, openness, receptivity, and
availability. Integrity is the trustor’s perception that the trustee
will be honest and adhere to an acceptable set of principles.
Integrity is associated with consistency, discreetness, fairness,
promise fulfillment, reliability, and value congruence.

The trust model of ability, benevolence, and integrity has
been widely adopted in different fields. The three factors have
been applied in designing psychological and behavioral studies

of trust [51], [52]. The model was applied to measure the
trustworthiness of online shopping merchants [53], [54], [55],
electronic banking service providers [56], [57]. The model
has also been adopted in designing information systems with
better privacy policies [58], better understanding of users
intention [59], [60], user participation [61], security [62], and
technology integration [63]. The concerns of security, privacy,
and trust in CPS networks are similar to those in traditional
information systems. The trust model of ability, benevolence,
and integrity thus can be applied in CPS. Nevertheless, in all
of the above studies ability, benevolence, and integrity were
defined qualitatively without providing quantitative measures.

Each of the three trust factors (ability, benevolence, and
integrity) captures some unique aspects of trust, and they are
independent to each other. That is, the degree of perceived
ability of trustee does not indicate its level of benevolence or
integrity, and vice versa. To compare the multi-criteria trust-
worthiness of two parties, if two factors are at the same level,
whoever has a higher degree of the third factor dominates and
is more trustable. For non-dominant cases, different methods
have been used, such as multi-objective optimization where
Pareto front is identified without combining the criteria, multi-
attribute utility theory to evaluate alternatives strictly based
on preferences, and weighted sum of attributes to combine
the criteria. Quantitative methods such as data envelopment
analysis, analytic hierarchy process, and ELECTRE (elimina-
tion and choice expressing the reality) have been developed to
determine weights and rankings with consistency. The effects
of the three perceptions also dynamically change over time.
Mayer et al. [50] also postulated that among the three factors
the effect of integrity on trust is the most salient one at the
early stage of trust relationship, and the effect of perceived
benevolence will increase over time.

In summary, although trust has been considered as a critical
component in electronic business, computer networks, and
sensor networks, there is still a lack of formal and quantitative
methods to study how trustworthiness can affect system de-
sign. In the design of CPS networked systems, trustworthiness
directly affects the formation of information sharing policies
adopted by the products, which in turn influences the design
of networks. The proposed quantification method is targeted
at system and network design.

B. Proposed quantitative trustworthiness metrics

Trust has a few unique characteristics. It is subjective (trust
is personal and based on individual’s perception), asymmetric
(trust relationship is mutual but not necessarily symmetric),
and dynamic (the level of trust is not static and changes
along time). Trustworthiness metrics need to incorporate these
properties.

In this paper, ability, benevolence, and integrity are quan-
titatively measured for the first time, even though the three
concepts have been widely used in qualitative assessments and
user studies. The quantification process is based on a probabi-
listic graph model. The graph model provides a mesoscale
abstraction to represent the major functions of information
gathering and exchange between nodes in CPS networks.
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Fig. 1: The probabilistic graph model

Particularly, the probability of accurate sensing and prediction
by each node, as well as the probabilities of positive and
negative correlations as mutual influence between nodes are
explicitly modeled, which allows for quantitative measurement
of ability and benevolence directly. Notice that ability, benevo-
lence, and integrity aspects of trust co-exist in trustworthiness
quantification. These three independent dimensions need to
be considered separately and not simply combined into one
metric. Also different from other approaches, a perception
based belief modeling approach is taken to calculate ability,
benevolence, and integrity, given that the level of trust is based
on perception.

II. PROBABILISTIC GRAPH MODEL

Recently a probabilistic graph model was proposed to
provide an abstraction of information collection, processing,
and exchange between CPS in an IoT environment [64],
[65]. Here, the model is generalized. A probabilistic graph
G = (V, E ,R,P,Q), where V = {vk} is a set of nodes,
E = {(vi, vj)} is a set of directed edges, as shown in Fig.
1. Each node vk is associated with a prediction probability
pk ∈ R, whereas each edge (vi, vj) is associated with a
P-reliance probability pij ∈ P and a Q-reliance probability
qij ∈ Q. The probabilities are defined as follows.

The prediction probability pk is the probability that node k
detects the true state of world θ and is defined as

P (xk = θ) = pk, (1)

where xk is the state variable of node k. The information
dependency between node j and node i is described by P-
reliance probability

P (xj = θ|xi = θ) = pij , (2)

and Q-reliance probability

P (xj = θ|xi 6= θ) = qij . (3)

P-reliance probability indicates the positive effect of infor-
mation exchange between nodes, whereas Q-reliance probabi-
lity captures the negative influence. It is also possible to have
P (xk = θ|xk = θ) and P (xk = θ|xk 6= θ) indicating how
much a node’s prediction relies on its own observation.

The probabilistic graph proposed here can be regarded as a
generalization of classical graph where weights are associated

with both nodes and directed edges. The weights are probabili-
ties of prediction and reliance. Also note that the probabilistic
graph model here is different from Bayesian belief network.

CPS nodes collect information by itself or from their
neighboring collaborators. With the new information, the pre-
diction probabilities are updated. Different information fusion
rules can be adopted by nodes to update their prediction
probabilities. Example rules include best-case, worst-case, and
Bayesian rules. They are listed as follows. To simplify the
notation, we use P (xk) to denote P (xk = θ), P (xck) to denote
P (xk 6= θ), and P (xj |xi) to denote P (xj = θ|xi = θ).

The best-case or optimistic fusion rule is

P ′(xk) = 1−ΠM
i=1(1− P (xk|xi)), (4)

where node k has a positive prediction with updated proba-
bility P ′ if any of the M nodes as its information sources
provides a positive cue. Some variations of this rule can also
be used, such as

P ′(xk) = 1−ΠM1
i=1(1−P (xk|xi))ΠM2

j=1(1−P (xk|xcj)), (5)

where both positive cues from M1 nodes and negative cues
from M2 nodes (M1 + M2 = M ) are considered. Another
version could be

P ′(xk) = 1−ΠM
i=1,i6=k(1− P (xk|xi)), (6)

where the node’s own prior observation is not included in the
update.

The worst-case or pessimistic fusion rule is

P ′(xk) = ΠM
i=1P (xk|xi), (7)

where the prediction of a node is positive only if all cues
it receives from other nodes are positive. Similarly, some
variations of the rule exist, such as

P ′(xk) = ΠM1
i=1P (xk|xi)ΠM2

j=1P (xk|xcj), (8)

and
P ′(xk) = ΠM

i=1,i6=kP (xk|xi). (9)

The Bayesian fusion rule is

P ′(xk) ∝ P (xk)
[
(P (xk))

r
(1− P (xk))

M−r
]
, (10)

where the prediction of node k is updated from prior prediction
probability P (xk) given that r out of a total of M cues
provided by others are positive.

