
int. j. prod. res.,

1 september 2004, vol. 42, no. 17, 3743–3763

UL-PML: constraint-enabled distributed product data model

Y. WANG and B. O. NNAJI*

The global economy has made manufacturing industry more distributed than ever
before. Product design requires more involvement from various technical disci-
plines at different locations. In such a geographically and temporally distributed
environment, efficient and effective collaboration on design is vital to maintain
product quality and organizational competency. Current standard computer-
aided design data formats do not support design collaboration effectively in
terms of design information and knowledge capturing, exchange, and integration.
Design constraints cannot be represented and transferred among different groups,
and design information cannot be integrated efficiently within a distributed envir-
onment. A new design data model, the Universal Linkage model, is developed
here to represent design-related information for network-based collaborative
design. It incorporates geometric and non-geometric constraints with traditional
geometric elements, thus allowing more design knowledge sharing in collabora-
tive design. Segments of design information can be linked and integrated into a set
of complete product data. Thus, lean information exchange can be realized. This
model, which has good properties of openness and extensibility, is represented by
Directed Hyper Graph and Product Markup Language.

1. Introduction

Global market calls for collaborative design among designers, manufacturers,
suppliers and vendors. The business pressures toward outsourcing let much of the
design work of complex products be done across firms. Ford estimates there are up
to 800 links of supplier relations, and automotive companies are substantively
relying on these suppliers to participate in vehicle design (NSF e-Design Workshop
2000). The Defense Advanced Research Projects Agency (DARPA) estimates that
the supply chain accounts for more than 50% of weapon system and major sub-
system production costs (Parunak 1997). In such a geographically and temporally
distributed environment, efficient and effective design collaboration should be
assured to maintain product quality and organizational competency. Advanced
collaborative design tools and technologies are needed so that stakeholders such
as customers, suppliers, government agencies, retailers and others can participate
in product development at the early stages so as to reduce the risk of failure and
shorten the design cycle.

There are new issues on information modelling and communication in collab-
orative design. First, collaborative design over networks requires a common and
easy-to-use standard for design information representation. To ensure effective
information transferring, design data exchange protocols should be established by

Revision received November 2003.
NSF I/UCRC Center for e-Design, University of Pittsburgh, 1048 Benedum Hall,

Pittsburgh, PA 15261, USA.
*To whom correspondence should be addressed. e-mail: nnaji@engr.pitt.edu

International Journal of Production Research ISSN 0020–7543 print/ISSN 1366–588X online # 2004 Taylor & Francis Ltd

http://www.tandf.co.uk/journals

DOI: 10.1080/002075403410001708443



the computer-aided design (CAD) industry to support different CAD systems.
Current neutral formats only capture static geometric information and part of
administrative information. Other information that contains modelling history and
design intent such as parameters, features, constraints and other dynamic relations
is lost due to translation. To exchange all useful information about a product, a more
powerful data format should be developed to integrate various design information.

Second, the information infrastructure that supports Internet-based product
development should be established to assist the cooperation among various design
and analysis systems. Current CAD data formats were designed for stand-alone
systems. All the information about components and assemblies has to be available
locally in order to be processed. Transferring CAD information among design
collaborators requires a large amount of data to be moved around, which is ineffi-
cient with current limitations of the communication bandwidth. Furthermore,
corporations do not wish to expose complete design data to customers or suppliers
because of information confidentiality. Secure communication among collaborators
should be established based on users’ need to know and their affiliated organization.
Current CAD files lack flexibility on selective design information retrieving and
reuse. They do not support partial data queries. If only a fraction of design data
is needed, information cannot be retrieved without querying the whole file. A colla-
borative design data model should support lean information processing. It should be
compliant with industry standards of programming, communication, networking,
system management, and interfaces between applications and system services. It
should also have good compatibility and interoperability with current design and
engineering systems.

The paper presents a new scheme, UL-PML, for CAD information modelling
within the context of Internet-based services and transactions. To maximize the
openness, flexibility, scalability and integrity of collaborative design, this data
scheme intends to be portable across different Internet protocols, network config-
urations and operating systems. This data scheme has a distributed style that
supports the required scalability and extensibility of collaborative design systems.
A Universal Linkage (UL) model is developed to capture geometric and non-
geometric entities and relations. The model also allows design information elements
to be linked over the Internet so that geographically distributed design partners can
build a logically integrated product model. Graphically, Directed Hyper Graph
(DHG) symbolizes the UL model. Computationally, Product Markup Language
(PML) (Wang and Nnaji 2001, Wang et al. 2003) represents this model. PML has
the syntax of eXtensible Markup Language (XML) (WWW Consortium), which is
an emerging Internet information transferring standard.

Section 2 reviews different design data models and the special requirements for
network-oriented CAD data models. Section 3 presents the UL model and DHG
representation. Section 4 describes the basic syntax and semantics of PML. The
schemas of PML in the context of mechanical design are also defined.
Representation of geometric and non-geometric constraints is discussed in section 5.

2. Background

There are two types of relations among geometric entities to be modelled. One is a
static relation that exhibits the basic structural or topological information of entities,
such as the aggregation relation between a line and its two end points. Another is a
dynamic relation that is added by the designer as a constraint, such as the distance

3744 Y. Wang and B. O. Nnaji



between two points or the concentricity of two holes. The dynamic relations can be
changed without altering the structural information of geometric elements. The
mechanical design needs to capture both static and dynamic aspects.

2.1. Challenges of CAD data modelling in collaborative design
Current neutral CAD models (e.g. IGES and STEP) are similar to some general

information models such as ER (Elmasri and Navathe 1994), IDEF1X (Kusiak et al.
1997) and NIAM (Verheijen and Van Bekkum 1982), which emphasize structural
and static relationship of entities. Variant relations among geometric entities such
as parameters and constraints cannot be represented. There are some research efforts
to include parametric information into STEP. Examples are the programme
of Enabling Next GENeration mechanical design (ENGEN) (Shih and Anderson
1997) sponsored by DARPA and PDES, Inc., and the work of the National
Institute of Standards and Technology (NIST) Parametric Group (Pratt 1996,
2001). Though certain form features and geometric constraints are modelled in the
above research, these representation methods are not generic enough to consider
both geometric and non-geometric constraints and to support both implicit and
explicit modelling.

