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Abstract: Di�erent representations of imprecise probabilities have
been proposed, where interval-valued probabilities are used such that
uncertainty is distinguished from variability. In this paper, we present
a new form of imprecise probabilities for reliability assessment based on
generalized intervals. Generalized intervals have group properties under
the Kaucher arithmetic, which provides a concise representation and
calculus structure as an extension of precise probabilities.

With the separation between proper and improper interval probabili-
ties, focal and non-focal events are di�erentiated based on the associated
modalities and logical semantics. Focal events have the semantics of
critical, uncontrollable, and speci�ed in probabilistic analysis, whereas
the corresponding non-focal events are complementary, controllable, and
derived.

A logic coherence constraint is proposed in the new form. Because
of the algebraic properties of generalized intervals, conditional interval
probability can be directly de�ned based on marginal interval proba-
bilities. A Bayes' rule with generalized intervals allows us to interpret
the logic relationship between interval prior and posterior probabilities.
The imprecise Dirichlet model is also extended with the logic coherence
constraint.
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1 Introduction

Imprecise probability di�erentiates uncertainty from variability both qualita-
tively and quantitatively, which is the alternative to the traditional sensitivity anal-
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ysis in probabilistic reasoning to model indeterminacy and imprecision. Many rep-
resentations of imprecise probabilities have been developed in the past four decades.
The Dempster-Shafer evidence theory (Dempster (1967); Shafer (1976)) character-
izes uncertainties as discrete probability masses associated with a power set of
values. Belief-Plausibility pairs are used to measure likelihood. The behavioral im-
precise probability theory (Walley (1991)) models behavioral uncertainties with the
lower prevision (supremum acceptable buying price) and the upper prevision (in�-
mum acceptable selling price). A random set (Molchanov (2005)) is a multi-valued
mapping from the probability space to the value space. The possibility theory
(Zadeh (1978); Dubois and Prade (1988)) provides an alternative to represent un-
certainties with Necessity-Possibility pairs. Probability bound analysis (Ferson et
al. (2002)) captures uncertain information with p-boxes which are pairs of lower
and upper probability distributions. F-probability (Weichselberger (2000)) incor-
porates intervals into the probability value which maintains Kolmogorov properties.
Fuzzy probability (Möller and Beer (2004)) considers probability distributions with
fuzzy parameters. A cloud (Neumaier (2004)) is a fuzzy interval with an interval-
valued membership, which is a combination of fuzzy sets, intervals, and probability
distributions.

These di�erent representations model the indeterminacy due to incomplete in-
formation very well with di�erent forms. There are still challenges in practical issues
such as assessment and computation to derive inferences and conclusions (Walley
(1996a)). For instance, computing the lower and upper envelopes from the extremes
of interval-valued probabilities in belief updating and inference is complex. Usu-
ally this combinatorial problem is formulated and solved by linear programming,
which requires a polynomial time of computation. A simpler algebraic structure
of imprecise probability will be helpful in extending its applications in engineering
and science domains, where intuitive calculus often shows advantages in ease of
use and reducing chances of human errors. We recently proposed a new form of
imprecise probabilities based on generalized intervals (Wang (2008)). Unlike tra-
ditional set-based intervals, such as the interval [0.1, 0.2] which represents a set of
real values between 0.1 and 0.2, generalized intervals also allow the existence of the
interval [0.2, 0.1]. The logic quanti�ers (∀ and ∃) can be integrated to provide the
interpretation of intervals. Another advantage of generalized intervals is that they
have group properties under arithmetic operations (+,−,×,÷). With this exten-
sion, the algebraic properties of interval-valued probabilities are improved, and the
calculus is simpli�ed.

In this paper, we demonstrate that the new interval probability structure can
be applied in reliability assessment. In reliability analysis, the motivations of using
imprecise probabilities include lack of statistical data to generate precise distribu-
tions, subjective judgements from experts causing inconsistencies or con�icts, lack
of knowledge about physical systems such as ageing e�ects and dependency relation-
ships among components, and imprecision of measurements such as censored data,
which cannot be modeled e�ciently in traditional analysis with precise probabili-
ties (Coolen (2004); Utkin and Coolen (2007)). Imprecise probability has attracted
reliability researchers' attentions in the past decade. Coolen and Newby (1994)
showed that the application of imprecise probabilities can make the elicitation of
prior information from experts simpler by considering a range of possible proba-
bilities. Coolen (1997) introduced the Bayesian analysis with imprecise Dirichlet



Imprecise probabilities based on generalized intervals for system reliability assessment 3

model (Walley (1996b); Bernard (2005)) into the prediction of failure rates. Non-
parametric predictive inference approaches (Coolen (1998); Coolen and Yan (2004);
Coolen-Schrijner and Coolen (2007); Coolen and Augustin (2007)) to predict fu-
ture failures based on past observations were also developed, which can be applied
to right-censored data and support preventive replacement decisions. Utkin and
Gurov (1999, 2002) studied the reliability of monotone multistate systems based
on a generic setting of non-parametric life distribution classes and the natural ex-
tension constraints in Kuznetsov's dual form (Utkin and Kozine (2001)). Interval
reliabilities of parallel and series systems were derived (Utkin (2004)).

Di�erent forms of imprecise probabilities have been used in reliability analy-
sis. For example, Kozine and Filimonov (2000) compared the applications of the
Dempster-Shafer structure and the coherent imprecise probability theory in reli-
ability assessment. Tonon et al. (1999, 2000) applied random sets and evidence
theory for structure reliability analysis. Nikolaidis et al. (2004) and Soundappan et
al. (2004) used the evidence and possibility theories in robust design under uncer-
tainties against failures. The evidence and possibility theories were also employed
to formulate and solve reliability based design optimization problems (Mourelatos
and Zhou (2006); Du et al. (2006); Kokkolaras et al. (2006); Zhou and Mourelatos
(2008)). Whitcomb (2005) applied the generalized Bayes' rule to mean time to
failure estimations in conjunction with linear programming under coherence con-
straints. Coherent imprecise probabilities have also been applied in studies of cold
standby systems (Utkin (2003b)) and bridge system structures (Song et al. (2006)).
Aughenbaugh and Herrmann (2008) combined the imprecise Dirichlet model with
the variance-based sensitivity indices (Hall (2006)) and applied to reliability test
planning.

One of the core issues in imprecise probability is to characterize incomplete
knowledge of distributions with lower and upper probability pairs so that we can
improve the robustness of assessment. We are interested in exploring the potential
of our new imprecise probability structure applied to reliability analysis. In the
remainder of this paper, Section 2 summarizes the algebraic and logic properties
of generalized intervals. Section 3 presents the new imprecise probability structure
with the generalized interval form. Section 4 shows the extended imprecise Dirichlet
model and demonstrates its application in reliability assessment. Finally Section 5
is the Conclusion.