For simplicity, only binary value of state variables is consi-
dered here. Obviously, further generalization to multi-valued
discrete state variables is straightforward. Suppose there are a
finite set of discrete values {θ1, . . . , θN} that the state variable
xk can take. The multi-valued prediction probability P (xk =
θn) (n ∈ {1, . . . , N} ) can be obtained similar to binary
values. Similarly, reliance probabilities P (xj = θn|xi = θm)
(m,n ∈ {1, . . . , N} ) can be obtained enumeratively.

The above information fusion rules can be similarly exten-
ded to multi-valued state variables. For instance, the optimistic
fusion rule in Eq.(5) becomes

P ′(xk) = 1−ΠM1
i=1(1− P (xk|xi = θ1)) · · · (11)

ΠMN
j=1(1− P (xk|xj = θN )),
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whereas the pessimistic fusion rule in Eq.(8) becomes

P ′(xk) = ΠM1
i=1P (xk|xi = θ1) · · ·ΠMN

j=1P (xk|xj = θN ),

(12)

where M1 + · · · + MN = M . Obviously, if only one of
the N values is true or of concerned, the problem setting
can be simplified and converted back to the binary case. For
continuous state variables, discretization of values is necessary,
which is typical in the context of digital world.

Another closely related question is how the prediction and
reliance probabilities can be obtained in a physical system. The
most straightforward way is to estimate the probabilities from
the collected historical data [66]. The prediction probability of
a CPS node can be based on data collected by its sensing and
reasoning units. It can be estimated as the frequency of correct
prediction. The reliance probabilities can be estimated simi-
larly from the frequencies of positive and negative predictions
by the neighboring nodes given the node’s own prediction.
If no data are available, subjective estimations from domain
experts can be elicited.

Probability elicitation is well known in both practice and
literature. Standard procedures are taken to elicit probabilities
associated with some events from domain experts subjectively.
The major issues to be avoided during elicitation are possible
personal bias, inconsistency, and incoherent assessment. Quan-
titative methods [67] such as quantile intervals and scoring
rules have also been developed. For instance, in the scoring
rule approach, a scoring function defines rewards such that the
domain expert’s true belief about how likely an event occurs is
reported, as it is his or her best interest to maximize the belief-
weighted expected payoff, which is to ensure consistency.

III. ABILITY

The ability of CPS consists of capability and influence. In
the context of probabilistic graph model, the capability of
a node is generally quantified as the perceived probability
that it can provide accurate prediction about the true state
of the world based on its available information. Within a
networked society, the influence of a node to others, which
can be interpreted as leadership, is also regarded as part of its
ability. The leadership that a CPS node has is characterized as
the extent of its positive or negative influence to its neighbors.

A. Capability of prediction

The perception of ability is subjective and varies among
different people. Suppose that the perceived capability for node
j is the perceived prediction probability Aj(θ) = P(P (xj =
θ)) with respect to the true state of world θ, which follows a
Gaussian distribution with mean pj and precision τ0. Here P(·)
denotes perception. In other words, the perceived capability of
node j is randomly distributed, with expectation

E(Aj(θ)) = pj , (13)

and variance
V(Aj(θ)) = τ−1

j . (14)

In a society with extensive information exchange, the per-
ception of capability can be updated with newly obtained

information. For instance, if reliance probabilities with re-
spect to node j are made available to the public, then the
perceived capability of the node can be updated. Suppose that
the perceived reliance probabilities Lij = P(P (xj |xi)) and
Lc
ij = P(P (xj |xci )) for all i, j ∈ V are Gaussian random

variables, with expectations

E(Lij |Aj) = pij(∀i, j ∈ V) (15)

and
E(Lc

ij |Aj) = qij(∀i, j ∈ V) (16)

under the condition of the perceived capability Aj .
The variances of the perceptions may depend on the nature

of information sources. For the perceptions related to the
information shared with node j from others, the variances are

V(Lij |Aj) = τ−1
ij,p(∀i ∈ Sj), (17)

and
V(Lc

ij |Aj) = τ−1
ij,q(∀i ∈ Sj), (18)

where Sj = {vi|(vi, vj) ∈ E} is the collection of source
nodes with respect to node j and each of the source nodes
sends information to node j. Without the loss of generality,
we can assume that the variances of the perceived reliance
probabilities are the same, i.e. τij,p = τs,p and τij,q = τs,q
(∀i ∈ Sj) . The complete set of perceived P- and Q-reliance
probabilities for the source nodes with respect to node j is
denoted as L(+j) = {Lij |i ∈ Sj} ∪ {Lc

ij |i ∈ Sj}.
With the reliance probability information, the perception

of capability is updated based on the Bayesian belief update
scheme or Bayes’ rule. Because the perceptions follow Gaus-
sian distributions, the expectation of posterior perception for
capability of node j is

E(Aj(θ|L(+j))) =
τjpj + τs,p

∑
i∈Sj pij + τs,q

∑
i∈Sj qij

τj + τs,psj + τs,qsj
,

(19)
where sj = |Sj | is the number of source nodes with respect
to node j.

The consideration of Q-reliance probabilities in capability
in Eq.(19) is necessary. When a node gives correct pre-
diction even when its information sources provide negative
or wrong predictions, the node exhibits good capability. Also
note that if the assumption of equal variances is not made,
the posterior perception of capability in Eq.(19) still can
be calculated with τs,p

∑
i∈Sj pij replaced by

∑
i∈Sj τij,ppij ,

τs,q
∑

i∈Sj qij by
∑

i∈Sj τij,qqij , τs,psj by
∑

i∈Sj τij,p, and
τs,qsj by

∑
i∈Sj τij,q respectively.

The posterior perception of capability in Eq.(19) can be
regarded as the weighted average of prediction and reliance
probabilities, denoted as

E(Aj(θ|L(+j))) = αjpj + αs,p

∑
i∈Sj

pij + αs,q

∑
i∈Sj

qij , (20)

where αj = τj/(τj + τs,psj + τs,qsj), αs,p = τs,p/(τj +
τs,psj + τs,qsj), and αs,q = τs,q/(τj + τs,psj + τs,qsj).