Design knowledge and constraints consist of both geometric and non-geometric
aspects. Generally, there are four kinds of approaches to solve geometric constraints
in parametric systems: numerical, artificial intelligence, symbolic and constructive.
A unified constraint representation form is needed to support different kinds of inter-
nal representations. Since non-geometric constraints cannot be represented in current
geometric modelling systems, designers need to interpret most of the non-geometric
constraints into geometric ones. However, there are large amounts of non-geometric
constraints that cannot be interpreted and integrated into geometry. It is critical to
capture non-geometric constraints explicitly in the design data to retain the source of
geometric interpretation and prevent misconception and information loss.

To capture specification and design intent, multidisciplinary engineering con-
straints should be incorporated into CAD data. To allow design collaborators to
understand the design and be able to view, edit, analyse and exchange models
effectively, parametric construction and the corresponding transition from implicit
to explicit models should be included in an integrated product model to enhance
interoperability.

Furthermore, a system-independent data format is vital to ensure the openness
of information exchange within a distributed design and engineering environment.
It will be advantageous that this ideal format is network-oriented at the
implementation level, i.e. compatible to the Internet protocols and open standards.
At the semantic level, this format should be object-oriented, which extensively
supports data abstraction in a well-developed style. With the emergence of XML,
the data exchange over the Internet can have a uniform format.

2.2. Application of XML in CAD data modelling
XML has the characteristics of being simple, extensible, portable, interoperable

and object-oriented. Some research applied XML in CAD/computer-aided manu-
facturing area for meta-design information capturing and exchange. Ratchev et al.
(2000) developed a decision-making environment for distributed product and facility
prototyping in an extended enterprise. XML is used for conveying design and man-
ufacture messages across traditional technology boundaries. Kahn et al. (2001) are

3745UL-PML: constraint-enabled distributed product data model



working on a framework for transforming EXPRESS into XML and viewing with
standard World Wide Web browsers. Burkett (2001) proposes a mapping between
EXPRESS and XML Data Type Definition (DTD). NIST’s Design Repository
project (Szykman et al. 1999, 2000) created XML mappings for function and flow
in order to support representation of artefact function models in software systems.
However, the above research represents geometry based on existing neutral formats
(STEP or VRML). Dynamic relations among geometric entities that represent a large
mount of design knowledge are not considered.

2.3. Requirements for design information representation in collaborative design
How to build good design information models to meet the requirements of

mechanical design is important. Spooner (1991) has a list of requirements for
object-oriented CAD data models. Data must be modelled as objects organized
into aggregation and generalization hierarchies. The data model must allow defini-
tion of operations (methods) for objects, the intentions and extensions of objects,
and dynamic schemas. It must support the inheritance of properties and operations,
strong typing, and recursive object structure. It should also have efficient and flexible
capabilities for object update and multiple inheritance. It should provide support for
procedure, specification and enforcement of data integrity constraints.

Eastman and Fereshetian (1994) propose criteria to evaluate product models
in CAD/computer-aided manufacturing development. A good model should provide
full abstract data types that include object behaviour, multiple specialization,
composite object and relation within composition. It must have the ability to model
relations on object structure, relations between variables, and variant relations for
schema evolution and the state of integrity. The model should also support integrity
management of external applications, management of partial integrity for iterative
design, and schema evolution for design evolution and refinement.

From the viewpoint of interoperability, the ideal representation model for collab-
orative design should have the following properties. It is declarative in nature and
self-explanatory. It should be able to capture the inherent properties and relations
among objects explicitly. Those relations include functional, structural and perfor-
mance aspects, as well as parametric, spatial and other constraints. Properties and
relations should maintain good persistency during information exchange and design
evolution. The model should be semantically comprehensive. The engineering mean-
ing of design can be clearly uttered. The model should be both modularly self-
contained and flexible so that various objects and their relations can be captured,
stored and queried in an arbitrary manner. Additionally, the representation should
be extensible. When new entities and relations are needed, it should be able to be
extended. At last, to encourage openness, this model should also be simple enough
and comprehensible to both humans and machines.

An open model needs to represent product data and design constraints effectively
and thoroughly so that all relevant product information can be carried and
exchanged seamlessly. The UL-PML scheme hence is developed for this purpose
to overcome the shortcomings of the existing models.

3. Universal Linkage (UL) model

Three fundamental questions should be answered to build a design information
structure. (1) What kinds of information elements are to be captured? (2) How would
these elements be represented? (3) How can information be retrieved from these

3746 Y. Wang and B. O. Nnaji



elements? These questions deal with information abstraction, representation and
deduction.

3.1. Information elements of the UL model
Similar to other information models, the UL model has the fundamental

elements of entities and relations. An entity is an object that exists as a distinguish-
able unit in the universe of discourse of design. It should possess unique attributes
and be an abstract image of any real object. It is the associated attributes that identify
or modify an entity. A relation captures the logical or natural association between
two or more entities.

Relations are categorized into two types: static and dynamic. A static relation
indicates the essential and inherent affiliation of entities in order to form a physical
object. Static relations form the basic structure of a part or assembly, which repre-
sent inherent geometric and topological affiliations. Static relations include aggre-
gation, which transforms a relationship between objects into a higher-level object;
generalization, which refers to an abstraction in which a set of similar objects
is regarded as a generic object; and other general association. In CAD information
models, geometry-related relations mostly are aggregations while non-geometric
(e.g. administration, material) relations include both that of aggregations and
generalizations. Generalization is mostly used in the meta level of model definition.
Dynamic relation specifies the extrinsic affiliation among entities that indicates
additional connection or preference, such as dependency, limitation, or restriction.
It is specified operationally by designer. Unlike the ER-type models, which only
capture static relations, the UL model differentiates static and dynamic relations
because dynamic relations are crucial for constraint representation.

3.2. Directed Hyper Graph (DHG)
Graphically, UL model can be represented by DHG, in which a node denotes

an entity and an arc stands for a relation. A geometric entity is represented by
an elliptical node inDHG,while a non-geometric entity is represented by a rectangular
node (figure 1).

Arcs with solid line in DHG represent static relations (figure 2). Arcs with dash
line denote dynamic relations or constraints. A constraint relation is identified by
a constraint entity, which can be either geometric or non-geometric.