2 Generalized Intervals

Our new imprecise probability structure is based on generalized or modal in-
tervals. Modal interval analysis (MIA) (Gardeñes et al. (2001); Markov (2001);
Shary (2002); Popova (2001); Armengol et al. (2001)) is an algebraic and semantic
extension of the classical interval analysis (IA) (Moore (1966)). In IA, an interval
[a, b] = {x ∈ R|a ≤ x ≤ b} is a set of real numbers de�ned by its lower and upper
bounds. Therefore, the interval [a, b] becomes invalid or empty when a > b. In
MIA, a generalized interval is no longer restricted to the ordered bound condition
of a ≤ b. Therefore, [2, 1] is also a valid interval.

A generalized interval x := [x, x] (x, x ∈ R) is de�ned by a pair of real numbers
x and x, instead of the traditional set-based de�nition. The generalized interval
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Table 1 The Kaucher arithmetic

x + y :=
[
x+ y, x+ y

]
x− y :=

[
x− y, x− y

]

x× y :=



[
xy, xy

] (
x ≥ 0, x ≥ 0, y ≥ 0, y ≥ 0

)[
xy, xy

] (
x ≥ 0, x ≥ 0, y ≥ 0, y < 0

)[
xy, xy

] (
x ≥ 0, x ≥ 0, y < 0, y ≥ 0

)[
xy, xy

] (
x ≥ 0, x ≥ 0, y < 0, y < 0

)[
xy, xy

] (
x ≥ 0, x < 0, y ≥ 0, y ≥ 0

)[
max

(
xy, xy

)
,min

(
xy, xy

)] (
x ≥ 0, x < 0, y ≥ 0, y < 0

)
[0, 0]

(
x ≥ 0, x < 0, y < 0, y ≥ 0

)
[xy, xy]

(
x ≥ 0, x < 0, y < 0, y < 0

)
[xy, xy]

(
x < 0, x ≥ 0, y ≥ 0, y ≥ 0

)
[0, 0]

(
x < 0, x ≥ 0, y ≥ 0, y < 0

)[
min

(
xy, xy

)
,max

(
xy, xy

)] (
x < 0, x ≥ 0, y < 0, y ≥ 0

)[
xy, xy

] (
x < 0, x ≥ 0, y < 0, y < 0

)[
xy, xy

] (
x < 0, x < 0, y ≥ 0, y ≥ 0

)[
xy, xy

] (
x < 0, x < 0, y ≥ 0, y < 0

)[
xy, xy

] (
x < 0, x < 0, y < 0, y ≥ 0

)[
xy, xy

] (
x < 0, x < 0, y < 0, y < 0

)

x/y :=



[
x/y, x/y

] (
x ≥ 0, x ≥ 0, y > 0, y > 0

)[
x/y, x/y

] (
x ≥ 0, x ≥ 0, y < 0, y < 0

)
[x/y, x/y]

(
x ≥ 0, x < 0, y > 0, y > 0

)[
x/y, x/y

] (
x ≥ 0, x < 0, y < 0, y < 0

)[
x/y, x/y

] (
x < 0, x ≥ 0, y > 0, y > 0

)
[x/y, x/y]

(
x < 0, x ≥ 0, y < 0, y < 0

)[
x/y, x/y

] (
x < 0, x < 0, y > 0, y > 0

)[
x/y, x/y

] (
x < 0, x < 0, y < 0, y < 0

)

is related to the traditional set-based interval by an operator ′ as in [x, x]′ :=
{x ∈ R|min (x, x) ≤ x ≤ max (x, x)}. x is called proper when x ≤ x and called
improper when x ≥ x. When x = x, x is a pointwise interval. Pointwise intervals
are both proper and improper. We also denote a pointwise interval [x, x] simply
as x. The set of generalized intervals is denoted by KR = {[x, x] | x, x ∈ R}. The
set of proper intervals is denoted by IR = {[x, x] | x ≤ x (x, x ∈ R)}, and the set
of improper interval by IR = {[x, x] | x ≥ x (x, x ∈ R)}. Operations between two
generalized intervals x = [x, x] and y = [y, y] are de�ned in the Kaucher arithmetic
(Kaucher (1980)) as in Table 1.
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Given a generalized interval x = [x, x] ∈ KR, two operators pro and imp return
proper and improper values, de�ned as prox := [min(x, x),max(x, x)] and impx :=
[max(x, x),min(x, x)] respectively. The relationship between proper and improper
intervals is established with the operator dual as dualx := [x, x].

For example, a = [0, 1] and b = [1, 0] are both valid intervals. While a is
a proper interval, b is an improper one. The relation between a and b can be
established by a = dualb and b = duala. The inclusion relationship ⊆ between
generalized intervals x = [x, x] and y = [y, y] is de�ned as

(1) [x, x] ⊆ [y, y] ⇐⇒ x ≥ y ∧ x ≤ y

The less-than-or-equal-to relationship ≤ is de�ned as

(2) [x, x] ≤ [y, y] ⇐⇒ x ≤ y ∧ x ≤ y

Unlike IA which identi�es an interval by a set of real numbers only, MIA identi-
�es an interval by a set of predicates which is ful�lled by real numbers. Given a set
of closed intervals of real numbers, and the set of logical existential (∃) and universal
(∀) quanti�ers, each generalized interval has an associated quanti�er. The seman-
tics of a generalized interval x ∈ KR is denoted by (Qxx ∈ x′) where Qx ∈ {∃,∀}.
x is called existential if Qx = ∃. Otherwise, it is called universal. If a real rela-
tion z = f (x1, . . . , xn) is extended to the interval relation z = f (x1, . . . ,xn), the
interval relation z is interpretable if there is a semantic relation

(3) (Qx1x1 ∈ x′1) · · · (Qxn
xn ∈ x′n) (Qzz ∈ z′) (z = f(x1, . . . , xn))

Similar to that negative numbers are the inverse elements of positive numbers
in the real arithmetic, the introduction of improper intervals enables the Kaucher
arithmetic to have group properties. Table 2 lists the major di�erences between
MIA and IA. MIA o�ers better algebraic properties and more semantic capabilities.

Not only for outer range estimations, generalized intervals are also convenient for
inner range estimations (Kupriyanova (1995); Kreinovich et al. (1996); Goldsztejn
(2005)). For a solution set S ⊂ Rn of the interval system f(x) = 0 where x ∈ IRn,
an inner estimation xin of the solution set S is an interval vector that is guaranteed
to be included in the solution set, and an outer estimation xout of S is an interval
vector that is guaranteed to include the solution set.

Our new interval probability representation incorporating the generalized inter-
val is to take advantage of its algebraic properties so that the calculus of interval
probability can be simpli�ed. At the same time, the logic interpretation of prob-
abilistic properties can be integrated so that the completeness and soundness of
range estimates can be veri�ed. A complete solution includes all possible occur-
rences, which is to check if the range estimation includes all possible combinations.
Conversely, a sound solution does not include impossible occurrences, which con-
sists in checking if the interval overestimates the actual range.