The variance of the updated perceptions for the capability
of node j is

V(Aj(θ|L(+j))) = (τj + τs,psj + τs,qsj)
−1. (21)
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B. Influence
The influence or leadership of node j is associated with the

effectiveness of information sharing from node j to others.
When the information sharing from node j to destination
nodes in Dj = {vk|(vj , vk) ∈ E} is considered, where each
of the destination nodes receives information from node j,
the perception of the capability of node j can be further
updated. When the precision of the perceptions related to the
information shared from node j to others are characterized by

V(Ljk|Aj) = τ−1
jk,p(∀k ∈ Dj) (22)

and
V(Lc

jk|Aj) = τ−1
jk,q(∀k ∈ Dj), (23)

the complete set of perceived P- and Q-reliance probabilities
for the destination nodes with respect to node j is denoted
as L(−j) = {Ljk|k ∈ Dj} ∪ {Lc

jk|k ∈ Dj}. Similarly, to
simplify the notation, it is assumed that the variances of the
perceived reliance probabilities are the same, i.e. τjk,p = τd,p
and τjk,q = τd,q (∀k ∈ Dj) . The expectation of the updated
perception of ability based on the influence to others is

E(Aj(θ|L(−j))) =

τjpj + τd,p
∑

k∈Dj
pjk + τd,q

∑
k∈Dj

(1− qjk)

τj + τd,pdj + τd,qdj

, (24)

where dj = |Dj | is the number of destination nodes with
respect to node j, or simply

E(Aj(θ|L(−j))) =

αjpj + αd,p

∑
k∈Dj

pjk + αd,q

∑
k∈Dj

(1− qjk), (25)

where αd,p = τd,p/(τj + τd,pdj + τd,qdj), and αd,q =
τdq/(τj + τd,pdj + τd,qdj). Notice that (1− qjk) is used here
to quantify the influence of node j to others, which captures
how likely others end up with negative predictions given that
node j provides a negative cue.

The variance of the updated perceptions for node j’s ability
after obtained information from destination nodes is

V(Aj(L(−j))) = (τj + τd,pdj + τd,qdj)
−1. (26)

C. Overall ability
The expectation of the further updated perception of ability

that includes both capability of prediction and influence to
others is
E(Aj(θ|L(+j),L(−j))) =[

τjpj + τs,p
∑

i∈Sj pij + τs,q
∑

i∈Sj qij
+ τd,p

∑
k∈Dj

pjk + τd,q
∑

k∈Dj
(1− qjk)

]
τj + τs,psj + τs,qsj + τd,pdj + τd,qdj

,

(27)

or simply

E(Aj(θ|L(+j),L(−j))) =

αjpj + αs,p

∑
i∈Sj

pij + αs,q

∑
i∈Sj

qij

+ αd,p

∑
k∈Dj

pjk + αd,q

∑
k∈Dj

(1− qjk)

, (28)

where weights αj , αs,p, αs,q, αd,p, αd,q are defined accor-
dingly.

The variance of the updated perceptions for node j’s ability
after both information from source and destination nodes is
V(Aj(θ|L(+j),L(−j))) =

(τj + τs,psj + τs,qsj + τd,pdj + τd,qdj)
−1
. (29)

D. Higher-order perception
In a society, one’s perception can be influenced by others’

perceptions. In the context of trust, one’s perceived trustwor-
thiness can be a function of others’ perceived trust levels
because of mutual influence in judgment and decision making.
Therefore, the previous ability perception model can be further
extended to a higher-order one with the consideration of
mutual influence. The expected ability in Eq.(27) or (28) and
variance in Eq.(29) are considered as the first-order model,
where the perception of a node’s ability is only affected by
its interaction with the immediate neighbors. For the second-
order model, the ability of a node is also affected by the
perceived abilities of its intermediate neighbors, particularly
the destination nodes which it directly shares information with.
That is, the ability of a node is also related to the abilities of
the nodes that it has direct influence on.

If the notations of E(Aj(θ|L(+j),L(−j))) and
V(Aj(θ|L(+j),L(−j))) are simplified to

E(Aj(θ|+,−)) = Ej (30)

and
V(Aj(θ|+,−)) = Vj (31)

respectively, then in the second-order model, the expected
ability is

E(2)(Aj(θ|+,−))

=

[
V −1
j · Ej + τd,p

∑
k∈Dj

pjk(V −1
k · Ek)

+ τd,q
∑

k∈Dj
(1− qjk)(V −1

k · Ek)

]
V −1
j + τd,p

∑
k∈Dj

pjkV
−1
k + τd,q

∑
k∈Dj

(1− qjk)V −1
k

,

(32)

which is the same as the first-order expectation, and the
variance is
V(2)(Aj(θ|+,−))

=

V −1
j + τd,p

∑
k∈Dj

pjkV
−1
k + τd,q

∑
k∈Dj

(1− qjk)V −1
k

−1

.

(33)
Similarly, the third-order model can be constructed by in-

corporating the perceived abilities of the neighbors’ neighbors,
which the reference node indirectly shares information with.
Therefore, the higher-order perception model incorporates the
lower-order perceptions, as an extension of weighted averages
where weights are the associated precisions. Recursively the
nth order model is defined based on the (n−1)th order ones.

From Eqs.(33) and (31), it is seen that the variance of
the second-order perception is lower than that of the first-
order, because the additional terms are added in the precision.
By incorporating a higher-order perception, the estimation of
trustworthiness in terms of ability can become more precise.
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E. Perception update

One’s perception will be updated as new information is
available. For instance, when prediction capability of a node is
increased with newly upgraded censors or reduced because of
malicious attacks, the perception of prediction capability needs
to be updated. Similarly, the modifications and fluctuations
of reliance probabilities, because of the behavior dynamics
between nodes or network topology changes, will also affect
the perception of capability and influence.

The update of perception is based on Bayes’ rule. Suppose
that the expected value and variance of the originally pre-
diction probability for node j at time tk are p

(k)
j and τ

(k)
j .

When new estimate of prediction probability for node j is
available as p(new)

j with precision τ
(new)
j at time tk+1, the

prediction probability needs to be updated to

p
(k+1)
j =

τ
(k)
j p

(k)
j + τ

(new)
j p

(new)
j

τ
(k)
j + τ

(new)
j

. (34)

An important step of perception update is determining the
precision value τ

(new)
j . To avoid the dominance of a very

small variance that causes overly-emphasized new prediction
in Bayes’ rule, a pre-determined lower bound of variance
Vmin can be set. This procedure can be applied to prevent
perception attack where a biased perception is used to swing
other’s perceptions. The precision is updated to

τ
(k+1)
j = τ

(k)
j + τ

(new)
j . (35)

The perception update because of reliance probability chan-
ges, either expected value or variance, as well as high-order
perceptions can be done similarly.

F. Illustrative examples

Here, two examples are used to illustrate ability based on
perceived capability and influence. The first example is a rand-
omly generated graph which is to illustrate the relationships
among capability, influence, and ability. The second example
provides more details of how the ability of a node is affected
by its neighbors and prediction and reliance probabilities.

In the first example, a directed graph with 50 nodes as
shown in Fig. 2 is constructed, where the edge connections
between nodes are randomly generated. The heavy tail at the
end of an edge in the figure denotes an arrow, indicating an
incoming vertex (e.g. the information flow direction from node
37 to node 47 is shown). The probability that there is an
edge between two nodes is set to be 0.08. The prediction, P-,
and Q-reliance probabilities are randomly generated from an
uniform distribution between 0 and 1. Similarly, the variances
associated with the prediction and reliance probabilities are
randomly generated from a uniform distribution between 0
and 0.5.