The definitions of entities and relations should satisfy the following requirements:
all types of relations are antireflexive. Aggregation and generalization have transitive
properties. The direction of an arc implies a specific asymmetric unitary meaning of
the relation. A constraint entity is associated with one, two or more entities.

(a) geometric entities  (b) non-geometric entities

POINT

CURVE

SURFACE

MATERIAL

EDGE

MTTF

Figure 1. Examples of geometric and non-geometric entities in Directed Hyper Graph.

3747UL-PML: constraint-enabled distributed product data model



Figure 3 shows a two-dimensional triangle with dimensional constraints.
Its geometric and topological information as well as constraints can be modelled
in DHG (figure 4).

3.3. UL among entities
To enable the seamless composition of a product from different groups, a new

modelling technique is needed to support the integration of distributed design infor-
mation. Besides differentiating the static and dynamic relations among entities,
another key feature of the UL model is that relations among entities are not
restricted within one data file. The relations of entities located in different files and
domains can also be created. Relations are linkages among information elements.
A linkage model allows physically distributed entities to be linked, thus a logically
integrated set of design information can be built. As shown in figure 5, relations
of entities (both static and dynamic) in different domains and physical locations can

EDGE:e 0

VERTEX:v 0

EDGE:e 1

VERTEX:v 1

EDGE:e 2

VERTEX:v 2

WIRE:w 0

BODY:b 0

LINE:l 0

POINT:p0 POINT:p1 POINT:p2

VECTOR:v0 VECTOR:v1 VECTOR:v2

LINE:l 1 LINE:l 2

conDISTANCE:d0

conDISTANCE:d1

SHELL: s0

Figure 4. Directed Hyper Graph representation of the triangle in figure 3.

d0

d1

p2

p1p0

t0
t1

t2

l0

l1l2

Figure 3. Triangle with dimensional constraints.

Aggregation
Geometric constraint

Generalization

Non-geometric constraint
Association

(a) static relations (b) dynamic relations

Figure 2. Static relations and dynamic relations in Directed Hyper Graph.

3748 Y. Wang and B. O. Nnaji



be created. One can easily refer entities in other data files, either at the same machine
or at other locations over the Internet.

Graphically, UL model can be illustrated by DHG. Textually, a UL model
is represented in PML and processed by computer systems. Section 4 describes the
syntax and semantics of PML.

4. Syntax and semantics of Product Markup Language (PML)

XML is emerging as the data representation standard for web services. PML
is designed to be totally compatible with XML standards.

4.1. Syntax of PML
XML provides a common syntax for data modelling. It offers a user-defined and

extensible format to represent data and information for different application areas.
The syntax of PML strictly follows that of XML to ensure usability and interoper-
ability. The compliance to industrial computation and communication standard
is the premise of computational interoperability at the machine level. The syntax
of XML is specified at the World Wide Web consortium (W3C XML).

Figure 6 shows a simple example of point modelled in PML following the syntax
of XML. Tag set <POINT> and </POINT> specifies the geometric meaning of
symbol point1 and its attributes of x, y and z.

4.2. Schema of PML
To enable an XML-style language to be used in a particular area, additional

efforts should be made to define the semantics of that language. Specifying the tags
used in PML is one of the major tasks in defining PML. This includes what kinds
of elements to be used to model geometric and non-geometric entities, what types
of attributes to be specified for each entity, and how to capture the relations among
entities.

There are two ways to specify the structure of instance documents and the
data type of each element and attribute in XML: Data Type Definition (DTD) and
Schema. Some disadvantages of DTD make people turn to Schema. DTD has
a different syntax from XML. Two processing systems are needed to process XML
and DTD separately. Furthermore, DTD supports a limited capability for specifying

INTERNET

Figure 5. Universal linkage between files.

<pml:POINT id=“point1” pml:x=“1.0”, pml:y=“1.0”, pml:z=“0.0”>
</pml:POINT>

Figure 6. Point in Product Markup Language.

3749UL-PML: constraint-enabled distributed product data model



data types. For example, DTD cannot add value range constraints on elements.
It does not support all current available data types in database. Comparatively,
Schema has advancement over DTD. It uses the same syntax as XML; it
is object-oriented and extensible in nature; it has enhanced data-type definition
such as element sets, multiple elements with the same name but different contents;
and it supports attribute grouping, user defined types and namespace. The PML
schemas are defined according to W3C’s schema working draft (W3C XML
Schema).

Figure 7 shows two simple examples of PML schemas. The left-hand side
schema file defines geometric point. A geometric point should contain four attrib-
utes, which are coordinate x, y, z, and an identification name. The coordinate
attributes are defined in the right-hand side schema file, which are referred by
the schema of point. Reference between schema files can be built to ensure
modularity.

The relation of entities in UL model is modelled by the protocols of XML Xlink
(W3C XML Xlink). There are two kinds of links in Xlink: simple and extended.
Simple links offer shorthand syntax for a common and outbound link with exactly
two participating resources. Extended links offer full Xlink functionality, such as
inbound and third-party arcs, as well as links with arbitrary numbers of participating
resources.

In PML, static relations of UL model are modelled by simple links and dynamic
relations are modelled by simple or extended links. Links can be local within one file,
or remote between files. A reference is constructed by a reference id, which includes
a Uniform Resource Identifier (URI) specifying the name and location of the
referred data file and an entity id. The syntax of a reference id is defined in figure 8.

To model the data structure of DHG by a tree-structured PML, a mapping
process is needed. The mapping from DHG to PML tree is under the guidance of
graph decomposition rules, which are described in the following section.

<?xml version="1.0"?> 
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
   targetNamespace="http://www.pitt.edu"
   xmlns:pml="http://www.pitt.edu"
   elementFormDefault="qualified"

version="1.0">
 <xsd:annotation>
  <xsd:documentation>
   "point.xsd" 
   Define geometric entity - POINT. 