3 Imprecise Probability based on Generalized Intervals

3.1 Basic Concepts

De�nition 3.1. Given a sample space Ω and a σ-algebra A of random events over
Ω, we de�ne the generalized interval probability p ∈ KR as p : A → [0, 1] × [0, 1]
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Table 2 The major di�erences between MIA and the traditional IA

Classical Interval

Analysis

Modal Interval Analysis

Validity [a, a] with a > a is invalid. a = [a, a] with a ≤ a or a > a are
always valid.

Semantics [a, a] +
[
b, b
]

=
[
a+ a, b+ b

]
,

with a ≤ a and b ≤ b, only
means �stack-up� and
�worst-case�. −,×,÷ are
similar.

a + b = c has di�erent meanings
with di�erent modalities.
- when a ∈ IR, b ∈ IR, c ∈ IR:
∀a ∈ a′,∀b ∈ b′,∃c ∈ c′, a+ b = c
- when a ∈ IR, b ∈ IR, c ∈ IR:
∀a ∈ a′,∃b ∈ b′,∃c ∈ c′, a+ b = c
- when a ∈ IR, b ∈ IR, c ∈ IR:
∀a ∈ a′,∀c ∈ c′,∃b ∈ b′, a+ b = c
- when a ∈ IR, b ∈ IR, c ∈ IR:
∀c ∈ c′,∃a ∈ a′,∃b ∈ b′, a+ b = c
−,×,÷ are similar.

Group
property

- When [a, a] is a
non-pointwise interval (i.e.
a < a), [a, a]− [a, a] 6= 0, and
[a, a]÷ [a, a] 6= 1 for 0 /∈ [a, a].
- If [a, a] and [b, b] are both
non-pointwise intervals, then
[a, a] + x = [b, b], but
x 6= [b, b]− [a, a].
Ex. [2, 3] + [2, 4] = [4, 7], but
[2, 4] 6= [4, 7]− [2, 3].
- The same for the case of
[a, a]× x = [b, b] for
(0 /∈ [a, a]) that it holds but
x 6= [b, b]÷ [a, a] whenever
[a, a] and [b, b] are both
non-pointwise intervals.

a− duala = 0.
a÷ duala = 1 for 0 /∈ a′.
a + x = b, and x = b− duala.
Ex. [2, 3] + [2, 4] = [4, 7], and
[2, 4] = [4, 7]− [3, 2].
a× x = b, and x = b÷ duala.
Ex. [2, 3]× [3, 4] = [6, 12], and
[3, 4] = [6, 12]÷ [3, 2].
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which obeys the axioms of Kolmogorov: (1) p (Ω) = [1, 1]; (2) [0, 0] ≤ p (E) ≤
[1, 1] (∀E ∈ A); and (3) for any countable mutually disjoint events Ei ∩ Ej =
∅ (i 6= j), p (

⋃n
i=1Ei) =

∑n
i=1 p (Ei).

Therefore, an interval probability p =
[
p, p
]
is a generalized interval without

the restriction of p ≤ p. The new de�nition of interval probability also implies
p (∅) = [0, 0].

De�nition 3.2. The probability of the union of two events E1 and E2 is de�ned as

(4) p(E1 ∪ E2) := p(E1) + p(E2)− dualp(E1 ∩ E2)

When the probabilities of E1 and E2 become precise, Eq.(4) has the same form
as the traditional precise probabilities. From Eq.(4), we have

(5) p(E1 ∪ E2) + p(E1 ∩ E2) = p(E1) + p(E2)

which also indicates the generalized interval probabilities are 2-monotone and 2-
alternating in the sense of Choquet's capacities. For all E1, E2 ∈ A, the lower
probability p is said to be 2-monotone if p (E1 ∪ E2)+p (E1 ∩ E2) ≥ p (E1)+p (E2),
and the upper probability p is said to be 2-alternating if p (E1 ∪ E2)+p (E1 ∩ E2) ≤
p (E1)+p (E2). However the relation in Eq.(5) is stronger than the 2-monotonicity.

Let (Ω,A) be the probability space and P a non-empty set of probability dis-
tributions on that space. The lower and upper probability envelopes are usually
de�ned as

P∗(E) = inf
P∈P

P (E)

P ∗(E) = sup
P∈P

P (E)

Not every probability envelope is 2-monotone. However, 2-monotone closed-form
representations are more applicable because it may be di�cult to track probabil-
ity envelopes during manipulations. Therefore it is of our interest that a simple
algebraic structure can provide such practical advantages for broader applications.

Furthermore, we have

(6) p(E1 ∪ E2) ≤ p(E1) + p(E2) (∀E1, E2 ∈ A)

in the new interval representation, since p(E1 ∩ E2) ≥ 0. Note that Eq.(6) is dif-
ferent from the relation de�ned in the Dempster-Shafer structure or F-probability,
where p (E1) + p (E2) ≤ p (E1 ∪ E2) ≤ p (E1) + p (E2) ≤ p (E1 ∪ E2) ≤ p (E1) +
p (E2). In Eq.(6), both lower and upper probabilities are subadditive. It has the
same form as the precise probability except for the newly de�ned inequality (≤,≥)
relationships as in Eq.(2) for generalized intervals. Similar to the precise probabil-
ity, the equality in Eq.(6) occurs when p(E1 ∩ E2) = [0, 0].

The values of interval probabilities are between 0 and 1. As a result, the interval
probabilities p1, p2, and p3 have the following algebraic properties:
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p1 ≤ p2 ⇔ p1 + p3 ≤ p2 + p3

p1 ⊆ p2 ⇔ p1 + p3 ⊆ p2 + p3

p1 ≤ p2 ⇔ p1p3 ≤ p2p3

p1 ⊆ p2 ⇔ p1p3 ⊆ p2p3

De�nition 3.3. The probability of the complement of event E is

(7) p(Ec) := 1− dualp(E)

which is equivalent to

(8) p(Ec) := 1− p(E)

(9) p(Ec) := 1− p(E)

The de�nitions in Eqs.(8) and (9) are equivalent to the other forms of interval
probabilities. The calculation based on generalized intervals as in Eq.(7) can be
more concise. That is,

(10) p(E) + p(Ec) = 1 (∀E ∈ A)

Eq.(10) can be generalized to a logic coherence constraint as follows.

De�nition 3.4. (Logic Coherence Constraint) For a mutually disjoint event parti-
tion

⋃n
i=1Ei = Ω,

(11)
n∑

i=1

p(Ei) = 1

The logic coherence constraint is more restrictive than the traditional coherence
constraint (Walley (1991)). Suppose that p(Ei) ∈ IR (for i = 1, . . . , k) and p(Ei) ∈
IR (for i = k + 1, . . . , n). Eq.(11) can be interpreted as

∀p1 ∈ p′(E1), . . . ,∀pk ∈ p′(Ek),∃pk+1 ∈ p′(Ek+1), . . . ,∃pn ∈ p′(En),(12)
n∑

i=1

pi = 1

based on the interpretability principles of MIA (Gardeñes et al. (2001)).