Notice that the variance of 0.5 already over-estimates the
possible variation ranges. A variance of 0.5 corresponds to a
standard deviation of over 0.7. From a normal distribution,
the probability of a random value falls within three times of
standard deviation is 99.73%. For a probability value, this
already goes beyond the range of 0 and 1. Choosing the
potential large variance of 0.5 is for illustration purpose.
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Fig. 2: A random graph with 50 nodes

Based on equations similar to Eqs.(19), (24), and (27),
the expectations of the perceived capabilities, influences, and
ability for the 50 nodes are shown in Fig. 3 respectively.
Here the variance or precision of each probability is used
during the calculation of the weighted averages, instead of
the average values of τs,p, τs,q , τd,p, and τd,q . The expected
values for each node are denoted as dots in Fig.3, where the
error bar indicates the standard deviation, or the square-root
of the variance. It is seen that the expected values of the
perceived capability, influence, and ability could vary based on
the available information. The average expected values of the
50 capabilities, influences, and abilities are 0.4722,0.5057, and
0.4965 respectively. The average standard deviations for them
are 0.1192, 0.1309, and 0.0774 respectively. The variance of
perceived ability is smaller than those of perceived capability
or influence only. As more information is included, the pre-
cision of the perception can be improved. This can also be
confirmed by the variances of these three standard deviations,
which are 0.0027,0.0081, and 0.0010. That is, the precision
of perception tends to be more consistent as new information
is included.

From Eq.(29), it is also seen that the variance of perceived
ability reduces as more information source or destination
nodes are added. That is, the larger the number of nodes that
a node directly exchanges information with, the more precise
that the perception about this node’s ability becomes. However,
this does not necessarily lead to a higher ability. As seen in
Eq.(27), different precision levels of prediction and reliable
probabilities give different weights to the overall expected
ability. For example, if the precision of prediction probability
τ0 is much larger than the precisions of reliance probabilities,
then the ability will be dominantly determined by the level of
prediction probability.

In the second example, a simple graph with 11 nodes
is shown in Fig. 4. Different from the first example, the
prediction and reliance probabilities are deterministic values
instead of random ones, which helps understand their effects
on ability. Two scenarios are studied as follows.
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Fig. 3: The perceived capabilities, influences, and overall
abilities of the 50 nodes in Fig. 2.

In the first scenario, shown in Fig. 5a, the mean values
of prediction probabilities for all nodes are set to be 0.5
and variances are 0.3. The means of P-reliance probabilities
for all edges are 0.9 and Q-reliance probabilities are 0.1.
The variances of all reliance probabilities are 0.1. This is
the scenario that the individual node’s sensing and prediction
capability is limited, the nodes work collaboratively, and
reasoning and decision making rely very much on the commu-
nication between nodes. It is seen that nodes who send more
information to others tend to have higher rankings of ability.
Node 4 has the highest number of information outflows, thus
is more influential and has the highest ability level. It is the
most trustable node in terms of ability. In contrast, node 5 does
not send information to others and is the least trustable. It is
also seen that the variance of second-order ability is less than
that of first-order ability. The extent of variance reduction is
also related to how much information exchange is done with
others. The variance associated with node 5 is not reduced in
the second-order ability, since it does not have any influence
to others.

A different scenario is illustrated in Fig. 5b. In this case, the
means of prediction probabilities are 0.9 and variances are 0.1.
The means of P-reliance probabilities are 0.5 and Q-reliance
probabilities are 0.5. The variances of reliance probabilities are
0.3. It is a scenario that nodes are highly independent. Their
decision makings mostly rely on own sensing and prediction
capability. The other nodes’ inputs are not as influential as
in the first scenario. In this case, the nodes that try to be
influential such as node 4 are not deemed to be trustable. Node
5 on the other hand has a higher level of ability, even though its
variance is large. The ability of a node is mainly determined by
its own prediction probability. Information exchange more or
less only affect the variance of ability. In general, the variances
of the nodes in the second scenario are higher than the ones
in the first scenario.

Fig. 4: A simple graph with 11 nodes
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(a) Scenario 1: weak sensing and prediction capability. The prediction pro-
babilities of all nodes have mean value 0.5 and variance 0.3, all P-reliance
probabilities have mean 0.9 and variance 0.1, and all Q-reliance probabilities
have mean 0.1 and variance 0.1.
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(b) Scenario 2: strong sensing and prediction capability. The prediction
probabilities of all nodes have mean value 0.9 and variance 0.1, all P-reliance
probabilities have mean 0.5 and variance 0.3, and all Q-reliance probabilities
have mean 0.5 and variance 0.3.

Fig. 5: The first- and second-order abilities of nodes in the
model of Fig. 4 in two scenarios.

IV. BENEVOLENCE

Benevolence is a measure of the trustor’s belief that how
likely the trustee is motivated to do good to trustor, instead of
for its own benefit. It captures the intention and motivation
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Fig. 6: The pairwise deterministic reciprocities for the graph
model in Fig. 4.

of the trustee. The degree of benevolence is low if the
motivation is originated from ergocentric gain, and high from
mutual benefits. Benevolence between individuals is critical
for information sharing. Without such aspect of trust, large-
scale data sharing in CPS networks is not possible. Reciprocity
is proposed here to measure the extent that the partners whom
we share information with reciprocally share information with
us. There are also some other characteristics associated with
benevolence such as loyalty and dependability. Motive as
the second metric proposed here is to measure the level
of good intention and motivation for interactions within the
community.

A. Deterministic reciprocity

The pairwise deterministic reciprocity of node j with respect
to node i, ri,j , is measured by the shortest topological distance,
in terms of the number of hops in the network that node j
shares information with node i, as

ri,j = exp(−hj→i)− exp(−hi→j) + exp(−hi→j − hj→i),
(36)

where hj→i is the minimum number of hops or the shortest
topological distance for information flow from node j to
node i. Note that hi→i = 0 and ri,i = 1. When i 6= j,
∂ri,j/∂hj→i < 0 and ∂ri,j/∂hi→j > 0. Hence, when the
topological distance from node j to node i increases, the
reciprocity of node j with respect to node i reduces. On the
other hand, increasing the topological distance from node i to
node j would increase the reciprocity of node j with respect
to node i.

The calculation of reciprocity is straightforward. For in-
stance, in the simple graph in Fig. 4, r0,1 = e−2 − e−1 +
e−3 = −0.18276, r0,2 = e−1 − e−2 + e−3 = 0.28233, and
r0,5 = e−∞ − e−∞ + e−∞ = 0. All calculated pair-wise
reciprocity results are shown in Fig. 6.