</xsd:documentation>
 </xsd:annotation>
 <xsd:include schemaLocation="coordinate.xsd"/> 

<xsd:element name="POINT">
  <xsd:complexType> 
   <xsd:simpleContent> 
    <xsd:restriction base="xsd:string>
     <xsd:attribute ref="x" use="required"/> 
     <xsd:attribute ref="y" use="required"/> 
     <xsd:attribute ref="z" use="required"/> 
     <xsd:attribute name="id" type="xsd:ID"/>

</xsd:restriction>
   </xsd:simpleContent> 

</xsd:complexType> 
 </xsd:element>
</xsd:schema>

<?xml version="1.0"?> 
<xsd:schema     
   xmlns="http://www.w3.org/2001/XMLSchema" 
   targetNamespace="http://www.pitt.edu"
   xmlns:pml="http://www.pitt.edu"
   elementFormDefault="qualified"
   version="1.0">
 <xsd:annotation>

<xsd:documentation>
   "coordinate.xsd" 
   Specify the coordinate attributes.

</xsd:documentation>
 </xsd:annotation>

<xsd:attribute name="x" type="xsd:double"/>
<xsd:attribute name="y" type="xsd:double"/>
<xsd:attribute name="z" type="xsd:double"/>

</xsd:schema>

Figure 7. Schema of POINT and the schema of coordinates.

3750 Y. Wang and B. O. Nnaji



4.3. Graph decomposition
All current CAD models are based on graphs, where entities have a hierarchical

structure with relations. The purpose of graph decomposition is to disintegrate the
graph structure of a data model into tree structure by introducing virtual entities
to mirror some geometric or non-geometric entities. A mirror of an entity is a virtual
entity that reflects the referred entity, thus containing all the attributes of the original
one.

The general principles of graph decomposition are as follows:

. Entities are represented by elements/nodes in PML.

. Relations are represented by links in PML.

. Bondage of a mirror with its original entity is represented by a simple link that
is from the mirror to the original entity.

. Aggregation is represented by a parent–child relation of elements/nodes
in PML in which the parent is the initial entity and the child is the mirror
of terminal entity.

. Association is represented by a parent–child relation of elements/nodes
in PML in which the parent is the initial entity and the child is the mirror
of terminal entity.

. Dynamic relation (constraint) is represented by a simple link, which is from the
constraint entity to the target entity if only one entity is involved in the relation.

. Dynamic relation (constraint) is represented by an extended link whose chil-
dren specify the initial entities and terminal entities if two or more entities are
involved in the relation.

The graph decomposition algorithm is shown in figure 9.
Based on the rules of graph decomposition, the DHG of the triangle example

in figure 4 can be transformed into a tree-structured PML (figure 10). Elements
with a prefix of ‘con’ are constraint entities. Elements with a prefix of ‘ref ’ are
mirror entities. The tree structure of PML documents allows computer systems
to edit and query design data efficiently. Nodes can be selectively viewed and
transferred. All relevant product information can be stored in PML trees in an
extensible way, which is flexible for interpretation and integration with different
systems’ internal representations.

5. Design feature and constraint representation

5.1. Design feature representation in the UL-PML scheme
In geometric modelling systems, design features or form features can be repre-

sented in two levels. One is termed implicit or unevaluated, where features are defined
by construct procedures and parameters. Another is called explicit or evaluated, by

  <reference_id> ::= # <entity_id> | <URI> # <entitiy_id>
  <entity_id> ::= <part_id> | <assembly_id> | <topology_id> |
                          <geometry_id> | <constraint_id> 
  <topology_id> ::= <body_id> | <shell_id> | <wire_id> | <face_id> |
                         <loop_id> | <edge_id> | <coedge_id> | <vertex_id>
  <geometry_id> ::= <surface_id> | <curve_id> | <point_id> |
                                <vector_id> 

Figure 8. Syntax of reference id.

3751UL-PML: constraint-enabled distributed product data model



which features are defined by low-level geometric and topological elements. The

design feature representation in the UL-PML scheme is a combination of intentional

and geometric features.

If a product model is defined as a set of points in the entity-relation (E-R) space,

the model domain D¼ (E, R) can be subdivided, D¼ (T�G, S�C), where T, G, S

and C are subspaces of topology, geometry, structural relation and constraint,

respectively. Priori feature Fi�D and posteriori feature Fo�D contain subspaces

of T, G, S and C. Design feature F then is defined as a relation between priori

and posteriori properties, F¼ (Fi, Fo)¼ ([Ti, Gi]� [Ci, Si], [To, Go]� [Co, So]),

where i and o denote priori and posteriori properties correspondingly. Ti\To¼Ø

and Gi\Go¼Ø. Some examples of features are listed in table 1.

In the UL model, priori features are modelled by introducing a new entity

type: feature entity. The relation between a feature entity and the corresponding

topological and geometric entities in priori feature is defined as aggregation.

Similar to low-level entities, feature entities can be referred as both abstract class

and instance. Design feature entities are categorized as geometric entities. As an

example, the priori feature of protrusion in table 1 is shown in figure 11.

INPUT:  Directed Hyper Graph G = (V, E) 
OUTPUT: PML Tree T 

Add root node TR of T 
TR add child TG (Geometry) 
TR add child TT (Topology) 
TR add child TC (Constraint) 

Search the topological node ‘BODY’ in G 
Add a node A corresponding to ‘BODY’ as a child of TT
Run the following procedure P with input <‘BODY’, A> 

P: On input node <M, I> 
START P 

        Mark M in G 
        FOR each unmarked node N with a path from M 

IF N is a topological entity 
                Add a node J corresponding to N
                  as a child of TT
                Add a mirror node of J as the child of I 
                  with a simple link referring to J
                Run P on input <N, J> 

ENDIF
IF N is a geometric entity 

                Add a node J corresponding to N
                  as a child of TG
                Add a mirror node of J as the child of I 
                  with a simple link referring to J
                Run P on input <N, J> 

ENDIF
IF N is a constraint entity 

                Add a node J corresponding to N
                  as a child of TC
                Add an extended link locator node LOC1 
                  referring to M as a child of J 
                Add an extended link locator node LOC2 
                  referring to N as a child of J 
                Add an extended link arc node starting
                  from LOC1 to LOC2 as a child of J 

IF there is a path from N to M 
                    Add an extended link arc node starting
                      from LOC2 to LOC1 as a child of J 

ENDIF
ENDIF

ENDFOR
    END P

Figure 9. Graph decomposition algorithm.

3752 Y. Wang and B. O. Nnaji



A posteriori feature is modelled as a collection of low-level entities and their
association with high-level feature entities. The boundary topological entities of
a model are the connections between geometry and feature. Any new face generated
in the feature evaluation is associated with the feature entity. The posteriori feature
of protrusion in table 1 is shown in figure 12. Through feature entities, two levels
of feature representation are linked.