Example 3.5. Given three events E1, E2, and E3 in the sample space, E1∪E2∪
E3 = Ω, and E3 = (E1 ∪ E2)c. We know p (E1) = [0.2, 0.3], p (E2) = [0.4, 0.6],
p (E1 ∩ E2) = [0.1, 0.2]. Then p (E1 ∪ E2) = p (E1) + p (E2) − dualp (E1 ∩ E2) =
[0.2, 0.3] + [0.4, 0.6]− [0.2, 0.1] = [0.5, 0.7]. Applying the logic coherence constraint
p (E1 ∪ E2) + p (E3) = 1, we have p(E3) = 1 − dualp(E1 ∪ E2) = 1 − [0.7, 0.5] =
[0.5, 0.3]. The logic interpretation of the algebraic relation is

∀p1,2 ∈ [0.5, 0.7]′ ,∃p3 ∈ [0.3, 0.5]′ , p1,2 + p3 = 1
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A generalization of Eq.(4) is

(13) p(A) =
∑
S⊆A

(−dual)|A|−|S|p(S)

for A ⊆ Ω. For instance, for three events Ei(i = 1, 2, 3),

p(E1 ∪ E2 ∪ E3) = p(E1) + p(E2) + p(E3)− dualp(E1 ∩ E2)
−dualp(E2 ∩ E3)− dualp(E1 ∩ E3) + p(E1 ∩ E2 ∩ E3)

The lower and upper probabilities in the generalized interval form do not just
have the traditional meanings of lower and upper envelopes. They maintain the
semantics of relationships among probability estimates as well as the associated
events. Rather than only capturing the relationships among interval probabilities
as in the traditional coherence constraint, the logic coherence constraint also incor-
porates events, which is the di�erentiation between focal and non-focal events.

3.2 Focal and Non-Focal Events

De�nition 3.6. An event E is a focal event if the associated semantics for p(E)
is universal (Qp(E) = ∀). Otherwise it is a non-focal event if the semantics is
existential (Qp(E) = ∃).

Remark 3.7. Notice that the focal event is a di�erent concept from focal sets
de�ned in random sets.

A focal event is an event of interest in probabilistic analysis. The uncertainties
associated with focal events are critical for the analysis of a system. In contrast, the
uncertainties associated with non-focal events are �complementary� and �balancing�.
The corresponding non-focal event is not the focus of the assessment. The quanti�ed
uncertainties of non-focal events are derived from those of the corresponding focal
events. For instance, in risk assessment, the high-consequence event of interest is
the target and focus of study, such as the event of a structural failure at the half
of a bridge's life expectancy, whereas the event of the structural failure when the
bridge is twice as old as it was designed for may become non-focal.

In the interpretation in Eq.(12), the interval probability of a focal event Ei

is proper (p(Ei) ∈ IR), and the interval probability of a non-focal event Ej is
improper (p(Ej) ∈ IR). Focal events have the semantics of critical, uncontrollable,
speci�ed in probabilistic analysis, whereas the corresponding non-focal events are
complementary, controllable, and derived. The complement of a focal event is a non-
focal event. For a set of mutually disjoint events, there is at least one non-focal
event because of Eq.(11).

Two relationships between events are de�ned as follows.

De�nition 3.8. Event E1 is said to be less likely (or more likely) to occur than
event E2, denoted as E1 � E2 (or E1 � E2), which is de�ned as

(14)
E1 � E2 ⇐⇒ p(E1) ≤ p(E2)

(E1 � E2 ⇐⇒ p(E1) ≥ p(E2))
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where ≤ is de�ned in Eq.(2).

De�nition 3.9. Event E1 is said to be less focused (or more focused) than event
E2, denoted as E1 v E2 (or E1 w E2), which is de�ned as

(15)
E1 v E2 ⇐⇒ p(E1) ⊆ p(E2)

(E1 w E2 ⇐⇒ p(E1) ⊇ p(E2))

where ⊆ is de�ned in Eq.(1).

With the above two relationships, the degree of imprecise belief and the level of
imprecision are comparable. During analysis, usually we would like to concentrate
on those events that are more focused �rst. For two focal events E1 and E2 which
both have proper interval probabilities (p (E1) ∈ IR,p (E2) ∈ IR), when p (E1) ⊆
p (E2), the width of the interval p (E2) is greater than that of p (E1). Thus E2 has
a higher level of uncertainty than E1. For a non-focal event E1 and a focal event
E2 (p (E1) ∈ IR,p (E2) ∈ IR), when p (E1) ⊆ p (E2), obviously the focal event E2

is of interest to us.

Lemma 3.10. (Monotonicity) E1 ⊆ E2 ⇒ E1 � E2.

Proof. E1 ⊆ E2 ⇒ p (E2) = p (E1 ∪ (E2 − E1)) = p (E1) + p (E2 − E1) −
dualp (E1 ∩ (E2 − E1)) ≥ p (E1). �

Remark 3.11. A subset of events is less likely to occur than its superset.

Lemma 3.12. (Additivity) If E1 ∩ E3 = ∅ and E2 ∩ E3 = ∅, then E1 � E2 ⇔
E1 ∪ E3 � E2 ∪ E3, E1 v E2 ⇔ E1 ∪ E3 v E2 ∪ E3.

Proof. E1 � E2⇔p (E1) ≤ p (E2)⇔p (E1)+p (E3) ≤ p (E2)+p (E3)⇔p (E1 ∪ E3) ≤
p (E2 ∪ E3)⇔E1 ∪ E3 � E2 ∪ E3.

E1 v E2⇔p (E1) ⊆ p (E2)⇔p (E1) + p (E3) ⊆ p (E2) + p (E3)⇔p (E1 ∪ E3) ⊆
p (E2 ∪ E3)⇔E1 ∪ E3 v E2 ∪ E3. �

Lemma 3.13. If E1 and E3 are independent, and also E2 and E3 are independent,
then E1 � E2 ⇔ E1 ∩ E3 � E2 ∩ E3, E1 v E2 ⇔ E1 ∩ E3 v E2 ∩ E3.

Proof. E1 � E2⇔p (E1) ≤ p (E2)⇔p (E1) p (E3) ≤ p (E2) p (E3)⇔p (E1 ∩ E3) ≤
p (E2 ∩ E3)⇔E1 ∩ E3 � E2 ∩ E3.

E1 v E2⇔ p (E1) ⊆ p (E2)⇔p (E1) p (E3) ⊆ p (E2) p (E3)⇔p (E1 ∩ E3) ⊆
p (E2 ∩ E3)⇔E1 ∩ E3 v E2 ∩ E3. �

Lemma 3.14. Suppose p (E) ∈ IR. (1) p (E) ≤ p (Ec) if p (E) ≤ 0.5; (2) p (E) ≥
p (Ec) if p (E) ≥ 0.5; (3) p (E) ⊇ p (Ec) if p (E) ≤ 0.5 and p (E) ≥ 0.5.

