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Two types of uncertainties are generally recognized in modelling and simulation, including variability
caused by inherent randomness and incertitude due to the lack of perfect knowledge. In this paper, a gen-
eralized interval-probability theory is used to model both uncertainty components simultaneously, where
epistemic uncertainty is quantified by generalized interval in addition to probability measure. Conditioning,
independence, and Markovian probabilities are uniquely defined in generalized interval probability such
that its probabilistic calculus resembles that in the classical probability theory. A path-integral approach
can be taken to solve the interval Fokker–Planck equation for diffusion processes. A Krylov subspace
projection method is proposed to solve the interval master equation for jump processes. Thus, the time
evolution of both uncertainty components can be simulated simultaneously, which provides the lower and
upper bound information of evolving probability distributions as an alternative to the traditional sensitivity
analysis.

Keywords: aleatory uncertainty; epistemic uncertainty; imprecise probability; reliable simulation;
multi-scale simulation

2010 AMS Subject Classifications: 60A86; 60J60; 60J75; 65G40

1. Introduction

Reliable simulation requires uncertainty to be quantified. Uncertainty in simulation and computa-
tion is composed of two components. One is the inherent randomness because of fluctuation and
perturbation, called aleatory uncertainty, and the other is due to lack of perfect knowledge about
the system, called epistemic uncertainty. Aleatory uncertainty is also referred to as variability,
stochastic uncertainty, irreducible uncertainty, and random error, whereas epistemic uncertainty
is also known as incertitude, model form uncertainty, reducible uncertainty, and systematic error.

The two types of uncertainties have distinctively different sources and should be differentiated.
In modelling and simulation (M&S), epistemic uncertainty is the result of bias and error associated
with the models and input data. For instance, in finite-element analysis, epistemic uncertainty
comes from the truncation error involved in linear and nonlinear approximations of strain fields
using polynomials, imprecise input parameters in the model, mismatch of structures and geometric
configurations between the modelled and the true physical ones, etc. In molecular dynamics
simulation, epistemic uncertainty is mainly from the inaccurate interatomic potential functions.
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2 Y. Wang

In kinetic Monte Carlo simulation, it is largely from the imperfect knowledge about transition
and reaction rates. In contrast to epistemic uncertainty, sources such as disturbed boundary and
loading conditions, different sampling sizes and simulation times, inherent variations of material
compositions, and other randomness and fluctuation form the aleatory component of uncertainty.

Given the very different natures of the two types of uncertainties, it is important to distinguish
and treat them separately. Neglecting epistemic uncertainty in modelling, simulation, and analysis
may lead to decisions that are not robust. The typical way to assess the robustness of stochastic
simulation because of epistemic uncertainty is sensitivity analysis (SA), which is to check how
much variation the analysis result may have if input distribution parameters or types deviate from
the ones used in the analysis. Conflating epistemic and aleatory uncertainties may increase the
cost of risk management. If extra knowledge of the collected data is available, they can be further
clustered into smaller groups or intrinsic mathematical relations can be identified so that variance
can be reduced, which reflects pure randomness more accurately for risk analysis.

1.1 Sources of epistemic uncertainty in M&S

The sources of epistemic uncertainty in M&S are summarized as follows.

• Lack of data or missing data: the parameters of models, probability distributions, and distribu-
tion types are uncertain when the sample size for input analysis and data fitting is small. In some
situations, it may not be possible to collect enough data on the random variables of interest.
The lack of enough information will introduce errors in models and requires the analyst to find
new ways to describe the associated uncertainty more rigorously.

• Conflicting information: if there are multiple sources of information, the analyst may face
conflicts among them. It is not appropriate to draw a simple conclusion of distributions from
several pieces of contradictory evidence. The absence of relevant information has to be properly
modelled and incorporated in M&S.

• Conflicting beliefs: when data are not available, the analyst usually depends on experts’ judge-
ments, opinions, and beliefs. The information obtained from experts is subjective due to the
diversity of their past experiences, which can lead to inconsistent observations.

• Lack of introspection: in some cases, the analyst cannot afford the necessary time to think
deliberately about an uncertain event or an accurate description of physical systems. The lack
of introspection increases the risk of inaccurate model of the system under study. The associated
uncertainties have to be reflected in the simulation input distributions to receive more reliable
outputs.

• Lack of information about dependency: lack of knowledge about the correlations among factors
and variables as well as unknown time dependency of these factors contribute in the increased
uncertainties of M&S. The consideration of unknown dependency among variables will build
more reliable simulation models.

• Numerical errors because of truncation and round-off : approximation and truncation errors
are inherent in numerical methods used for simulations, as well as rounding and cancellation
errors.

• Measurement errors: all measurements are approximated values (instead of true values) due
to the limitations of measuring device, measuring environment, process of measurement, and
human errors. The uncertainties associated with the collected quantities should be addressed
in parameterization in order to give more reliable outputs.

Since aleatory and epistemic uncertainties come from separate sources and have very different
characteristics in nature, we should represent them differently, preferably in different forms, so that
they can be easily differentiated.Aleatory uncertainty is traditionally and predominantly modelled
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International Journal of Computer Mathematics 3

by probability distributions. In contrast, epistemic uncertainty has been modelled in several ways,
such as probability, interval, fuzzy set, random set, and basic probability assignment. In this paper,
interval is used to quantify epistemic uncertainty.