Entity specifications for priori features are independent of those for posterior
features. Feature definition is separated from feature evaluation, which allows
construction procedure and history to be captured together with geometry.

5.2. Geometric constraint representation
Geometric constraints include a variety of types. The commonly used ones can be

categorized as given in table 2. Geometric constraints are not mutually exclusive.

<?xml version="1.0"?> 
<pml:PART id="part0" xmlns:pml="http://www.pitt.edu"  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

      xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="http://www.pitt.edu/line.xsd"> 
    <pml:GEOMETRY> 
        <pml:POINT id="p0" x="0.0" y="0.0" z="0.0"/>
        <pml:POINT id="p1" x="20.0" y="0.0" z="0.0"/>
        <pml:POINT id="p2" x="12.0" y="10.0" z="0.0"/>
        <pml:VECTOR id="t0" x="20.0" y="0.0" z="0.0"/>
        <pml:VECTOR id="t1" x="-8.0" y="10.0" z="0.0"/>
        <pml:VECTOR id="t2" x="-12.0" y="-10.0" z="0.0"/>
        <pml:LINE id="l0"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p0" xlink:show="embed" xlink:actuate="onLoad"/>
            <pml:refVECTOR xlink:type="simple" xlink:href="#t0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE> 
        <pml:LINE id="l1"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p1" xlink:show="embed" xlink:actuate="onLoad"/>
            <pml:refVECTOR xlink:type="simple" xlink:href="#t1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE> 
        <pml:LINE id="l2"> 
            <pml:refPOINT xlink:type="simple" xlink:href="#p2" xlink:show="embed" xlink:actuate="onLoad"/>
            <pml:refVECTOR xlink:type="simple" xlink:href="#t2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:LINE> 
    </pml:GEOMETRY>
    <pml:TOPOLOGY> 
        <pml:VERTEX id="v0">
            <pml:refPOINT xlink:type="simple" xlink:href="#p0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX>
        <pml:VERTEX id="v1">
            <pml:refPOINT xlink:type="simple" xlink:href="#p1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX>
        <pml:VERTEX id="v2">
            <pml:refPOINT xlink:type="simple" xlink:href="#p2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:VERTEX>
        <pml:EDGE id="e0" pml:startParam="0" pml:endParam="20"> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refCURVE xlink:type="simple" xlink:href="#l0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE>
        <pml:EDGE id="e1" pml:startParam="0" pml:endParam="12.8062484748657"> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v2" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refCURVE xlink:type="simple" xlink:href="#l1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE>
        <pml:EDGE id="e2" pml:startParam="0" pml:endParam="15.6204993518133"> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v2" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/> 
            <pml:refCURVE xlink:type="simple" xlink:href="#l2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE>
        <pml:WIRE id="w0"> 
            <pml:refEDGE xlink:type="simple" xlink:href="#e0" xlink:show="embed" xlink:actuate="onLoad"/>
            <pml:refEDGE xlink:type="simple" xlink:href="#e1" xlink:show="embed" xlink:actuate="onLoad"/>
            <pml:refEDGE xlink:type="simple" xlink:href="#e2" xlink:show="embed" xlink:actuate="onLoad"/> </pml:WIRE>
        <pml:SHELL id="s0">
            <pml:refWIRE xlink:type="simple" xlink:href="#w0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:SHELL>
        <pml:BODY id="b0"> 
            <pml:refSHELL xlink:type="simple" xlink:href="#s0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:BODY>
    </pml:TOPOLOGY> 
    <pml:CONSTRAINT> 
        <pml:conDISTANCE xlink:type="extended" pml:lowerBound="19" pml:upperBound="21"> 
            <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="#v1"/>
            <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="#v0"/> 
            <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/>
            <pml:ARC2 xlink:type="arc" xlink:from="end" xlink:to="start" xlink:actuate="onRequest"/> </pml:conDISTANCE> 
        <pml:conDISTANCE xlink:type="extended" pml:lowerBound="9" pml:upperBound="11"> 
            <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="#v2"/>
            <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="#e0"/>
            <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/> </pml:conDISTANCE> 
    </pml:CONSTRAINT>
</pml:PART>

Figure 10. ProductMarkup Language representation of the triangular part in figures 3 and 4.

3753UL-PML: constraint-enabled distributed product data model



One constraint relation may be represented by another constraint. For example,
perpendicularity can be represented as angle of 90�. This implies that constraint
representation scheme should be flexible enough and extensible.

To prevent information inconsistency, both symbolic and numerical constraints
are modelled explicitly in the UL-PML scheme. The symbolic constraints specify

Priori features Posteriori features

Protrusion Profile Trajectory

Ti: face! loop, edge, vertex To: face! loop, edge, vertex
Gi: surface! line, curve, point, vector Go: surface! line, curve, point, vector
Ci: profile dimension, sweep distance Co: dimension/distance, parallelism
Si: association, aggregation So: association, aggregation

Cut Profile Trajectory

Ti: loop! edge, vertex To: face! loop, edge, vertex
Gi: line, curve!point, vector Go: surface! line, curve, point, vector
Ci: profile location, dimension,
sweep distance

Co: dimension/distance, parallelism

Si: association, aggregation So: association, aggregation

Fillet Fillet Edge

Ti: edge! vertex To: face! loop, edge, vertex
Gi: line, curve!point, vector Go: surface! line, curve, point, vector
Ci: dimension (radii of fillet) Co: dimension/distance, parallelism
Si: association, aggregation So: association, aggregation

Table 1. Examples of design feature.

EDGE: e0

VERTEX: v0

EDGE: e1

VERTEX: v1

EDGE: e2

VERTEX: v2

LOOP: l0

feaPROTRUSION: p0

LINE: l0

POINT:p0 POINT:p1 POINT:p2

VECTOR:v0 VECTOR:v1

VECTOR:v2

LINE: l1 ARC: a0

conDISTANCE:d0

FACE: f0

POINT:p3

PLANE: pl0

Figure 11. Priori feature of protrusion in Directed Hyper Graph.

3754 Y. Wang and B. O. Nnaji



geometric relations semantically, which eliminates ambiguity and uncertainty.
Geometric constraints are only modelled at the topological and geometric entity
level, since form or shape is the major concern of geometric constraints. Each
instance of constraints is defined as a constraint entity.