Proof. (1) Because p (E) ∈ IR, p (Ec) ∈ IR, and p (E) +p (Ec) = 1, it is easy to
see p (E) ≤ p (Ec) and p (E) ≤ p (Ec) if p (E) ≤ 0.5. (2) can be veri�ed similarly.
(3) If p (E) ≤ 0.5 and p (E) ≥ 0.5, then p (Ec) ≥ 0.5 and p (Ec) ≤ 0.5. Thus
p (E) ≤ p (Ec) and p (E) ≥ p (Ec). �
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Remark 3.15. A focal event E (p (E) ∈ IR) is less likely to occur than its com-
plement if p (E) ≤ 0.5; E is more likely to occur than its complement if p (E) ≥ 0.5;
otherwise, E is more focused than its complement. When E is a non-focal event,
its complement Ec is a focal event. The relationships between p (E) and p (Ec)
are just opposite.

The relationships of events de�ned in the above lemmata provide the basis of
interpretation for our new interval probability structure. It is shown that proper
and improper interval probabilities have corresponding physical meanings. Fur-
thermore, interval probabilities based on generalized intervals have some similar
properties such as monotonicity and additivity as precise probabilities. This is
helpful to build an intuitive assessment framework.

3.3 Conditional Interval Probabilities

Di�erent from the coherent provision or F-probability theories, we de�ne con-
ditional generalized interval probabilities based on marginal probabilities.

De�nition 3.16. The conditional interval probability p(E|C) for all E,C ∈ A is
de�ned as

(16) p(E|C) :=
p(E ∩ C)
dualp(C)

=
[
p(E ∩ C)
p(C)

,
p(E ∩ C)
p(C)

]
when p(C) > 0.

Not only does the de�nition in Eq.(16) ensure the algebraic completion of the in-
terval probability calculus, but also it is a generalization of the canonical conditional
probability in F-probabilities. Di�erent from the Dempster's rule of conditioning or
geometric conditioning, this conditional structure maintains the algebraic relation
between marginal and conditional probabilities. As a result,

(17) p (C|C) = 1

Based on the interpretability principles of MIA (Gardeñes et al. (2001)), the
interval relation c = a/b is interpreted as

∀a ∈ a′,∀b ∈ b′,∃c ∈ c′, c = a/b or (when a,b, c ∈ IR)
∀c ∈ c′,∃a ∈ a′,∃b ∈ b′, c = a/b

∀a ∈ a′,∃b ∈ b′,∃c ∈ c′, c = a/b or
(
when a, c ∈ IR,b ∈ IR

)
∀b ∈ b′,∀c ∈ c′,∃a ∈ a′, c = a/b

∀a ∈ a′,∀c ∈ c′,∃b ∈ b′, c = a/b or
(
when a ∈ IR,b, c ∈ IR

)
∀b ∈ b′,∃a ∈ a′,∃c ∈ c′, c = a/b

Thus the available logic interpretations of the conditional interval probability
in Eq.(16) are as follows.

• when p(E ∩ C) ∈ IR, p(C) ∈ IR, and p(E|C) ∈ IR
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(18) ∀pE∩C ∈ p′(E ∩ C),∀pC ∈ p′(C),∃pE|C ∈ p′(E|C), pE|C =
pE∩C

pC

or

(19) ∀pE|C ∈ p′(E|C),∃pE∩C ∈ p′(E ∩ C),∃pC ∈ p′(C), pE|C =
pE∩C

pC

• when p(E ∩ C) ∈ IR, p(C) ∈ IR, and p(E|C) ∈ IR

(20) ∀pE∩C ∈ p′(E ∩ C),∃pC ∈ p′(C),∃pE|C ∈ p′(E|C), pE|C =
pE∩C

pC

or

(21) ∀pE|C ∈ p′(E|C),∀pC ∈ p′(C),∃pE∩C ∈ p′(E ∩ C), pE|C =
pE∩C

pC

• when p(E ∩ C) ∈ IR, p(C) ∈ IR, and p(E|C) ∈ IR

(22) ∀pE∩C ∈ p′(E ∩ C),∀pE|C ∈ p′(E|C),∃pC ∈ p′(C), pE|C =
pE∩C

pC

or

(23) ∀pC ∈ p′(C),∃pE∩C ∈ p′(E ∩ C),∃pE|C ∈ p′(E|C), pE|C =
pE∩C

pC

The logic interpretations of interval conditional probabilities build the connec-
tion between point measurements and probability sets. Therefore, we may use
them to check if a range estimation is a tight envelope. A tight envelope must be
both complete and sound. We use the Example 3.1 in (Weichselberger (2000)) to
illustrate.

Example 3.17. Given the following probabilities in the sample space Ω = E1 ∪
E2 ∪ E3,

p′(E1) = [0.10, 0.25]′ p′(E2 ∪ E3) = [0.75, 0.90]′

p′(E2) = [0.20, 0.40]′ p′(E1 ∪ E3) = [0.60, 0.80]′

p′(E3) = [0.40, 0.60]′ p′(E1 ∪ E2) = [0.40, 0.60]′

A partition of Ω is C = {C1, C2}, where C1 = E1 ∪ E2, C2 = E3, and p′(C1) =
[0.40, 0.60]′.

Suppose p(E1) = [0.10, 0.25] and p(C1) = [0.60, 0.40], we have

p(E1|C1) =
[0.10, 0.25]
[0.40, 0.60]

= [0.1666, 0.6250]

The interpretation

∀pE1 ∈ [0.10, 0.25]′,∀pC1 ∈ [0.40, 0.60]′,∃pE1|C1 ∈ [0.1666, 0.6250]′, pE1|C1 =
pE1

pC1

indicates that the range estimation [0.1666, 0.6250]′ of p (E1|C1) is complete in the
sense that it considers all possible occurrences of p(E1) and p(C1). However, the
range estimation is not necessarily a tight envelope.

On the other hand, if p(E1) = [0.25, 0.10] and p(C1) = [0.40, 0.60], we have
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p(E1|C1) =
[0.25, 0.10]
[0.60, 0.40]

= [0.6250, 0.1666]

The interpretation

∀pE1|C1 ∈ [0.1666, 0.6250]′,∃pE1 ∈ [0.10, 0.25]′,∃pC1 ∈ [0.40, 0.60]′, pE1|C1 =
pE1

pC1

indicates that the range estimation [0.1666, 0.6250]′ is also sound in the sense that
the range estimation is a tight envelope.