1.2 Interval to quantify epistemic uncertainty

Interval is as simple as a pair of numbers, i.e. the lower and upper bounds. The reason to choose
interval is twofold. First, interval is natural to human users and simple to use. It has been widely
used to represent a range of possible values, an estimate of lower and upper bounds for numerical
errors, and the measurement error because of the available precision as the result of instrument
calibration. Second, interval can be regarded as the most suitable way to represent the lack
of knowledge. Compared to other forms, interval has the least assumption. It only needs two
values for the bounds. In contrast, statistical distributions need assumptions of distribution types,
distribution parameters, and the functional mapping from events to real values between 0 and 1.
Fuzzy sets need assumptions of not only lower and upper bounds, but also membership functions.
Given that the lack of knowledge is the nature of epistemic uncertainty, a representation with the
least assumption is the most desirable. Notice that an interval [L, U] only specifies its lower bound
L and upper bound U. It does not assume a uniform distribution of values between L and U.

The analysis of systems based on intervals has computational advantages over the traditional
probabilistic approach when the worst-case scenario is of the main concern in uncertainty quan-
tification and risk assessment. In many applications, such as engineering and decision-making,
we would like to know what could be the worst and best possible situations. Interval analysis
allows us to estimate the bounds in the worst-case scenario analytically with interval arithmetic.
Although uniform distributions can also be used as the input to estimate the lower and upper
bounds of outputs as in Monte Carlo sampling, extensive sampling is required in order to cover all
possible scenarios and receive the good estimations of lower and upper bounds. Interval analysis
does not require sampling, and guarantees that all possible scenarios are enclosed by the analyt-
ically estimated bounds. On the other hand, the bounds estimated by interval analysis could be
too pessimistic or too wide. The generalized interval used in this paper is a new approach to avoid
the over-estimation of bounds, which will be introduced later in Section 2.3.

Probability itself has its limitations in representing epistemic uncertainty. The accuracy of sim-
ulation prediction heavily depends on the fundamental understanding of the underlying physical
and chemical processes. Lack of perfect knowledge and fundamental insight inevitably makes
models imperfect. Any assumption made about distributions in M&S has introduced a bias. The
most significant limitation of probability is that it does not differentiate total ignorance from other
probability distributions. Total ignorance means that the analyst has zero knowledge about the
system under study. Based on the principle of maximum entropy, uniform distributions are usu-
ally assumed when traditional probability theory is applied in this case. A problem arises because
introducing a uniform or any particular form of distribution has itself introduced extra information
that is not justifiable by the zero knowledge. The commonly used uniform distribution where all
possible values are equally likely is not guaranteed to be true because we are totally ignorant.
This leads to the Bertrand-style paradoxes such as van Fraassen’s cube factory [50]. ‘Knowing
the unknown’ does not represent the total ignorance. Although the Bayesian approach has been
proposed to reduce the bias introduced in the distribution assumption, and it serves the purpose
well in an ideal situation with the premise that we have plenty of data supply with no measure-
ment errors, its limitation remains in the real-world applications where lack of data or imperfect
measurement lingers. Arguably if there are plenty of data available, we would gain enough knowl-
edge and the uncertainty has become aleatory in nature instead of epistemic. Other limitations
of probability include capturing group inconsistency and personal indeterminacy where precise
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4 Y. Wang

values of probabilities are difficult to determine. Therefore, it is desirable to have more general
and efficient approaches to incorporate epistemic uncertainty in M&S, with the least assumptions
of probability distributions and their parameters and less computationally demanding than the
traditional sampling or Bayesian learning approaches.

Interval can overcome the limitation of probability in quantifying the lack of knowledge. Impre-
cise probability [p, p̄] combines epistemic uncertainty (as an interval) with aleatory uncertainty
(as probability measure), which is regarded as a generalization of traditional probability. Gaining
more knowledge can reduce the level of imprecision and indeterminacy, i.e. the interval width.
When p = p̄, the degenerated interval probability becomes a traditional precise one.

To model the simultaneous evolution of aleatory and epistemic uncertainties in dynamic sys-
tems, computationally tractable algorithms based on imprecise probabilities are desirable. In this
paper, a generalized interval-probability approach is taken to quantify the two components of
uncertainty, where epistemic uncertainty is represented by generalized interval, in combination
with probability measure. Similar to the traditional probability, generalized interval probability
is defined as a probability measure that obeys the axioms of Kolmogorov, which is different
from other forms of imprecise probability. In addition, a logic coherence constraint for a mutu-
ally disjoint partition of events is required. As a result, we can define conditional probability,
the generalized interval Bayes’ rule (GIBR), and independence in the forms that resemble those
in the precise probability theory. These fundamental properties enable ease of computation and
distinguish the proposed generalized interval probability from other imprecise probabilities. It
provides the unification between imprecise and precise probabilities.

It is well known that the dynamics of stochastic systems can be generally described by the dif-
ferential Chapman–Kolmogorov equation (CKE). There are two special cases of the CKE. When
the rates of transition in a CKE vanish, the CKE degenerates to a Fokker–Planck equation (FPE)
that describes drift–diffusion processes. When the coefficients of drift and diffusion in a CKE
are zeros, the CKE becomes a chemical master equation (CME) that describes jump processes.
Therefore, FPE’s and CME’s can be used to simulate stochastic dynamics from two different
perspectives at two different length and time scales. In this paper, we present the generalized
versions of FPE’s and CME’s so that a system under both aleatory and epistemic uncertainties
can be simulated.

To model diffusion processes under uncertainties, a generalized version of FPE was recently
developed [54], where coefficients of drift and diffusion are interval-valued parameters and
probability distributions follow the generalized interval probability. In this paper, the stochastic
modelling based on generalized interval probability is extended to describe jump processes under
aleatory and epistemic uncertainties. It is demonstrated that the simulation based on generalized
interval probability are algebraically tractable, as an efficient alternative to SA.

In the remainder of this paper, the background of imprecise probability and generalized inter-
val is introduced in Section 2. Section 3 presents the basics of generalized interval probability.
The Markov chain model with generalized interval probability is shown in Section 4. Section 5
describes a path-integral approach to solve the interval FPE to simulate drift–diffusion processes.
Section 6 presents a new Krylov subspace projection method to solve the interval master equation
to simulate jump processes.