Figure 13 gives some examples of modelling symbolic and numerical geometric
constraint for a piston design, The constraints in figures 13(b) and (c) are modelled
in PML as in figure 14(a) and (b), respectively.

5.3. Non-geometric constraint representation
In UL-PML scheme, non-geometric constraint entities are associated with high-

level entities including feature, constraint, part and assembly. To make it general,

Dimension Position Orientation Symmetry Tolerance

Distance fixed angle line symmetry dimension
Radius coincidence horizontal plane symmetry straightness
Diameter concentric vertical flatness

point on curve curve parallel circularity
curve on surface surface parallel cylindricity
curve tangent collinear profile of a line
surface tangent coplanar profile of a surface

perpendicular angularity
perpendicularity
parallelism position
concentricity
circular runout
total runout

Table 2. Categories of common geometric constraints.

r

e1 e2

concentric
f1 f2

(a) (b) (c)

Figure 13. Constraint examples in a piston and its assembly.

FACE: f1 FACE: f2 FACE: f3

feaPROTRUSION: p0

PLANE: pl1 PLANE: pl2 PLANE: pl3 SURFACE: s5

SHELL: sh0 

FACE: f5

BODY: bd0

FACE: f4

PLANE: pl4

Figure 12. Posteriori feature of protrusion in Directed Hyper Graph.

3755UL-PML: constraint-enabled distributed product data model



feaREVOLVE: rev0

PLANE: pl1 

PLANE: pl2

SHELL: sh0 

BODY: bd0 

FACE: fac2

FACE: fac1
FACE: fac0

PLANE:pl0

LINE:axis0

EDGE: e1 

EDGE: e2

conDISTANCE: r

<pml:PART id="piston">
<pml:TOPOLOGY> 
 <pml:EDGE id="e1"> 

 <pml:refVERTEX xlink:type="simple" xlink:href="#v0" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVERTEX xlink:type="simple" xlink:href="#v1" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refCURVE xlink:type="simple" xlink:href="#line0" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE> 

 <pml:EDGE id="e2"> 
 <pml:refVERTEX xlink:type="simple" xlink:href="#v2" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refVERTEX xlink:type="simple" xlink:href="#v3" xlink:show="embed" xlink:actuate="onLoad"/>
 <pml:refCURVE xlink:type="simple" xlink:href="#line1" xlink:show="embed" xlink:actuate="onLoad"/> </pml:EDGE> 
…… 

</pml:TOPOLOGY>  </pml:PART>
<pml:CONSTRAINT>

<pml:conDISTANCE id="r" xlink:type="extended" pml:lowerBound="49.99998720" pml:upperBound="50.00012210"> 
 <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="#e2"/>
 <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="#e1"/>
 <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/> </pml:conDISTANCE> 
……                           </pml:CONSTRAINT>

(a) distance constraint between edges 

feaCUT: cut5

SURFACE: cyl5FACE: f1

RING: rin5

VECTOR:t15

conCONCENTRIC: a

Piston.xml

feaREVOLVE: rev0

SURFACE: cyl1FACE: f2

FACE: fac1

LINE: axis1

Piston_asm.xml 

Rode.xml

<pml:ASSEMBLY id="piston_assembly">
<pml:refPART xlink:type="simple" xlink:href="Piston.xml#piston" xlink:show="embed" xlink:actuate="onLoad"/>
<pml:refPART xlink:type="simple" xlink:href="Rode.xml#rode" xlink:show="embed" xlink:actuate="onLoad"/>  </pml:ASSEMBLY>

<pml:CONSTRAINT>
<pml:conCONCENTRIC id="a" xlink:type="extended">
 <pml:LOC1 xlink:type="locator" xlink:label="start" xlink:href="Rode.xml#f2"/>
 <pml:LOC2 xlink:type="locator" xlink:label="end" xlink:href="Piston#f1"/>
 <pml:ARC1 xlink:type="arc" xlink:from="start" xlink:to="end" xlink:actuate="onRequest"/> </pml:conCONCENTRIC>
 ……  </pml:CONSTRAINT>

(b) concentric constraint between faces in assembly file

Figure 14. Piston geometric constraints in Product Markup Language.

3756 Y. Wang and B. O. Nnaji



non-geometric constraints can be represented symbolically. Character strings are
attached to entities of features, parts and assemblies as supplementary information.
Domain-specific interpreters are needed to assist design system to understand
the constraints. The taxonomy of non-geometric constraints is domain dependent.
The UL model can provide a uniform scheme for non-geometric constraint
representation. Some examples are shown in figure 15. A constraint can be specific,
such as the material associated with the part piston and the math associated with
three distance constraints d, r and l in this example. It can also be general, such as
the operation temperature constraint op_temp expressed in character string and
associated with the part piston.

6. Implementation

UL-PML is a distributed CAD data scheme, which allows geometric and
non-geometric entities, structures and constraints to be created, stored and queried
in a distributed fashion. This allows information to be transferred at the basic
entity level rather than at the component level. It provides a flexible way for
information exchange intelligently and accumulatively without losing logical integ-
rity. With a top-down approach, a PML tree can provide different levels of detail.
With a bottom-up approach, loosely coupled linkage allows lean information
transfer.

PML can be applied in two ways. One is to use it as a part of the native data
structure in geometric modellers. The other is to transform design data from various
formats of existing CAD systems into PML models for information exchange.
In this research, both approaches are implemented and tested for polyhedrons.
A prototype of geometric modeller using PML as the native data structure is built.
Mechanisms of lean information transfers based on protocols of HTTP and CORBA

<pml:ASSEMBLY id="piston_assembly">
<pml:refPART xlink:type="simple" xlink:href="Piston.xml#piston" xlink:show="embed" xlink:actuate="onLoad"/>
<pml:refPART xlink:type="simple" xlink:href="Rode.xml#rode" xlink:show="embed" xlink:actuate="onLoad"/> 