Based on the degree of reciprocity, the trustworthy levels in
terms of reciprocity can be ranked and clustered. For example,

(a) Cluster w.r.t. Node 0 (b) Cluster w.r.t. Node 2

(c) Cluster w.r.t. Node 4 (d) Cluster w.r.t. Node 5

Fig. 7: Trustworthy node clusters formed according to pairwise
reciprocities with respect to (w.r.t.) Nodes 0, 2, 4, and 5
respectively. Heavily shaded nodes are the most trustworthy
ones, lightly shaded nodes are neutral, and unshaded nodes
are the least trustworthy ones.

among all nodes from the perspective of node 0, three clusters
can be formed. T0 = {2, 3, 4} is the most trustworthy group
of nodes with positive levels of reciprocity, N0 = {5, 6, 7} is
the neutral group with zero reciprocity, and U0 = {1, 8, 9, 10}
is the least trustworthy group with negative reciprocity. The
network of node 0, denoted as G0 = {T0,N0,U0}, which is
shown in Fig. 7a. The subgraph formed by T1 and N1 can be
regarded as the trustable network for node 0 with the criterion
of reciprocity. Similarly the respective trustable networks of
nodes 2, 4 and 5 are shown in Figs. 7b, 7c, and 7d . The
trustable networks for nodes 4 and 5 are two extreme cases.
The one for node 4 does not include any other node, since
node 4 does not rely on any other’s information for its decision
making. In contrast, the one for node 5 includes all nodes in
the network, since node 5 does not give influence to any other
nodes during their decision making process. Also notice that
trust relationships are not necessarily mutual. It is seen in Figs.
7a and 7b that node 2 is included in the trustable network for
node 0, whereas node 0 is not included in the one for node 2.

B. Perception of reciprocity

With the further consideration of reliance probabilities as
weights of edges in probabilistic graphs, the expected value
of the perceived reciprocity of node j with respect to node i
is calculated as

E(Ri,j) = DKL(pi→j ||pj→i)−DKL(pj→i||pi→j)+b0, (37)

where DKL(P ||Q) is the Kullback-Leibler divergence from
probability distribution Q to P , pj→i = Πj→ipab is the
product of all P-reliance probabilities where information flows
through along the shortest path from node j to node i, and pab
corresponds to the P-reliance probability from node a to node
b along the path. Similarly, we have pi→j = Πi→jpcd. When
path j → i does not exist, the principle of maximum entropy
is applied, thereof pi→j = 0.5. b0 is a reference threshold of
neutral value, which is predetermined such that E(Ri,j) > b0
when node j has a high reciprocity with respect to node i,
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and E(Ri,j) < b0 otherwise. To make the value range of
reciprocity be between 0 and 1, the reference threshold is
typically set as b0 = 0.5. Additional scaling can be applied if
necessary to keep the value range. Notice that E(Ri,i) = b0
because DKL(pi→i||pi→i) = 0.

When the P-reliance probabilities of all nodes in Fig. 4 take
the same value, the expected value of perceived reciprocity can
be calculated based on Eq.(37). With b0 = 0.5 as the reference,
all nodes can be similarly grouped to {T ,N ,U}. The results
are the same as the previous ones shown in Fig. 7 based on
deterministic reciprocity. The two metrics are consistent.

The variance of the perceived reciprocity can be calculated
from the variances of P-reliance probabilities. Assuming the
independence between the perceptions of P-reliance probabili-
ties, the variance will be associated with the high-dimensional
Gaussian distribution formed by these perceptions.

High-dimensional Gaussian distributions are costly to cal-
culate and use. If there are m hops in the path from node
j to node i, the variance associated with pj→i will be an
m-dimensional Gaussian distribution. To simplify the calcu-
lation for ease of application, a one-dimensional Gaussian
distribution is used here for estimation purpose. The variance
associated with the perceived reciprocity is conservatively
estimated as

V(Ri,j) = min(
∑
j→i

τ−1
ab +

∑
i→j

τ−1
cd , Vmax), (38)

where τab and τcd are the precisions associated with the
P-reliance probabilities along paths j → i and i → j
respectively, and Vmax is the theoretical maximum value of
variance. As discussed in Section III-F, for a value range from
0 to 1 as probability, an upper bound of variance is around
0.5. The theoretical limit can be Vmax = 1.0. When a path
j → i does not exist, the associated variance is set to be Vmax.
At the same time, V(Ri,i) = 0.

C. Motive

Motive is to measure the motivation and intention of in-
formation sharing in a community. A high level of motive
for a node indicates that it shares high-quality information
with neighbors for the purpose of improving the overall
functionality and performance of the community, whereas a
low level of motive shows an ergocentric purpose instead of
community-oriented benefit.

In the context of probabilistic graph model, the expected
value of the perceived motive of node j is defined as

E(Mj) = pj
dj , (39)

where pj is the prediction probability associated with node j,
and dj = |Dj | is the number of destination nodes with respect
to node j. The baseline of motive (Mj = 1) is when the
node has no destination nodes and does not share information
with others. Compared to those sharing accurate predictions
with others, a node sharing low-quality predictions with others
tends to have a lower level of motive. Particularly, the more
neighboring nodes it shares inaccurate predictions with, the
less trustable the node is. In this case, the expected value of
motive reduces quickly for low pj as dj increases.

The variance associated with the perceived motive of node
j is related to the precision τj of the perceived prediction
probability pj as

V(Mj) = τ−1
j . (40)

D. Overall benevolence

With the considerations of both reciprocity and motive, the
expected overall benevolence perception of node j respect to
node i is

E(Bi,j) =
V−1(Ri,j)E(Ri,j) + V−1(Mj)E(Mj)

V−1(Ri,j) + V−1(Mj)
, (41)

according to Bayes’ rule. The variance associated with the
perception is

V(Bi,j) = (V−1(Ri,j) + V−1(Mj))
−1. (42)

Notice that E(Bi,i) = b0 and V(Bi,i) = 0.
In dynamic systems, the perception of benevolence can

be updated if any new information becomes available. The
perception update is from the update of probabilities similar
to Eqs.(34) and (35) according to Bayes’ rule,.

V. INTEGRITY

Integrity is associated with the perceived characteristics of
reliability, predictability, honesty, and consistency. Integrity
is a relatively well studied topic in the context of cyber
security. It is essential to protect the operation of CPSs
and the networks. The quantification of integrity needs to
consider the risk of deception attacks and replay attacks. In
deception attack, adversary or compromised nodes send false
information such as incorrect measurement, incorrect time of
measurement, incorrect metadata (e.g. who measured the data),
etc. to others. In replay attack, data transmitted between nodes
are intercepted or delayed so that the decisions of the receiving
nodes are maliciously manipulated.

The perception of integrity about a node can be measured
from historical performance and behavior data of the node.
The statistics of how often the information shared by the
partner with different parties or at different time periods
is inconsistent, and how the partner is rated or ranked by
information consumers. Specifically data of how often the
prediction from a node is changed or flipped as well as
how often miscommunication occur (e.g. predicting False but
sending True) can be collected.