2. Background

2.1 Existing approaches for robustness in M&S

The ultimate goal of incorporating both components of uncertainty in M&S is to improve the
robustness of predictions. Some of the standard approaches that have been used to explore the
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International Journal of Computer Mathematics 5

impact of input uncertainties are SA and design of experiment (DOE) [19,22,26]. When input
probability distributions with associated parameters are selected, the analyst needs to know how
sensitive the simulation output performance is, with respect to (w.r.t.) the selected input parameter
values. A straightforward way is to vary the input values and study the impact resulted on the
output. We can also determine which input factors have the most significant impact on the output
by evaluating the amount of output variations as the direct result of modifying the inputs. The
sensitivity can be numerically estimated with finite differences. Similarly, the DOE approach is
performed by varying the input parameters by levels and examining the output changes. In addition
to these direct (forward) methods, adjoint (backward) SA approaches were also developed for
deterministic simulation, such as solving ordinary differential equations (ODE’s) [2,40,42] and
partial differential equations (PDE’s) [13,35,58] when a large number of sensitivity parameters
but few objective functions are involved, in which case the adjoint methods are more efficient
than the direct methods.

A more efficient SA approach that is specific for stochastic simulation is to estimate the deriva-
tives of the expected values of output performance, i.e. the expected values of stochastic derivatives
or gradients, from simulation directly. This can be achieved by either varying output perfor-
mance w.r.t. input parameters such as the infinitesimal perturbation analysis (IPA) alike methods
[14,20,48], or by varying the probability measures w.r.t. inputs such as the likelihood ratio method
[15,37,39].

Another popular simulation technique that represents the total uncertainty is based on the
second-order probability and second-order Monte Carlo (SOMC) [49]. A second-order proba-
bilistic SA is superimposed on the traditional simulation so that uncertainties are quantified by
sampling the parameters of the first-order probabilistic distributions. In the double-loop simula-
tion, the inner loop is the variability loop, whereas the outer loop represents the uncertainty of the
input parameters of the inner loop. Computationally, SOMC is very expensive. Other approaches
to consider input uncertainties in deterministic and stochastic simulation include the Bayesian
analysis approach [4,59] and the bootstrap approaches [1,3].

The issue of the traditional SA for stochastic simulation is the computational efficiency. In
SOMC, a large number of samples have to be drawn as the possible values of the inputs in order
to make robust conclusions. Each sample is one complete run of simulation itself. Similarly,
in the IPA methods and Bayesian approaches, the number of runs should be large enough to
draw credible conclusions. The result of Bayesian update is sensitively dependent on the prior
distribution, unless the amount of data available for the update is substantially large. Therefore,
computational efficiency is the bottom-neck of those approaches to assess the robustness of
stochastic simulation. The SA methods for ODE’s and PDE’s are not directly applicable to assess
the robustness of stochastic differential equations that describe stochastic dynamics. Although the
special formulation of CME and FPE employed in this paper can convert stochastic differential
equations to deterministic ODE’s, overhead for solving extra equations is still involved if direct
or adjoint methods are applied, which will be discussed in detail in Section 6.

2.2 Imprecise probability

Many forms of imprecise probabilities have been developed. For example, the Dempster–Shafer
theory [6,43] characterizes evidence with discrete probability masses associated with a power set
of values. The theory of coherent lower previsions [51] models uncertainties with the lower pre-
vision (supremum acceptable buying price) and the upper prevision (infimum acceptable selling
price) following the notations of de Finetti’s subjective probability theory. The possibility the-
ory [9] represents uncertainties with Necessity-Possibility pairs. Probability bound analysis [10]
captures uncertain information with pairs of lower and upper distribution functions or p-boxes.
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6 Y. Wang

Interval probability [25] characterizes statistical properties as intervals. F-probability [56] incor-
porates intervals and represents an interval probability as a set of probabilities which maintain
the Kolmogorov properties. A random set [29] is a multi-valued mapping from the probability
space to the value space. Fuzzy probability [30] considers probability distributions with fuzzy
parameters. A cloud [33] is a combination of fuzzy sets, intervals, and probability distributions.

In the applications of interval probability, the interval bounds p and p̄ can be solicited as the
lowest and highest subjective probabilities about a particular event, when the domain expert may
hesitate to offer just a precise value of probability. In addition, different experts could have different
beliefs. In both cases, the range of probabilities gives the interval bounds. The bounds can also
be obtained from the basic probability assignments formulated in the Dempster–Shafer theory
[6,43]. When used in data analysis with frequency interpretation, the bounds can be confidence
intervals that are calculated from data to enclose a cumulative distribution function.

Imprecise probability quantifies aleatory and epistemic uncertainties simultaneously and can be
used as an alternative to SA in assessing robustness of M&S. In this paper, a new form of imprecise
probability, generalized interval probability, is described and applied in M&S. This new form is
based on a generalized interval, which is an algebraic and semantic extension of the classical set-
based interval. As a result, the probabilistic calculus in generalized interval probability is greatly
simplified.

2.3 Generalized interval

The classical set-based interval [31] is defined as �a, b� := {x ∈ R | a ≤ x ≤ b}. Therefore, �a, b�
is invalid when a > b. In contrast, generalized interval [8,12,27] does not have such restriction.
A generalized interval is defined as a pair of numbers x := [x, x̄](x, x̄ ∈ R).