Suppose p(E1) = [0.25, 0.10], p(E2) = [0.20, 0.40], and p(C1) = [0.60, 0.40], we
have

p(E1|C1) =
[0.25, 0.10]
[0.40, 0.60]

= [0.4166, 0.25]

p(E2|C1) =
[0.20, 0.40]
[0.40, 0.60]

= [0.3333, 1.0]

The interpretations are

∀pE1|C1 ∈ [0.25, 0.4166]′,∀pC1 ∈ [0.40, 0.60]′,∃pE1 ∈ [0.10, 0.25]′, pE1|C1 =
pE1

pC1

∀pE2 ∈ [0.20, 0.40]′,∀pC1 ∈ [0.40, 0.60]′,∃pE2|C1 ∈ [0.3333, 1.0]′, pE2|C1 =
pE2

pC1

respectively. Combining the two, we can have the interpretation of

∀pE2 ∈ [0.20, 0.40]′,∀pC1 ∈ [0.40, 0.60]′,∀pE1|C1 ∈ [0.25, 0.4166]′,
∃pE1 ∈ [0.10, 0.25]′,∃pE2|C1 ∈ [0.3333, 1.0]′,

pE1|C1 = pE1
pC1

, pE2|C1 = pE2
pC1

If events A and B are independent, then

(24) p(A|B) =
p(A)p(B)
dualp(B)

= p(A)

For a mutually disjoint event partition
⋃n

i=1Ei = Ω, we have

(25) p(A) =
n∑

i=1

p(A|Ei)p(Ei)

Theorem 3.18. (Value of Contradictory Information) If B ∩ C = ∅, then (1)
p (A|C) ⊆ p (A|B)⇔ p (A|B ∪ C) ⊆ p (A|B); (2) p (A|C) ⊆ p (A|B)⇔ p (A|C) ⊆
p (A|B ∪ C); (3) p (A|C) ⊆ p (A|B) ⇔ p (A|C) ⊆ p (A|B ∪ C) ⊆ p (A|B)

Proof. (1) p (A|C) ⊆ p (A|B)⇔ p (A ∩ C) /dualp (C) ⊆ p (A|B)⇔ p (A ∩ C) ⊆
p (A|B) p (C) ⇔ p (A|B) p (B) + p (A ∩ C) ⊆ p (A|B) p (B) + p (A|B) p (C) ⇔
p (A ∩B)+p (A ∩ C) ⊆ p (A|B) p (B ∪ C)⇔ p (A ∩ (B ∪ C)) ⊆ p (A|B) p (B ∪ C)
⇔ p (A ∩ (B ∪ C)) /dualp (B ∪ C) ⊆ p (A|B) ⇔ p (A|B ∪ C) ⊆ p (A|B). (2) can
be veri�ed similarly. Combining (1) and (2), we receive (3).

�
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Remark 3.19. The interpretation of the relationship (1) in Theorem 3.18, from
left to right, is that if there are two pieces of evidence (B and C), and one (C)
may provide more precise estimation about a focal event (A) than the other (B)
may, then the new estimation of probability about the focal event (A) based on the
disjunctively combined evidence can be more precise than the one based on only
one of them (B), even though the two pieces of information are contradictory to
each other. The other direction of the reasoning from right to left is that if the
precision of the focal event estimation with the newly introduced evidence (C) is
improved, the new evidence (C) must be more informative than the old one (B)
although these two are contradictory.

Remark 3.20. The interpretation of the relationship (2) in Theorem 3.18, from
left to right, is that if the precision of the focal event estimation with a contradictory
evidence (B) is not improved compared to the old one with the evidence (C), then
the new evidence (B ∪ C) does not improve the precision on the estimation of the
focal event (A). The other direction of the reasoning from right to left is that if
the estimation about a focal event (A) becomes more precise if some new evidence
(C) excludes some possibilities (B) from the original evidence (B ∪ C), then the
estimation of probability about the focal event (A) based on the new evidence (C)
must be more precise than the one based on the excluded one (B) alone.

Remark 3.21. The relationship (3) in Theorem 3.18 indicates that a combination
of two contradictory evidences achieves a compromised level of precisions between
the two individuals alone.

3.4 Bayes' Rule with Generalized Intervals

The Bayes' rule with generalized intervals (GIBR) is de�ned as

(26) p(Ei|A) =
p(A|Ei)p(Ei)∑n

j=1 dualp(A|Ej)dualp(Ej)

where Ei(i = 1, . . . , n) are mutually disjoint event partitions of Ω and
∑n

j=1 p(Ej) =
1.

The lower and upper probabilities in Eq.(26) are calculated as

(27)
[
p(Ei|A), p(Ei|A)

]
=

[
p(A|Ei)p(Ei)∑n

j=1 p(A|Ej)p(Ej)
,

p(A|Ei)p(Ei)∑n
j=1 p(A|Ej)p(Ej)

]
We can see that Eq.(26) is algebraically consistent with the conditional de�nition

in Eq.(16), because

n∑
j=1

dualp (A|Ej) dualp (Ej) =
n∑

j=1

dual [p (A|Ej) p (Ej)]

= dual
n∑

j=1

p (A ∩ Ej)

= dualp (A)
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When n = 2, and let p(E) ∈ IR and p(Ec) ∈ IR, Eq.(26) becomes

p(E|A) =
p(A|E)p(E)

p(A|E)p(E) + p(A|Ec)p(Ec)
=

p(A ∩ E)
p(A ∩ E) + p(A ∩ Ec)

(28)

p(E|A) =
p(A|E)p(E)

p(A|E)p(E) + p(A|Ec)p(Ec)
=

p(A ∩ E)
p(A ∩ E) + p(A ∩ Ec)

(29)

When p(A ∩ E) ∈ IR and p(A ∩ Ec) ∈ IR, the above relation is equivalent to the
well-known 2-monotone tight envelope, given as:

P∗(E|A) =
P∗(A ∩ E)

P∗(A ∩ E) + P ∗(A ∩ Ec)
(30)

P ∗(E|A) =
P ∗(A ∩ E)

P ∗(A ∩ E) + P∗(A ∩ Ec)
(31)

where P∗ and P ∗ are the lower and upper probability bounds de�ned in the tra-
ditional interval probabilities. Here P ∗ (A ∩ Ec) = p (A ∩ Ec) and P∗ (A ∩ Ec) =
p (A ∩ Ec) are the estimations of the lower and upper probability envelopes.

Lemma 3.22. (1) p (A|E) ⊆ p (A|Ec)⇔ p (E|A) ⊆ p (E). (2) p (A|E) ⊇ p (A|Ec)
⇔ p (E|A) ⊇ p (E).