Suppose that the prior belief of integrity for node j is

E(Ij) = gj (43)

with imprecision or variance

V(Ij) = ω−1
j . (44)

The likelihood that node j is free from deception attack
and maintains its integrity can be quantified as the deviation
between its state variable value and the average state variable
value in its neighborhood Ωj where the same quantity of
interest is measured and detected, as

P (xj |xi∈Ωj
) = gSj ∝ exp

[
− (xj − x̂(j))2

2σ2
x

]
, (45)
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where x̂(j) = 1
|Ωj |

∑
i∈Ωj

xi is the average prediction of the
neighboring nodes with respect to node j, and σ2

x indicates the
natural variation between sensing units as the random error.

Based on Bayes’ rule, the perception of integrity about node
j can be updated to

E(Ij |xi∈Ω) =
gjωj + gSj σ

−2
x

ωj + σ−2
x

, (46)

when new information about the behaviors of nodes is obtai-
ned.

The likelihood function can also be formulated to incor-
porate the temporal factor. If the xj(tk) denotes the predicted
state value by node j at time tk, the likelihood can be extended
to capture the node’s own consistency as

P (xj(tk)|xj(tk−1, . . . , t0)) = gTj ∝ exp

[
− (xj(tk)− xj)2

2σ2
x

]
(47)

where xj = 1
k

∑k−1
i=0 xj(ti) is the average value of previous

predictions by node j at time stamps from t0 to tk−1. The
perception of integrity can be similarly updated to

E(Ij |xi∈Ω, xj(tk−1, . . . , t0)) =
gjωj + gSj σ

−2
x + gTj σ

−2
x

ωj + 2σ−2
x

.

(48)
The proposed trustworthiness quantification based on per-

ceptions of ability, benevolence, and integrity can be suscep-
tible to trust attacks. Similar to other reputation or recom-
mendation based quantifications, perception can be influenced
and manipulated. Therefore it is susceptible to attacks on re-
commendation systems, particularly for those with centralized
reputation management, such as self-promoting attack (pro-
vide good recommendations to selves), ballot-stuffing attack
(provide good recommendations to bad nodes), bad-mouthing
attack (provide bad recommendations to good ones), and
whitewashing attack (disappear and rejoin the community with
new identity) [47]. These attacks can change the perceptions
of individuals. In addition, one’s perception can also influence
other’s perceptions in a human society. Thus in a perception
attack, attackers can broadcast their manipulated negative or
positive perception and seek the ripple effect outside the re-
commendation system. Nevertheless, a perception based trust
management system is less vulnerable to sudden attacks than a
reputation based system. Because perception or belief update
based on Bayes’ rule has been known as a gradual process,
particularly with the involvement of variance or imprecision
associated with perception. Whenever new evidence arrives,
the change of perception is affected by the precision associated
with new evidence. Imprecise evidence brings little change
to the perception. Even with precise ones, it takes iterations
of updates to sway the perception of ability, benevolence, or
integrity.

VI. PERFORMANCE EVALUATION

To evaluate the performance of the proposed trust metrics,
simulation tests similar to Refs.[46], [47] are performed, where
attacks on both sensing and communication capabilities of
CPS nodes are simulated. The details of the tests are described
as follows.

In the first test, the ability metric is evaluated. The simple
network in Fig. 4 is used. Attacks on node 0 are simula-
ted, where the prediction capability and communication are
affected. Without loss of generality, it is assumed that the
prediction and reliance probabilities of the nodes follow Diri-
chlet distributions. The initial or prior prediction probabilities
of all 11 nodes are assumed to have a mean value of 0.9
and a variance of 8.99 × 10−5, which was a result of 900
positive predictions out of 1000 from historical data. Again,
the probabilities could also be subjective beliefs if no data
are available. Similarly, the initial P-reliance probabilities of
all nodes have mean 0.9 and variance 8.99 × 10−5, and the
initial Q-reliance probabilities of all nodes have mean 0.5 and
variance 2.49 × 10−4. When the sensing and reasoning units
of node 0 are attacked, false predictions arise from the node.
As a result, its perceived prediction probability is affected. Si-
milarly, when the communication unit of the node is attacked,
false predictions are sent to neighboring nodes. The perceived
reliance probabilities are affected. During simulation, for each
of the first 30 iterations, 99 false predictions out of a total of
100 samples are generated in a light attack scenario, and the
false information is used to update the prediction probability of
node 0 according to Bayes’ rule. With the updated prediction
probability, the overall ability of node 0 is calculated. Two
policy update cases are tested. The first case is with long
memory, where the node keeps the complete data history. For
belief update in each iteration, the ratio of correct prediction
(i.e. p(new)

j in Eq.(34)) is calculated from the number of correct
predictions out of all samples accumulated from previous
iterations. In the second case of short memory, the node
does not remember the historical data. The ratio p

(new)
j is

calculated with the correct predictions within the particular
iteration, which is 1/100. A similar attack on communication
is also simulated where P-reliance probabilities between node
0 and its neighboring nodes (1, 2, and 3) are affected and
reduced toward zero when false information is shared among
neighbors. The update is also based on Bayes’ rule. In a heavy
attack scenario, 999 false predictions out of 1000 are generated
to update prediction probability of node 0 and P-reliance
probabilities on edges between node 0 and its neighbors. The
Bayesian update is similar to the first scenario. The changes of
node 0’s ability in these eight different attack modes are shown
in Fig. 8a. The malicious attacks stop at the 30th iteration,
and recovery is followed for the next 60 iterations. For each
iteration of recovery, the original prediction probability of
0.9 and P-reliance probability 0.9 are applied to update the
perception of ability. That is, 900 correct predictions out of
1000 are applied to update the perceived prediction probability.
The update policies of long and short memory are similarly
applied. It is seen in Fig. 8a that the ability trustworthiness is
gradually reduced during the attacks. The reduction speed in
the heavy attack scenario is higher than the one in the light
attack scenario. The re-establishment of trust during recovery
is slower than when it is damaged, which is similar to natural
human behavior. In addition, the belief update policy and
memory of history affect the speed of change. Nodes with
longer memory tend to be more resilient and less susceptible
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to attacks.
In the second test, the same attacks are simulated in the

same network with average benevolence as the metric. The
results are shown in Fig. 8b. The average benevolence of node
0 is calculated as (1/11)

∑10
i=0Bi,0. It is seen that both ability

and benevolence metrics are sensitive enough to detect attack.
At the same time, the responses always have delays, instead
of changing abruptly, which provides necessary robustness
and stability to protect trust metrics against attacks. Similarly,
nodes with longer memory are more resilient. During attacks,
the damage of reputation is less severe and can be recovered
faster. Nodes with shorter memory are more sensitive to detect
attacks.