The calculation of generalized interval is based on the Kaucher interval arithmetic [21].
Compared to the semi-group formed by the classical set-based intervals without invertibility, gen-
eralized intervals form a group. This property significantly simplifies the computational structure.
The set of generalized intervals is denoted by KR = {[x, x̄] | x, x̄ ∈ R}. The set of proper intervals
is IR = {[x, x̄] | x ≤ x̄}, and the set of improper intervals is IR = {[x, x̄] | x ≥ x̄}. The relationship
between proper and improper intervals is established with the operator dual as dual([x, x̄]) := [x̄, x]
Thus, the group of generalized intervals is formed with x − dualx = 0 and x ÷ dualx = 1.

The inclusion relationship ⊆ between generalized intervals x = [x, x̄] and y = [y, ȳ] is defined
as

[x, x̄] ⊆ [y, ȳ] ⇐⇒ x ≥ y ∧ x̄ ≤ ȳ. (1)

The less-than-or-equal-to relationship ≤ is defined as

[x, x̄] ≤ [y, ȳ] ⇐⇒ x ≤ y ∧ x̄ ≤ ȳ. (2)

The relationship between generalized interval and classical interval is established with the operator

 defined as

[x, x̄]
 := �min(x, x̄), max(x, x̄)� (3)

The absolute value of x = [x, x̄] is defined as

|x| :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[−x̄, −x] (x < 0, x̄ < 0),

[0, max(−x, x̄)] (x < 0, x̄ ≥ 0),

[max(x, −x̄), 0] (x ≥ 0, x̄ < 0),

[x, x̄] (x ≥ 0, x̄ ≥ 0).
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Table 1. Illustrations of the semantic extension of generalized interval.

Algebraic relation Quantifier of Range estimation
[x, x̄] + [y, ȳ] = [z, z̄] Corresponding logic interpretation [z, z̄] of [z, z̄]

[2, 3] + [2, 4] = [4, 7] (∀x ∈ �2, 3�)((∀y ∈ �2, 4�)((∃z ∈ �4, 7�)(x + y = z) ∃ �4, 7� is complete
[2, 3] + [4, 2] = [6, 5] (∀x ∈ �2, 3�)((∀z ∈ �5, 6�)((∃y ∈ �2, 4�)(x + y = z) ∀ �5, 6� is sound
[3, 2] + [2, 4] = [5, 6] (∀y ∈ �2, 4�)((∃x ∈ �2, 3�)((∃z ∈ �5, 6�)(x + y = z) ∃ �5, 6� is complete
[3, 2] + [4, 2] = [7, 4] (∀z ∈ �4, 7�)((∃x ∈ �2, 3�)((∃y ∈ �2, 4�)(x + y = z) ∀ �4, 7� is sound

The absolute value of a vector X = [x1, . . . , xn]T is |X| := [|x1|, . . . , |xn|]T, where T denotes
matrix transpose. The L2-norm of the vector X is ‖X‖2 := √|XTX|. An interval function as a
pair of real-valued functions is defined as f(x) := [f (x), f̄ (x)]. The integral of f(x) is defined as∫

f(x) dx := [∫ f (x) dx,
∫

f̄ (x) dx] [27].
Not only generalized interval based on the Kaucher arithmetic simplifies the computational

structure, it also provides more semantics than the classical set-based interval. In a functional
relation, each generalized interval has an associated logic quantifier, either existential (∃) or
universal (∀). The semantics of a generalized interval x ∈ KR is denoted by (Qxx ∈ x
) where
Q : KR �→ {∃, ∀}. x is called existential if Qx = ∃, or universal if Qx = ∀. If a real relation
z = f (x1, . . . , xn) is extended to the interval relation z = f(x1, . . . , xn), the interval relation z is
interpretable if there is a semantic relation

(Qx1 x1 ∈ x

1 ) · · · (Qxn xn ∈ x


n )(Qzz ∈ z
)(z = f (x1, . . . , xn)).

Generalized interval provides more semantic power to help verify completeness and soundness
of range estimations by logic interpretations. A complete range estimation of possible values
includes all possible occurrences without underestimation. A sound range estimation does not
include impossible occurrences without overestimation. The four examples in Table 1 illustrate
the interpretations for operator ‘+’.

3. Basics of generalized interval probability

The basics of generalized interval probability are defined as follows [52].

Definition 3.1 Given a sample space � and a σ -algebra A of random events over �, we define
the generalized interval probability p ∈ KR as p : A → [0, 1] × [0, 1] which obeys the axioms of
Kolmogorov: (1) p(�) = [1, 1]; (2) [0, 0] ≤ p(E) ≤ [1, 1] (∀E ∈ A); and (3) for any countable
mutually disjoint events Ei ∩ Ej = ∅ (i �= j), p(

⋃n
i=1 Ei) = ∑n

i=1 p(Ei).

A generalized interval probability p = [p, p̄] is a generalized interval without the restriction of
p ≤ p̄. The new definition of interval probability also implies p(∅) = [0, 0].

Definition 3.2 (Union) The probability of union is defined as p(A) := ∑
S⊆A(−dual)|A|−|S|

p(S) for A ⊆ �.

3.1 Logic coherence constraint

The assignments of interval-valued probabilities to events are not arbitrary. They should meet
certain requirements. In generalized interval probability, the interval-probability values should
satisfy the logic coherence constraint (LCC).
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8 Y. Wang

Definition 3.3 [LCC] For a mutually disjoint event partition
⋃n

i=1 Ei = �,
∑n

i=1 p(Ei) = [1, 1].
If the sample space is continuous,

∫
x∈�

p(x) dx = [1, 1].

Notice that the LCC is more restrictive than Walley’s coherence and avoid sure loss constraints
[51]. The LCC ensures that generalized interval probability is logically coherent with precise
probability. Suppose that p(Ei) ∈ IR (fori = 1, . . . , k) and p(Ei) ∈ IR (for i = k + 1, . . . , n). It
can be interpreted as

∀p1 ∈ p
(E1), . . . , ∀pk ∈ p
(Ek), ∃pk+1 ∈ p
(Ek+1), . . . , ∃pn ∈ p
(En),
n∑

i=1

pi = 1.