Proof. (1)

p (A|E) ⊆ p (A|Ec)
⇔ p (A ∩ E) /dualp (E) ⊆ p (A ∩ Ec) /dualp (Ec)
⇔ p (A ∩ E) p (Ec) ⊆ p (A ∩ Ec) p (E)
⇔ p (A ∩ E) p (Ec) ≥ p (A ∩ Ec) and p (E) p (A ∩ E) p (Ec) ≤ p (A ∩ Ec) p (E)

⇔ p (A ∩ E)
[
1− p (E)

]
≥ p (A ∩ Ec)

and p (E) p (A ∩ E) [1− p (E)] ≤ p (A ∩ Ec) p (E)
⇔ p (A ∩ E) ≥ p (A ∩ E) p (E) + p (A ∩ Ec)

and p (E) p (A ∩ E) ≤ p (A ∩ E) p (E) + p (A ∩ Ec) p (E)
⇔ p (A ∩ E) ⊆ p (A ∩ E) p (E) + p (A ∩ Ec) p (E)
⇔ p (A ∩ E) ⊆ [p(A ∩ E) + p(A ∩ Ec)] p (E)
⇔ p (A ∩ E) /dual [p(A ∩ E) + p(A ∩ Ec)] ⊆ p (E)
⇔ p (E|A) ⊆ p (E)

The proof of (2) is similar.
�

Remark 3.23. When the likelihood functions p(A|E) and p(A|Ec) as well as
prior and posterior probabilities are proper intervals, we can interpret the above
relation in Lemma 3.22 as follows. If the likelihood estimation of event A given
event E occurs is more precise than that of event A given event E does not occur,
then the extra information A can reduce the ambiguity of the prior estimation of
E.
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Lemma 3.24. (1) p (A|E) ≥ p (A|Ec)⇔ p (E|A) ≥ p (E). (2) p (A|E) ≤ p (A|Ec)
⇔ p (E|A) ≤ p (E).

Proof. The proof is similar to the one for Lemma 3.22.
�

Remark 3.25. The interpretation of Lemma 3.24 is as follows. If the occurrence
of event E increases the likelihood estimation of event A compared to the one
without the occurrence of event E, then the extra information A will increase the
probability of knowing that event E occurs.

Theorem 3.26. p (A|E) = p (A|Ec) ⇔ p (E|A) = p (E).

Proof. We know p (A|E) = p (A|Ec) is equivalent to p (A|E) ⊇ p (A|Ec) and
p (A|E) ⊆ p (A|Ec). From Lemma 3.22, we have p (E|A) ⊇ p (E) and p (E|A) ⊆
p (E), thus p (E|A) = p (E). Alternatively, p (A|E) = p (A|Ec) is equivalent
to p (A|E) ≥ p (A|Ec) and p (A|E) ≤ p (A|Ec). From Lemma 3.24, we have
p (E|A) ≥ p (E) and p (E|A) ≤ p (E). Therefore, p (E|A) = p (E).

�

Remark 3.27. The interpretation of the above theorem is as follows. The extra
information A does not add much value to the assessment of event E if we have
very similar likelihood ratios between p (A|E) and p (A|Ec).

Some examples of logic interpretations for the relationships between prior and
posterior interval probabilities in Eq.(26) are as follows.

• when p(A|Ei) ∈ IR, p(Ei) ∈ IR, p(A|Ej) ∈ IR (j = 1, . . . , n, j 6= i),
p(Ej1) ∈ IR (j1 = 1, . . . , k, j1 6= i), p(Ej2) ∈ IR (j2 = k + 1, . . . , n, j2 6= i)
and p(Ei|A) ∈ IR

(32)

∀j 6=ipA|Ej
∈ p′(A|Ej),∀j1 6=ipEj1 ∈ p′(Ej1),

∃pA|Ei
∈ p′(A|Ei),∃pEi

∈ p′(Ei),∃j2 6=ipEj2 ∈ p′(Ej2),∃pEi|A ∈ p′(Ei|A),
pEi|A = pA|Ei

pEi∑n
j=1 pA|Ej

pEj

• when p(A|Ei) ∈ IR, p(Ei) ∈ IR, p(A|Ej) ∈ IR (j = 1, . . . , n, j 6= i), p(Ej) ∈
IR (j = 1, . . . , n, j 6= i), and p(Ei|A) ∈ IR

(33)

∀j 6=ipA|Ej
∈ p′(A|Ej),∀j 6=ipEj

∈ p′(Ej),∀pEi|A ∈ p′(Ei|A),
∃pA|Ei

∈ p′(A|Ei),∃pEi ∈ p′(Ei),
pEi|A = pA|Ei

pEi∑n
j=1 pA|Ej

pEj

Notice that because both p(A|Ei) and dualp(A|Ei) occur in the GIBR of
Eq.(26), the associated logic interpretation about p(A|Ei) is always existential.
This indicates that the completeness of the posterior probability estimation p(Ei|A)
cannot be checked by the interpretation itself. Yet the soundness of the posterior
probability estimation can be checked by some interpretations such as the one in
Eq.(33).
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Example 3.28. Suppose we have a prior probability estimation p (E) = [0.3, 0.6]
about an event E. Two pieces of evidences A and B may help to update the
belief about E. If the likelihood functions are p (A|E) = [0.5, 0.9], p (A|Ec) =
[0.2, 0.4], p (B|E) = [0.3, 0.8], and p (B|Ec) = [0.3, 0.8], then we have the posterior
probabilities based on Eq.(26) as

p (E|A) =
p (A|E) p (E)

dualp (A|E) dualp (E) + dualp (A|Ec) dualp (Ec)

=
[0.5, 0.9]× [0.3, 0.6]

[0.9, 0.5]× [0.6, 0.3] + [0.4, 0.2]× [0.4, 0.7]
= [0.5172, 0.7715]

p (E|B) =
p (B|E) p (E)

dualp (B|E) dualp (E) + dualp (B|Ec) dualp (Ec)

=
[0.3, 0.8]× [0.3, 0.6]

[0.8, 0.3]× [0.6, 0.3] + [0.8, 0.3]× [0.4, 0.7]
= [0.3, 0.6]

With the evidence A, the imprecision about event E is reduced. However, the
evidence B does not help to gain more information, since p (B|E) = p (B|Ec).

4 Imprecise Dirichlet Model under the Logic Coherence Constraint

Statistical data in many applications including reliability assessment are often
multinomial, that is, observations fall into two or more unordered categories. For
example, components or systems may either pass or fail in accelerated life tests.
The failures occur in J di�erent time periods T1, . . . , TJ for the components. They
fail with K di�erent failure modesM1, . . . ,MK . All of these observations are multi-
nomial. The imprecise Dirichlet model (IDM) (Walley (1996b); Bernard (2005)) is
for objective statistical inference from multinomial data with unknown chances. It
models prior ignorance and does not rely on the assumptions of �xed categories.
In this section, we extend the IDM and incorporate the new interval probability
structure, which can be applied in reliability assessment. For instance, given par-
tial information about the prior distributions of frequencies for di�erent types of
failure modes, which are imprecise, we conduct some experimental tests to update
the prior estimations thus reducing the level of imprecision about frequencies.