</pml:ASSEMBLY>
<pml:CONSTRAINT> 
…… 

<pml:conMATERIAL id="material" value="Metal Matrix Composites">
 <pml:refPART xlink:type="simple" xlink:href="Pison.xml#piston" xlink:show="embed" xlink:actuate="onRequest"/>
</pml:conMATERIAL>
<pml:conMATH id="math" xlink:type="extended" value=" ‘dim1’ = (‘dim2’ – ‘dim3’ – 2.0) * 2"> 
 <pml:LOC1 xlink:type="locator" xlink:label="dim1" xlink:href="Rode.xml#l"/>
 <pml:LOC2 xlink:type="locator" xlink:label="dim2" xlink:href="Piston.xml#r"/>
 <pml:LOC3 xlink:type="locator" xlink:label="dim3" xlink:href="Piston.xml#d"/>
 <pml:ARC1 xlink:type="arc" xlink:from="dim1" xlink:to="dim2" xlink:actuate="onRequest"/>
 <pml:ARC2 xlink:type="arc" xlink:from="dim1" xlink:to="dim3" xlink:actuate="onRequest"/>
</pml:conMATH>
<pml:conGENERAL id="op_temp" value="Maximum operating temperature is 300 C"> 
 <pml:refPART xlink:type="simple" xlink:href="Pisont.xml#piston" xlink:show="embed" xlink:actuate="onRequest"/>  
</pml:conGENERAL> 

…… 
</pml:CONSTRAINT>

r

d

l

material

op_temp

math

Figure 15. Examples of non-geometric constraints.

3757UL-PML: constraint-enabled distributed product data model



are developed. Distributed geometry and constraint information can be linked based
on the UL-PML scheme. The interpretation mechanism between ACIS� data struc-
ture and a PML model for polyhedrons is developed and tested in an ACIS modeller
prototype.

6.1. PML modeller
A native PML modeller is developed completely based on PML data format.

Figure 16 shows the architecture of the modeller. Within the modeller, geometry
can be generated and processed in the form of a PML tree. Data are stored and
transferred in PML file format. Users interact with the system in a regular design
mode, while the Data Manager is responsible for local PML tree processing and
transparent remote data query. The PML modeller uses industry standards for data
transfer and remote data access. Design information transfer in PML is independent
of network data transmission.

6.2. Distributed geometric modelling with different granularity
Unlike current CAD files with the granularity of management at the component

level, the UL-PML scheme allows CAD data communication and integration at
the basic geometric and non-geometric entity levels. For example, a connector in
figure 17 is to be designed by two groups. By the linkage specified as in figure 17(b),
the head section at one location (figure 17c) is referring to the top face of the body
section that is designed at another location (figure 17d). Thus, one section of a part
can be linked to another one during the component design, which enhances design
modularization and reuse. Similarly, an assembly file can also refer to distributed
files containing components.

6.3. Lean information transfer based on HTTP
HTTP is a widely used protocol for Web service. PML remote data access

and selective information transfer based on HTTP are developed in the PML
modeller. In the example of figure 17, the transfer of face information is based on
HTTP (figure 18).

Figure 16. Architecture of a Product Markup Language modeller.

3758 Y. Wang and B. O. Nnaji



6.4. Lean information transfer based on CORBA

The PML modeller also supports lean information exchange based on protocols
of CORBA. Different from HTTP requests, ORB requests are based on a fat-client
architecture. The client/server data transfer is transparent through ORB brokers.
Clients do not have to specify the IP addresses of the target PML references.

In the example of figure 19, a pair of moulds are designed separately by two
groups. Some contacting surfaces of the two parts must match each other geome-
trically. In the UL-PML scheme, links between the faces in two components can be

built. The geometry and topology information of the contacting faces in one can be
fetched from the other to maintain consistency. In this linkage relation, mould1
(figure 19a) is at the server site. Once the data are published in the library
(figure 19b) for information sharing, it is available for reference. To meet the surface

match requirement, face504, face978 and face1004 in mould2 (figure 19c) one is
specified to refer to face3, face239 and face286 in mould1, respectively. Instead of
transferring the whole data file, only three faces and six bounding edges in table 3 as

(a) (b)

(c) (d)

head

body

<pml:refFACE xlink:type="simple" xlink:href="http://www.pitt.edu/~yawst4/pg/body.xml#face16"
  xlink:show="embed" xlink:actuate="onLoad"/>

Figure 17. Part to be designed by two groups.

Web Server

HTTP
TCP
IP

SDLC /HDLC/ PPP / SLIP / LAP / LLC / …

request

Figure 18. Lean information transfer based on HTTP.

3759UL-PML: constraint-enabled distributed product data model



well as the corresponding geometry are transferred to the client site through data-
sharing agents.

If there is any change about the three faces of mould1, mould2 can be updated by
the linkage (figure 20). For each update, only the PML subtrees are transferred
across networks. The data transaction based on ORB protocols is shown in figure 21.

6.5. Data transformation between the ACIS and PML models
To demonstrate the possibility of integration between PML and current CAD

systems, a geometric modeller prototype based on an ACIS kernel is developed, and
geometry information transformation between the PML and the ACIS models for
polyhedrons is implemented. Figure 22 shows the architecture of the ACIS modeller

(a) (b)

(c)

face3
face239

face286

face504

face978

face1004

Figure 19. Pair of moulds in collaborative design.

Location Name Entity type Reference Link type

mould2.xml face504 face mould1.xml#face3 simple
face978 face mould1.xml#face239 simple
face1004 face mould1.xml#face286 simple
edge508 edge mould1.xml#edge13 simple
edge518 edge mould1.xml#edge23 simple
edge593 edge mould1.xml#edge55 simple
edge635 edge mould1.xml#edge168 simple
edge588 edge mould1.xml#edge60 simple
edge640 edge mould1.xml#edge163 simple

Table 3. Selective topology transferred to mould2.

3760 Y. Wang and B. O. Nnaji



C
lass
A

P
I

GUI

ACIS
kernel

PML Data
Tools

P
art

M
an

ag
erM

o
de

lin
g

T
o

o
ls

M
F

C
T

o
o

ls

ACIS-PML
Interpreter

F
u

n
ct

io
n

A
P

I

PML-ACIS
Interpreter

Internet

Figure 22. ACIS� model lean information sharing based on Product Markup
Language data models.

Server Side Client Side

Internet

Figure 20. Propagation of an updated design.

Figure 21. Lean information transfer based on CORBA.