For instance, given that p(down) = [0.2, 0.3], p(idle) = [0.3, 0.5], and p(working) = [0.5, 0.2]
for a system’s working status, we can interpret it as

(∀p1 ∈ �0.2, 0.3�)(∀p2 ∈ �0.3, 0.5�)(∃p3 ∈ �0.2, 0.5�)(p1 + p2 + p3 = 1).

With different quantifier assignments, we differentiate non-focal events from focal events based
on the respective logic interpretation. An event E is called focal if the associated semantics for
p(E) is universal. Otherwise, it is called non-focal if the associated semantics is existential. While
the epistemic uncertainty associated with focal events is critical to the analyst, the one associated
with non-focal events is not. In the above example, down and idle are focal events while working
is non-focal. If the analyst is more interested in working and down, he/she may assign a different
set of interval-probability values, for instance, p(working) = [0.2, 0.5], p(down) = [0.2, 0.3], and
p(idle) = [0.6, 0.2].

3.2 Conditional probability, independence, and GIBR

The concepts of conditional probability, independence, and Bayes’ rule are critical for the clas-
sical probability theory. With independence, we can decompose a complex problem into simpler
and manageable components. With Bayes’ rule, information can be combined and updated for
assessment. Similarly, they are essential for imprecise probabilities.

Different from all other forms of imprecise probabilities, which are based on convex probability
sets, the conditional probability in the generalized interval-probability theory is defined directly
from marginal probability.

Definition 3.4 The conditional interval probability p(E | C) for all E, C ∈ A is defined as

p(E | C) := p(E ∩ C)

dualp(C)
=

[
p(E ∩ C)

p(C)
,

p̄(E ∩ C)

p̄(C)

]
, (4)

when p(C) > 0.

Thanks to the unique algebraic properties of generalized intervals, this definition can greatly
simplify computation in applications. Only algebraic computation is necessary.

Definition 3.5 For A, B, C ∈ A, A is said to be conditionally independent with B on C if and
only if

p(A ∩ B | C) = p(A | C)p(B | C). (5)
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Definition 3.6 For A, B ∈ A, A is said to be independent with B if and only if

p(A ∩ B) = p(A)p(B). (6)

The independence in Definition 3.6 is a special case of conditional independence in
Definition 3.5, where C is the complete sample space �. The conditional independence also
has a second form, as shown in Theorem 3.7.

Theorem 3.7 For A, B, C ∈ A, p(A ∩ B | C) = p(A | C)p(B | C) ⇐⇒ p(A | B ∩ C) = p(A |
C).

Proof From the definition of conditional probability, p(A ∩ B | C) = p(A | C)p(B | C) ⇐⇒
p(A ∩ B ∩ C)/dualp(C) = p(A | C)p(B ∩ C)/dualp(C) ⇐⇒ p(A ∩ B ∩ C)/dualp(B ∩ C) =
p(A | C) ⇐⇒ p(A | B ∩ C) = p(A | C). �

Corollary 3.8 For A, B, C, D ∈ A and A ∩ D = ∅, the conditional independence between A
and B given C and between A and D given C infers the independence between A ∪ D and B given
C.

Proof p(A ∪ D | B ∩ C) = p((A ∪ D) ∩ B ∩ C)/dualp(B ∩ C) = [p(A ∩ B ∩ C) +
p(D ∩ B ∩ C)]/dualp(B ∩ C) = p(A ∩ B ∩ C)/dualp(B ∩ C) + p(D ∩ B ∩ C)/dualp(B ∩ C)

= p(A | B ∩ C) + p(D | B ∩ C) = p(A | C) + p(D | C) = p(A ∪ D | C) �

The most intuitive meaning of ‘independence’ is that an independence relationship satisfies
several graphoid properties. It has been shown that generalized interval probability with the
defined independence is graphoid [53]. With X ,Y ,Z , and W as sets of disjoint random variables
and ‘⊥’ denoting independence, the conditional independence in Definition 3.5 satisfies all of the
following graphoid properties.

Corollary 3.9 (Symmetry [53]) X ⊥ Y | Z ⇒ Y ⊥ X | Z

Remark 1 If knowing Y does not tell us more about X, then similarly knowing X does not tell
us more about Y .

Corollary 3.10 (Decomposition [53]) X ⊥ (W , Y) | Z ⇒ X ⊥ Y | Z

Remark 2 If combined two pieces of information is irrelevant to X, either individual one is also
irrelevant to X.

Corollary 3.11 (Composition [53]) (X ⊥ Y | Z) ∧ (X ⊥ W | Z) ⇒ X ⊥ (W , Y) | Z

Remark 3 The combined two pieces of information that are individually irrelevant to X is also
irrelevant to X.

Corollary 3.12 (Contraction [53]) (X ⊥ Y | Z) ∧ (X ⊥ W | (Y , Z)) ⇒ X ⊥ (W , Y) | Z

Remark 4 If two pieces of information X and Y are irrelevant with prior knowledge of Z and X
is also irrelevant to a third piece of information W after knowing Y , then X is irrelevant to both
W and Y before knowing Y .

Corollary 3.13 (Reduction [53]) (X ⊥ Y | Z) ∧ (X ⊥ (W , Y) | Z) ⇒ X ⊥ W | (Y , Z)
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10 Y. Wang

Remark 5 If two pieces of information X and Y are irrelevant with prior knowledge of Z and
at the same time X is also irrelevant to both W and Y , then X is irrelevant to the third piece of
information W even after knowing Y .