Consider an in�nite population of units, which are categorized inK categories or
types. The proportion of units for K categories is characterized by the parameter
θ = (θ1, . . . , θK), where θk ≥ 0 for all k = 1, . . . ,K and

∑K
k=1 θk = 1. The

unknown parameter θ measures the chances of falling into the di�erent categories.
In an experiment, we test N sample units and receive di�erent numbers of units in
K categories, summarized by the counts n = (n1, . . . , nK), where nk is the observed
number of units of type k and

∑K
k=1 nk = N . The probability of observing n given

the multinomial distribution with the parameter θ is P (n|θ) =
(
N
n

)
θn1
1 · · · θ

nK

K ,
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where

(
N
n

)
is the multinomial coe�cient. In other words, the likelihood of the

observation n given the parameter θ is proportional to θn1
1 · · · θ

nK

K , i.e.,

(34) L(θ|n) ∝
K∏

k=1

θnk

k

The precise prior Dirichlet distribution Dirichlet(s, t) for the parameter θ,
where t = (t1, . . . , tK), has the probability density function that is proportional
to θst1−1

1 · · · θstK−1
K , i.e.,

(35) π(θ) ∝
K∏

k=1

θstk−1
k

where s > 0, 0 < tk < 1 for k = 1, . . . ,K, and
∑K

k=1 tk = 1. Here tk is the prior
frequency, which is the mean of θk under the Dirichlet prior. The positive constant
s is the total prior strength, which determines the in�uence of the prior distribution
on posterior probabilities and how quickly the posterior probabilities converge as
the statistical data accumulate. s is usually �xed and not depending on Ω in a
de�ned model.

The density function of the precise posterior Dirichlet distributionDirichlet(N+
s, t∗), where t∗ = (t∗1, . . . , t

∗
K), is generated by multiplying the prior density func-

tion in Eq.(35) by the likelihood in Eq.(34) as

(36) π(θ|n) ∝
K∏

k=1

θnk+stk−1
k

where t∗k = (nk + stk)/(N + s).
If only partial information about the prior frequencies tk's is available, the

Dirichlet model becomes imprecise. Instead of near-ignorance prior as in the original
IDM, which estimates the lower and upper bounds of Dirichlet posterior t∗k =
nk/(N +s) and t∗k = (nk +s)/(N +s) with tk = 0 and tk = 1 respectively, we apply
the logic coherence constraint on the prior estimates tk and tk, that is,{∑K

k=1 tk = 1∑K
k=1 tk = 1

or

(37)
K∑

k=1

tk = 1

Then the Dirichlet posterior distribution about θ is estimated by

(38) t∗k =
nk + stk

N + s

The logic coherence constraint in Eq.(37) on the Dirichlet priors does not make
the new imprecise Dirichlet model satisfy Walley's representation invariance princi-
ple (Walley (1996b)), which states that the posterior upper and lower probabilities
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assigned to an observable event should not depend on the re�nement or coarsening
of categories provided that the event remains unchanged. However, it does make
sure the Dirichlet posteriors also follow the logic coherence constraint

(39)
K∑

k=1

t∗k = 1

given that s is precise.

Example 4.1. We consider the lifetime of a system T . The sample space is
Ω = {(0 ≤ T < a) , (a ≤ T < 2a) , (T ≥ 2a)} for some a > 0, that is, the lifetime
can be categorized into three periods. Suppose that the respective priors are t =
([2/5, 3/5] , [1/5, 3/10] , [2/5, 1/10]). The total prior strength s = 2 is a constant.
We would like to estimate it from some life tests. The observations from the tests
are n = (3, 5, 1). Then the Dirichlet posterior estimation based on Eq.(38) is

t∗ =
([

3 + 2× 2
5

9 + 2
,

3 + 2× 3
5

9 + 2

]
,

[
5 + 2× 1

5

9 + 2
,

5 + 2× 3
10

9 + 2

]
,

[
1 + 2× 2

5

9 + 2
,

1 + 2× 1
10

9 + 2

])
=
([

19
55
,

21
55

]
,

[
27
55
,

28
55

]
,

[
9
55
,

6
55

])
The imprecision associated with P (0 ≤ T < a) is reduced from 1/5 to 2/55 after
the tests.

When we combine the sample space to Ω′ = {(0 ≤ T < a) , (T ≥ a)}, the respec-
tive priors become t′ = ([2/5, 3/5] , [3/5, 2/5]) and the observations are n = (3, 6).
The new Dirichlet posterior estimation becomes

t′∗ =
([

3 + 2× 2
5

9 + 2
,

3 + 2× 3
5

9 + 2

]
,

[
6 + 2× 3

5

9 + 2
,

6 + 2× 2
5

9 + 2

])
=
([

19
55
,

21
55

]
,

[
36
55
,

34
55

])
Suppose that we have a near-ignorance prior about P (0 ≤ T < a). The posterior

estimation is the same as the one from the original IDM. The respective priors
become t′′ = ([0, 1− ε] , [1, ε]). With the observations n = (3, 6), the Dirichlet
posterior estimation is

t′′∗ =
([

3 + 2× 0
9 + 2

,
3 + 2(1− ε)

9 + 2

]
,

[
6 + 2× 1

9 + 2
,

6 + 2ε
9 + 2

])
=
([

3
11
,

5− 2ε
11

]
,

[
8
11
,

6 + 2ε
11

])
≈
([

3
11
,

5
11

]
,

[
8
11
,

6
11

])
One may notice that the imprecision of estimation t about the parameter θ is

reduced faster in the new IDM than it is in the original one. This is due to the logic
coherence constraint imposed on the prior estimates. In contrast, near-ignorance
prior is always applied in the original IDM, which ensures that the representation
invariance principle is satis�ed.
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5 Concluding Remarks

In this paper, we presented a new form of imprecise probability based on general-
ized intervals, which can be applied in reliability assessment. Generalized intervals
allow the coexistence of proper and improper intervals. This enables the algebraic
closure of arithmetic operations. The simpli�ed probability calculus provides ad-
vantages for engineering applications.

We di�erentiate focal events from non-focal events by the modalities and seman-
tics of interval probabilities. An event is focal when the semantics associated with
its interval probability is universal, whereas it is non-focal when the semantics is ex-
istential. This di�erentiation allows us to have a simple and uni�ed representation
based on a logic coherence constraint.

The new conditional probabilities ensure the algebraic relation with marginal
interval probabilities. And the new Bayes' updating rule is a generalization of the 2-
monotone tight envelope updating rule under the new representation. Generalized
intervals allow us to interpret the algebraic relations among intervals in terms of the
�rst-order logic. This helps us to understand the relationship between individual
measurements and probability sets as well as to check completeness and soundness
of bounds.

The imprecise Dirichlet model under the logic coherence constraint exhibits the
self-consistency for both priors and posteriors. So does the logic interpretation
when the imprecision is only from the prior frequencies. When priors are not near-
ignorance, imprecision in the new imprecise Dirichlet model is reduced faster than
in the original one.
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