In the third test, the prior integrities of the nodes are assu-
med to follow a Dirichlet distribution with expected values of
0.9 and 0.1, from which the probabilities of accurate prediction
are generated randomly. Random samples of predicted state
variable values are generated. When node 0 is attacked in the
heavy mode, 1 out of 1000 sample predictions is accurate and
the rest of 999 are false predictions. The mean and variance of
the state variable sample values from node 0 and those from
its spatial neighbors (nodes 1, 2, 3, 4) are used to estimate the
likelihood in Eq.(45) and update the integrity based on Eq.(46).
In the light attack mode, 1 out of 100 samples from node 0 is
accurate, and the rest of 99 are false predictions. The changes
of integrity metric are shown in Fig. 8c. During recovery, two
modes are tested. For fast recovery mode, the sample size
is 1000 for each iteration, out of which 900 predictions are
accurate according to the original probability 0.9. For slow
recovery, 100 samples are drawn during each iteration and 90
of them are accurate predictions. It is seen that the pattern of
integrity attack is similar to those for ability and benevolence.
Note that long memory scenario is not considered here since
accumulated effect of integrity is not important from security
perspective. When attacks occur, the metric of integrity drops
quickly, which shows that the metric is sensitive. The quickly
dropped integrity value become flat as it comes close to zero.
During recovery, fast recovery helps increase the integrity
value at a speed faster than slow recovery. Again, the drop
of trust is rapid during attack, which is due to the nature of
Bayesian update. The recovery of trust is much slower than
when it is being damaged.

VII. STRATEGIC NETWORK DESIGN

A strategic network for a CPS node is a trustable network
or society that the node can collaborate and work with. The
design of a strategic network with respect to a reference
node is to maximize the expected utility by choosing the
optimum combination of n (out of N ) nodes to form its
society. Different definitions of utility function U could lead
to different strategic networks. In this section, two design
criteria as utilities are described. In the first criterion, the utility
function is defined as the node’s reciprocity and benevolence.
The optimum design is found by maximizing the individual’s
expected benevolence. In the second criterion, the utility
function is individual’s ability.

To exhaustively search the optimum combination of nodes
is a NP-hard problem. An efficient alternative is searching
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Fig. 8: Trustworthy metrics of ability and benevolence when
Node 0 in Fig. 4 is attacked. Recovery occurs at Iteration 30.

with greedy algorithms. Starting from the source node, greedy
algorithms selectively add nodes sequentially if the objective
function value increases. Here, a breadth-first search (BFS)
greedy algorithm is developed to demonstrate the design
optimization approach. The algorithm is listed in Alg. 1. The
algorithm adds nodes one-by-one using a BFS strategy. Star-
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ting from the reference node i, the subgraph G(i) = (V(i), E(i))
is constructed and updated sequentially by inserting additional
nodes one at a time from the neighboring nodes of the existing
subgraph. For each iteration, if the utility for the subgraph is
non-decreasing from the previous iteration, the new node is
accepted. The greedy algorithm allows for quick formation
of the strategic network, but obviously could potentially miss
the true optimum solution. Other optimization algorithms for
combinatorial problems can also be applied.

Algorithm 1 The breadth-first search greedy algorithm

1: V(i) = ∅,E(i) = ∅;
2: iteration = 1
3: Queue.append(i);
4: while ( iteration < limit and Queue.IsNotEmpty )

do . main iterations of search
5: j = Queue.pop();
6: VT = V(i) ∪ {j};
7: Construct GT = {VT , E(i)} where E(i) ⊆ E ;
8: Calculate U [iteration];
9: ∆U = U [iteration]− U [iteration− 1]

10: if ∆U ≥ 0 then
11: Update G(i) = GT ;
12: end if
13: for ∀k ∈ neighbors of node j do
14: Queue.append(k);
15: end for
16: iteration = iteration+ 1
17: end while

A. Deterministic reciprocity criterion

Individual reciprocities typically have conflict of interest.
One node shares information with others without receiving
information from others reciprocally tends to have lower
perception of trust about its collaborators. It is individual
nodes’ interest to receive information as much as possible from
others. At the same time, the willingness to share with others
can be dampened without reciprocal treatment from others.
In the optimum network with respect to a reference node,
nodes are selected based on the individuals’ reciprocities. For
a ‘selfish’ approach, the reciprocity of the reference node
is the only consideration. For an ‘altruistic’ approach, the
reciprocities of nodes other than the reference node are only
considered. Between the above two extreme scenarios, the
weighted average of reciprocities among all nodes can be
taken.

The utility as the overall weighted average reciprocity in
the society with respect to node i is defined as

U (i) =
∑

j∈V (i)

wj r̄j (49)

where r̄j = (1/nj)
∑

k∈V (i) rj,k is the average reciprocity of
node j among its nj neighboring nodes in the society of node
i. The average reciprocity of a node indicates how well other
nodes treat it reciprocally. Therefore, the utility function in

TABLE I: Strategic networks of different reference nodes in
Fig. 4 with deterministic reciprocity as the criterion based on
different self-interest weights

Refer. Strategic Network
(wi = 1.0) (wi = 0.5) (wi = 0)

0 0, 2, 4 0, 1, 2, 3, 8 0, 1, 2
1 0, 1, 3 0, 1, 3, 8 1, 2, 4
2 1, 2, 4, 7 0, 1, 2, 4, 7 0, 2, 3, 8
3 0, 2, 3, 4 0, 2, 3 0, 3, 8, 10
4 4, 7 0, 1, 2, 4, 5, 6, 7, 10 2, 4, 5, 6, 7, 10
5 4, 5, 7 4, 5, 7 4, 5
6 4, 6, 7 4, 6, 7 4, 6, 7
7 4, 6, 7 4, 6, 7, 10 7, 9, 10
8 0, 3, 8, 10 0, 2, 3, 8, 9, 10 8, 9, 10
9 3, 8, 9 3, 8, 9 7, 9, 10

10 6, 7, 9, 10 6, 7, 8, 9, 10 3, 8, 10

Eq.(49) is the weighted average of all nodes in the society
formed by node i. Determining the self-interest weights wj’s
has an effect on how much emphasis on the reference node’s
benefit verses other nodes when forming strategic partnerships.

Three simple cases of the 11-node example in Fig. 4 are
tested for demonstration. The first case is the selfish approach
where the self-interest weight associated with the reference
node i is one (wi = 1) and others are zeros. The second case
is when wi = 0.5 and all others are equally weighted and
all self-interest weights still sum up to one. The third one is
the altruistic approach with wi = 0 and all others are equally
weighted and sum up to one. The resulting strategic networks
from the greedy algorithms with respect to each of the nodes
as reference are shown in Table I. In above three cases, the
P-reliance probabilities are not considered. The reciprocities
are calculated based on Eq. (36), where only the topological
effect of graphs is included.