3761UL-PML: constraint-enabled distributed product data model



and lean information sharing based on UL-PML data models. The interpreters
between ACIS and PML data structures allow the ACIS modeller to work with
the PML modeller in parallel. And lean information sharing channels between
ACIS models can be built based on PML data models.

7. Conclusions and discussions

In summary, a UL-PML scheme captures geometric and non-geometric relations
among entities in a virtual link style in PML so that references between entities can
be made across the boundary of files and physical locations in a distributed design
environment. This scheme allows design information to be integrated in a collab-
orative design environment. Besides static relations among design objects, dynamic
relations/constraints are also incorporated. PML uses standard XML syntax, and
schemas of PML are defined for entities and relations. Tree-structured PML allows
design information processing and manipulation to be easily managed. Graph
decomposition is needed to map graph-structured entity relations to the PML
tree. The properties of UL-PML scheme include the following:

. Network-aware data model intends to improve design information inter-
operability based on general data interoperability. At the syntax level, the
openness of the UL model is guaranteed. Thus, semantics level interoperability
is independent from syntax level interoperability.

. UL model does not require that one data file contain all the information
relevant to the designed product. Incorporating physical distribution and
logical integration, it makes partial design information storage and retrieval
easy to realize. This provides another level of granularity and increases the
flexibility during design information query.

. Design information can be stored modularly without compromising the integ-
rity of the whole product. This reduces the requirement for computational time
and storage space. Hence, it increases flexibility for scalable designer systems
and encourages reuse of designed components/sections.

. Explicit linkage ensures product data’s consistency in a distributed environ-
ment. Relations of design data elements and constraints are built in the UL
model to create a distributed information framework, thus lean information
sharing and exchange for collaborative design can be realized over the Internet.

. Integrated geometric and non-geometric constraint representation in the UL
model incorporates more design knowledge into design data. The explicit
capturing of multidisciplinary constraints, especially non-geometric constraints,
enables a more complete information representation than current standard
formats, which can provide a more comprehensive support for design intent
representation at different design stages.

References

BURKETT, W. C., 2001, Product data markup language: a new paradigm for product data
exchange and integration. Computer-Aided Design, 33, 489–500.

EASTMAN, C. M. and FERESHETIAN, N., 1994, Information models for use in product design:
a comparison. Computer-Aided Design, 26, 551–572.

ELMASRI, R. and NAVATHE, S. B., 1994, Fundamentals of Database Systems, 2nd edn (Menlo
Park: Addison-Wesley).

KAHN, H., FILER, N., WILLIAMS, A. and WHITAKER, N., 2001, A generic framework for
transforming EXPRESS information models. Computer-Aided Design, 33, 501–510.

3762 Y. Wang and B. O. Nnaji



KUSIAK, A., LETSCHE, T. and ZAKARIAN, A., 1997, Data modelling with IDEF1X. International
Journal of Computer Integrated Manufacturing, 10, 470–486.

NSF E-DESIGN WORKSHOP, 2000, The white paper of U.S. National Science Foundation
workshop on e-product design and realization for mechanically engineered products
(available at: http://www.e-designcenter.info).

PARUNAK, H. V. D., 1997, Distributed collaborative design (DisCollab): an ATP opportunity
(available at: http://www.mel.nist.gov/msid/groups/edt/ATP/white-paper) [White
paper of an NIST-ATP Workshop, ‘Tools and Technologies for Distributed and
Collaborative Design’, August 1997].

PRATT, M. J., 1996, Requirements Analysis for an Explicit Constraints Schema for STEP.
ISO TC184/SC4/WG3 N502 (T1/Parametrics) 10 May 1996 (available at: http://
www.nist.gov/sc4/paramet/short/iso/n502.pdf ).

PRATT, M. J., 2001, Extension of the STEP standard for parametric CAD models. Journal of
Computing and Information Science in Engineering, 1, 269–275.

RATCHEV, S. M., SHIAU, J. and VALTCHANOV, G., 2000, Distributed product and facility proto-
typing in extended manufacturing enterprises. International Journal of Production
Research, 38, 4495–4506.

SHIH, C. H. and ANDERSON, B., 1997, A design/constraint model to capture design intent.
ACM Proceedings of the Fourth Symposium on Solid Modeling and Applications,
pp. 255–264.

SPOONER, D. L., 1991, Towards an object-oriented data model for a mechanical CAD database
system. In K. R. Dittrich, U. Dayal and A. P. Buchmann (eds), On Object-Oriented
Database Systems (Berlin: Springer), pp. 190–205.

SZYKMAN, S., SENFAUTE, J. and SRIRAM, R. D., 1999, The use of XML for describing functions
and taxonomies in computer-based design. Proceedings of the 1999 ASME Design
Engineering Technical Conferences, paper no. DETC99/CIE-9025.

SZYKMAN, S., SRIRAM, R. D., BOCHENEK, C., RACZ, J. W. and SENFAUTE, J., 2000, Design
repositories: engineering design’s new knowledge base. IEEE Intelligent Systems,
15, 48–55.

VERHEIJEN, G. M. A. and VAN BEKKUM, J., 1982, NIAM: an information analysis method.
In T. W. Olle, H. G. Sol and A. A. Verijin-Stuart (eds), Information Systems Design
Methodologies: A Comparative Review. Proceedings of the IFIP WG8.1 Working
Conference on Cooperative Review of Information Systems Design Methodologies
(Amsterdam: North-Holland), pp. 537–589.

W3C XML SCHEMA, XML schema work draft (available at: http://www.w3.org/TR/
xmlschema-0/, http://www.w3.org/TR/xmlschema-1/ and http://www.w3.org/TR/
xmlschema-2/).

W3C XML XLINK (available at: http://www.w3.org/TR/xlink/).
W3C XML, XML 1.0 recommendation (available at: http://www.w3.org/TR/REC-xml/).
WANG, Y. and NNAJI, B. O., 2001, Functionality-based modular design for mechanical

product customization over the Internet. Journal of Design and Manufacturing
Automation, 1, 107–121.

WANG, Y., KIM, K. Y., MUOGBOH, O. S. and NNAJI, B. O., 2003, Distributed CAD data
modeling over the Internet. Proceedings of the 17th International Conference on
Production Research, paper no. 0186.

WWW CONSORTIUM (available at: http://www.w3.org/XML/).

3763UL-PML: constraint-enabled distributed product data model