Corollary 3.14 (Weak union [53]) X ⊥ (W , Y) | Z ⇒ X ⊥ W | (Y , Z)

Remark 6 Gaining more information about irrelevant Y does not affect the irrelevance between
X and W .

Corollary 3.15 (Redundancy [53]) X ⊥ Y | X

Remark 7 Knowing that X is irrelevant to Y also tells us about X.

Corollary 3.16 (Intersection [53]) (X ⊥ W | (Y , Z)) ∧ (X ⊥ Y | (W , Z)) ⇒ X ⊥ (W , Y) | Z

Remark 8 If combined information W and Y is relevant to X, then at least either W or Y is
relevant to X after learning the other.

The stochastic independence in precise probability is semi-graphoid satisfying symmetry,
decomposition, weak union, and contraction. When the probability distributions are strictly
positive, intersection is also satisfied. Then, it becomes graphoid.

With Definition 3.4 of the conditional probability, a GIBR can be directly derived.

Theorem 3.17 (GIBR) For A ∈ A and a mutually disjoint event partition
⋃n

j=1 Ej = � with∑n
j=1 p(Ej) = [1, 1],

p(Ei | A) = p(A | Ei)p(Ei)∑n
j=1 dualp(A | Ej)dualp(Ej)

(7)

Proof From the definition of conditional probability in Definition 3.4,
∑n

j=1 dualp(A |
Ej)dualp(Ej) = ∑n

j=1 dual[p(A | Ej)p(Ej)] = dual
∑n

j=1 p(A ∩ Ej) = dualp(A). Therefore, p(A |
Ei)p(Ei)/dualp(A) = p(A ∩ Ei)/dualp(A) = p(Ei | A). �

With the conditional probability and independence defined, a Markov chain model with gen-
eralized interval probabilities is used to describe the evolution of a system as transitions of states
which we do not have perfect knowledge about, as described in the next section.

4. Markov chain model with generalized interval probabilities

Markov chain is commonly used to model and simulate time evolution of stochastic systems. In
addition to the stochasticity, epistemic uncertainty associated with model parameters have been
studied. The early work on Markov chain model with imprecise transition probabilities appeared in
the study of Markovian decision processes [41,57]. Hartfiel [18] used the name Markov set-chains
and developed a so-called Hi-Lo algorithm based on convexity to calculate lower and upper bounds
of state probabilities with interval transition probabilities. In the more general setting of interval
probability, Kozine and Utkin [24] developed a linear programming based algorithm to estimation
lower and upper bounds of F-probability with interval transition probabilities. Škulj [45,46]
developed formulations of F-probability and coherent lower prevision to predict transitions. With
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International Journal of Computer Mathematics 11

a formulation of coherent upper prevision, de Cooman et al. [5] developed an algorithm with
linear complexity to estimate the credal set evolution in imprecise Markov chains.

Different from the above, here the imprecise Markov chain is defined based on the generalized
interval probability, which can be intuitively kept track of with its resemblance to the classical
Markov chain. Given n possible states of a system, a stationary discrete-time imprecise Markov
chain is defined by a state transition matrix P ∈ KR

n×n with interval-valued transition probabilities
pij = p(X = i | X = j) with i = 1, . . . , n and j = 1, . . . , n. Given the probabilistic estimates of the
states Q(k) ∈ KR

n at time k with elements q(k)
i with i = 1, . . . , n, the probabilistic estimates of

states at time k + 1 is Q(k+1) = PQ(k).
Notice that Q(k+1) = PQ(k) holds because the multiplication distributivity of three probability

intervals p1, p2, and p3 (0 ≤ p1, p2, p3 ≤ 1) exists [11,28,36]. That is, (p1 + p2)p3 = p1p3 +
p2p3.

The logic coherence constraint of state probabilities is automatically satisfied during the
transition process, stated as follows.

Theorem 4.1 (Markov logic coherence constraint) Given an interval matrix P and an interval
vector Q(k) with their respective elements pij (i = 1, . . . , n, j = 1, . . . , n) and q(k)

i (i = 1, . . . , n) as
generalized interval probabilities, if

∑n
i=1 pij = [1, 1] (∀j = 1, . . . , n)and

∑n
i=1 q(k)

i = [1, 1], then
the elements of Q(k+1) = PQ(k) denoted as q(k+1)

i (i = 1, . . . , n) also satisfy
∑n

i=1 q(k+1)
i = [1, 1].

Proof
∑n

i=1 q(k+1)
i = ∑n

i=1{
∑n

j=1 pijq
(k)
j } = ∑n

j=1{
∑n

i=1 pijq
(k)
j } = ∑n

j=1{q(k)
j

∑n
i=1 pij}

= ∑n
j=1{q(k)

j · [1, 1]} = [1, 1] �

If the system is in the steady state, there is an equilibrium distribution � of the possible states
satisfying the stationary transition

� = P�. (8)

The elements πi (i = 1, . . . , n) of � and pij (i = 1, . . . , n; j = 1, . . . , n) of P are divided into
two categories, proper and improper. Let P denote the set of indices for those proper interval
elements, i.e. πi ∈ IR if i ∈ P and pij ∈ IR if ij ∈ P . Let I denote the set of indices for those
improper interval elements, i.e. πi ∈ IR if i ∈ I and pij ∈ IR if ij ∈ I. Equation (8) can then be
re-arranged as [

�P
�I

]
=

[
P(1) P(2)

P(3) P(4)

]
·
[
�P
�I

]
. (9)

Let P(i)
P and P(i)

I be the respective proper and improper components of P(i) (i = 1, 2, 3, 4). The
first set of equations �P = P(1) · �P + P(2) · �I in Equation (9) can be interpreted as

∀P(1)

I ∈ P(1)

I , ∀P(2)

I ∈ P(2)

I , ∀πI ∈ �



I ,

∃P(1)

P ∈ P(1)

P , ∃P(2)

P ∈ P(2)

P , ∃πP ∈ �



P ,

P(1) · πP + P(2) · πI = πP .