B. Benevolence criterion

A further generalization is to consider the prediction and
reliance probabilities and use benevolence as the criterion.
The perception of benevolence is calculated as in Eq.(41) and
replaces the deterministic reciprocity in Eq.(49) for utility. As-
sume that all expected values of P- and Q-reliance probabilities
between all nodes in Fig. 4 are 0.5, and their variances are 0.1.
The expected value and variance of prediction probability for
all nodes are 0.9 and 0.1 respectively. The strategic networks
with respect to each of the nodes with self-interest weights
wi = 1 and wi = 0 are listed in Table II.

C. Ability criterion

The second criterion that can be used for network optimiza-
tion is ability. In addition to the prediction capability, ability
also measures how influential a node is in a society. Therefore,
the natural objective of a node to build a strategic network
around itself is to maximize its influence within the network
if its prediction capability is fixed.

The utility based on the second-order ability in Eq.(32) with
respect to node i can be defined as

U (i) = E(2)(Aj(θ|+,−)) (50)
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TABLE II: Strategic networks for different reference nodes in
Fig. 4 with two self-interest weights (wi = 1 and wi = 0)
when benevolence is used as the criterion

Refer. Strategic Network
(wi = 1.0) (wi = 0)

0 0, 1, 2, 4 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
1 0, 1, 2, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
2 0, 1, 2, 3 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
3 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
4 0, 2, 3, 4, 5, 6 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
5 0, 2, 3, 4, 5, 5 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
6 0, 2, 3, 4, 6, 7 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
7 0, 3, 7, 8, 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
8 7, 8, 9, 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
9 0, 2, 3, 4, 5, 7, 8, 9, 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

10 0, 1, 2, 3, 4, 7, 8, 9, 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

TABLE III: Strategic networks for different reference nodes
with ability as criterion

Refer. Strategic Network Abilities
0 0, 1, 2, 4 0.765, 0.689, 0.597, 0.0
1 0, 1, 2, 4 0.765, 0.689, 0.597, 0.0
2 0, 1, 2, 3, 8 0.720, 0.689, 0.645, 0.645, 0.0
3 0, 1, 2, 3 0.681, 0.671, 0., 0.689
4 0, 2, 4, 5, 6, 7, 10 0.5, 0.517, 0.645, 0.5, 0.628, 0.517, 0.5
5 4, 5 0.0, 0.5
6 6, 7, 9, 10 0.689, 0.517, 0.0, 0.5
7 3, 7, 8, 10 0.0, 0.689, 0.5, 0.517
8 7, 8, 9, 10 0.0, 0.684, 0.684, 0.684
9 3, 8, 9, 10 0.0, 0.684, 0.684, 0.684
10 3, 8, 9, 10 0.0, 0.684, 0.684, 0.684

The strategic network of node i can be obtained by finding the
network where the ability of the reference node is maximized.
In the simple example in Fig. 4, the strategic network with
respect to each of the 11 nodes are obtained by applying the
greedy algorithm, and the results are shown in Table III. The
abilities corresponding to the nodes in the final networks are
also listed.

The optimization process is also applied to the random
graph model in Fig. 2. The optimum network with respect
to node 0 is shown in Fig. 9a, and the evolution of utility
during the search is shown in Fig. 9b. The ability of node
0 is 0.62604317 in its final strategic network. Notice that
the proposed greedy optimization algorithm is heuristic and
does not guarantee a global optimum solution. The solution
can be searching path dependent. When a node is selected to
be included in the solution, it may affect which nodes to be
included in the following searching steps. That is the reason
that some plateaus are observed in 9b. There might be no
improvement for quite a few iterations without breakthrough
once some nodes are selected in the optimum network.

Higher-order abilities instead of the second-order one in Eq.
(50) can be similarly used as the criterion in network optimi-
zation. When higher-order abilities are used, the influence of a
node in the network gains more weights in calculating abilities,
which is also emphasized more in obtaining the optimum
network.

Note that the integrity of nodes is not used in designing a
node’s strategic network. Because the integrity of an individual
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Fig. 9: Trustworthy network of Node 0 from random graph in
Fig. 2 where the second-order ability is applied as the utility
for optimization.

node is mostly independent from the topological relationship
between those nodes. The network rarely has effects on how
an individual node behaves or how it is compromised when
attacked. The goal of the strategic network with respect to
a reference node is building a trustable community which the
reference node can rely on and work with. Nevertheless, if the
integrity of networks instead of individual nodes is concerned
and the goal is to maintain the integrity of a networked system,
the design optimization is relatively straightforward and is
to increase the size of the network as much as resources
allow. Introducing redundancy can increase the reliability,
resilience, and thus the integrity of the system. This can
also be seen in the perception based integrity measure in
Eq.(48), where the large variation among nodes, caused by
individual compromised nodes, helps reduce the impact of the
individual’s swing and keeps the overall perception stable.

VIII. CONCLUDING REMARKS

In this paper, a perception based trust framework is des-
cribed in order to include human user aspects in trust. The
trustworthiness of CPS nodes in a networked environment
is quantified by three independent metrics, including ability,
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benevolence, and integrity. Ability indicates how capable a
CPS node is to provide accurate sensing, reasoning, and
prediction, and how influential a node is in affecting other’s
decision making process. Benevolence measures the motiva-
tion of information sharing and how much reciprocity a node
may receive from its neighbors during information and data
exchange. Integrity shows the level of reliability, predictability
and security of a node in the network.

The three quantitative metrics can be obtained objectively
from the statistical data of performance as well as percep-
tual reputation, including prediction and reliance probability
values. The perceptual models can also be applied when
beliefs are elicited from experts as subjective probabilities.
The calculation of trustworthiness metrics is all based on the
Bayesian approach. The only assumption made in the model
is the Gaussian distributions of perceptions. Therefore, the
generality of the metrics is maintained, and human and social
behaviors can be captured.

In the current graph model setting, the state variables are
simplified to binary, where only two values are taken. In more
generic analog systems, sensing and reasoning are based on
continuous variables. The continuous variables with analog
values need to be digitalized. It has been shown that the pro-
babilistic graph model can be easily extended to handle multi-
valued state variables. The probabilistic metrics for ability can
also be generalized so that the expected values of perceptions
become multi-valued functions or distributions. Then the same
Bayesian belief update can be applied. The Kullback-Leibler
divergence in reciprocity metric is general and can be directly
applied to multi-valued probability distributions. Nevertheless,
the implementation of such general framework and the asses-
sment of computational complexity need to be included in
future work. Further performance evaluation is also needed.

In addition, the proposed modeling method can be regarded
as a mesoscale model of networks, where detailed network
communication protocols between nodes is not considered, nor
detailed sensing and control mechanisms within each node.
The mesoscale model needs to be compared with fine-grained
bottom-up models in the future. For instance, hidden variables
may be included in detailed models for measurement and
internal reasoning in each node. Control variables can also
be introduced for actuation. Furthermore, network design op-
timization based on multiple objectives requires more studies,
given that multiple metrics are used in quantification.
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