(10)

The second set of equations P(3) · �P + P(4) · �I = �I in Equation (9) can be interpreted as

∀P(3)

P ∈ P(3)

P , ∀P(4)

P ∈ P(4)

P , ∀πP ∈ �



P ,

∃P(3)

I ∈ P(3)

I , ∃P(4)

I ∈ P(4)

I , ∃πI ∈ �



I ,

P(3) · πP + P(4) · πI = πI .

(11)
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12 Y. Wang

The combination of Equations (10) and (11) leads to the interpretation of Equation (8) or
Equation (9) as

∀P(1)

I ∈ P(1)

I , ∀P(2)

I ∈ P(2)

I , ∀P(3)

P ∈ P(3)

P , ∀P(4)

P ∈ P(4)

P ,

∃P(1)

P ∈ P(1)

P , ∃P(2)

P ∈ P(2)

P , ∃P(3)

I ∈ P(3)

I , ∃P(4)

I ∈ P(4)

I , ∃π ∈ �
,

P · π = π .

(12)

The existential quantifiers associated with the elements of � in Equation (12) indicate the con-
trollable stability of the equilibrium distribution in the steady state. If there are uncontrollable
deviations associated with transition probabilities P(1)

I , P(2)

I , P(3)

P , and P(4)

P , we should be able to
choose P(1)

P , P(2)

P , P(3)

I , and P(4)

I such that the steady state is maintained. Therefore, Equation (12)
provides the logic basis to maintain the stability of the system subject to incomplete knowledge of
states and state transitions, which can improve the robustness of the dynamic control in stochastic
systems.

5. Solving interval FPE

As mentioned in Section 1, FPE’s and CME’s are intrinsically related. Diffusion processes and
jump processes can be regarded as two views of stochastic dynamics at two different time and
length scales. The numerical solving procedures for FPE’s and CME’s can be both based on the
state transition scheme, which is different from the traditional trajectory sampling procedure. For
the sake of completeness, the interval FPE and a path-integral approach for solving the interval
FPE [54] are summarized in this section.

Instead of sampling trajectories, FPE simulates the processes by computing the probability
distributions of all states at each time step. Particularly, the path-integral method has been shown as
a simple yet numerically efficient and accurate approach. It uses a short-time transition probability
density matrix to approximate the evolution of drift–diffusion processes [38,55]. Interpolation
[32] can be used to approximate continuous probability density functions in order to improve
numerical efficiency and accuracy. It has also been demonstrated that the computation efficiency
can be improved under special conditions such as specific probability distributions [7] and constant
diffusion coefficients [23].

The traditional FPE does not differentiate the two types of uncertainties. Therefore, extra effort
of SA is needed to assess the robustness of results. Here we would like to show a path-integral
approach that can be used to solve the interval FPE [54]

∂

∂t
p(x, t | y, t′) = −dual

n∑
i=1

∂

∂xi
[Ai(x, t)p(x, t | y, t′)] + 1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
[Bij(x, t)p(x, t | y, t′)],

(13)
where A ∈ KR

n is an interval vector of drift rates, B ∈ KR
n×n is an interval matrix of diffusion

coefficients, x, y ∈ R
n represent states in an n-dimensional configuration space, and p(x, t | y, t′)

is the generalized interval-probability density that the system is in state x at time t given that it
was in state y at time t′. The generalized FPE simultaneously models the time evolution of both
aleatory and epistemic uncertainties.

With the short-time transition probability density

p(x′, t + τ | x, t) ∝ exp

(
− 1

2τ
[x′ − x − A(x, t)τ ]TB−1(x, t)[x′ − x − A(x, t)τ ]

)
, (14)
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where B−1 is the inverse matrix of B such that B · dualB−1 = I . Let the initial probability dis-
tribution at time t0 be q(x, t0) and the discrete time intervals tk = t0 + kτ for k = 1, 2, . . .. The
distributions at time t = tk is calculated by

q(t, tk) =
∫

Rn

dyk−1p(x, tk|yk−1, tk−1) · · ·
∫

Rn

dy0p(y1, t1|y0, t0).

The numerical implementation is based on matrices. Suppose that the number of states N is finite.
The initial probability distribution is an N × 1 interval vector Q(t0). The short-time transition
probability density is an N × N interval matrix P(t) calculated in Equation (14). Its element Pij(t)
represents the probability of transition from state xj to state xi at time t. Then, the distribution at
time t = tk is

Q(tk) = P(tk−1) · · · P(t0)Q(t0).

Each column of P(t) should sum up to 1, which is required by the LCC. That is, if the transition
rate is calculated by Equation (14) as

P′
ij(t) = exp

(
− 1

2τ
[xi − xj − A(xj, t)τ ]TB−1(xj, t)[xi − xj − A(xj, t)τ ]

)

then the normalized transition probability density is

Pij(t) = P′
ij(t)

dual
∑N

l=1 P′
lj(t)

. (15)

6. Solving interval master equation

The CME is used to model jump processes such as chemical kinetics. With parameter uncertainty
incorporated, an interval master equation is [54]

∂

∂t
p(x, t | y, t′) =

∫
dzw(x | z, t)p(z, t | y, t′) − dual

∫
dzw(z | x, t)p(x, t | y, t′), (16)

where w(y | x, t) := limδt→0 p(y, t + δt | x, t)/δt is the interval-valued rate of transition from state
x to state y at time t. With the discrete state space of N possible states, Equation (16) becomes

∂

∂t
qi(t) =

∑
j �=i

wij(t)qj(t) − dual
∑
j �=i

wji(t)qi(t)(i = 1, . . . , N), (17)

where wij(t) is the interval rate of transition from state xj to state xi at time t, and qj(t) is the
interval probability that the system is in state xj at time t. Equation (17) can be represented in a
matrix form as

∂

∂t
Q(t) = H(t)Q(t), (18)

where the elements of matrix H(t) are hii(t) = −dual
∑

j wji(t) and hij(t) = wij(t) (j �= i). Notice
that

∑
i hij(t) = 0 for any j. The interval matrix H is regarded an infinitesimal generator of a

generalized Markovian process.
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14 Y. Wang

Given the initial probabilities of states Q(t0), numerically the time is divided into small steps
t0, t0 + τ , t0 + 2τ , . . . and Hk remains constant between time t0 + kτ and t0 + (k + 1)τ . The
corresponding numerical solution of Equation (18) is

Q(t + kτ) = exp(τHk−1) · · · exp(τH0))Q(t0).

Notice that the CME models stochastic jump processes by a deterministic ODE of probability
distributions. Therefore, the sensitivity of CME can also be assessed by other methods such as
the direct and adjoint methods. In both the direct and adjoint methods, Jacobi matrices need to be
computed. In the direct methods, sensitivity equations need to be solved to check the sensitivity
change along time. In the adjoint methods, adjoint equations need to be solved to evaluate adjoint
variables in a reverse order, after the state variables are calculated in a forward calculation. Thus,
a large amount of memory must be allocated to store the state variables in the forward run.
The sensitivity of objectives is estimated by further computing the integral of gradient-adjoint
product along time numerically. In contrast, the interval-based approach converts the original
ODE to an interval-valued ODE. The solving process is based on interval analysis. The interval
extensions of numerical methods for interval ODE’s are similar to the ones for ODE’s without
additional equations and therefore more tractable. However, one caveat of interval analysis is
that the interval results can be overly pessimistic and interval estimations can be too wide. The
proposed generalized interval approach is to resolve this over-estimation issue by using Kaucher
arithmetic.

6.1 Computing interval matrix exponential

The computation of interval matrix exponential exp(τHk) is the major task in solving the inter-
val master equation. Several approaches have been proposed to calculate the interval matrix
exponential. Oppenheimer and Michel [34] used the centred form of interval and Taylor series
approximation in the range estimation. Goldsztejn [16] reduced the interval over-estimation by
a scaling and squaring process. Škulj [47] took a partitioning approach to reduce step sizes to
avoid interval over-estimation. Different from these approaches, here we use generalized interval.
The complete enclosure of the possible variation ranged by the lower and upper bounds is not
the only purpose in solving Equation (18), since the LCC is enforced by the generalized interval
probability. In addition, the state space of interval master equation has very high dimensions.
The infinitesimal generator H is a very large but sparse matrix. Therefore, a Krylov subspace
projection approach is taken here.

Our approach can be regarded as an extension of the Krylov-based matrix exponential
computation [44] from real numbers to generalized intervals, listed as follows.

The core part of the algorithm is an Arnoldi process to search the interval-valued orthonormal
basis {V1, . . . , Vm+1} forming a matrix V = [V1, . . . , Vm+1] and the upper Hessenberg matrix
G = [gij] such that eτHQ can be estimated as U(τ ) = βVeτGe1 where e1 is the first unit basis.
Here, the lower and upper bound matrices of eτG are calculated as eτG and eτ Ḡ respectively, with
real-valued matrices G = [g

ij
] and Ḡ = [ḡij].

For each orthogonal projection in R = R − dualgijVi in the algorithm, if 0 is included in any
element of residual R, this element will be assigned to be 0. In a real-valued orthogonal projection,
if the residual R − gijVi becomes very small and close to 0, it indicates an orthogonal basis vector
is found. However, for interval-valued vectors, the residual may not be zero. Here generalized
intervals are applied. E = R − dualgijVi can always be interpreted as

(∀E ∈ E
)(QRR ∈ R
)(Qgij gij ∈ g

ij )(QVi Vi ∈ V


i )(R − gijVi = E),
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Algorithm 1 Compute U = eτHQ, where H ∈ KR
n×n and Q ∈ KR

n

t = 0;
choose an m � n;
β ← ‖Q‖2;
U ← Q;
WHILE t < τ DO

V1 ← U/dual(β);
FOR j = 1 to m

R ← H · Vj where R = [r1, . . . , rn]T;
FOR i = 1 to j

gij ← VT
i · R;

R ← R − dualgijVi;
FOR k = 1 to n

IF 0 ∈ r

k ;

rk ← 0;
END IF

END FOR
END FOR
gj+1,j ← ‖R‖2;
IF ‖gj+1,j‖2 < ε;

BREAK;
END IF
Vj+1 ← R/dualgj+1,j;

END FOR
gm+2,m+1 = 1;
G ← [g1:m+2,1:m+1];
V ← [V1, . . . , Vm+1];
�t = τ − t;
DO

F ← e�tG ;
U ← βV(1 : n, 1 : m + 1)F(1 : m + 1, 1);
err = min(|βF(m + 1, 1)|, |βF(m + 2, 1)| · ‖HVm+1‖2);
�t ← α�t where 0 < α < 1;

WHILE (err > ε)
t ← t + �t;

END WHILE

where QR, Qgij , and QVi can be either ∀ or ∃. If 0 ∈ E
, then the interpretation is

(QRR ∈ R
)(Qgij gij ∈ g

ij )(QVi Vi ∈ V


i )(R − gijVi = 0).

That is, with the zero residual, an orthogonal basis can be found with the given intervals R, gij,
and Vi. In other words, two generalized interval vectors E1 are E2 called orthogonal to each other
if 0 ∈ (ET

1 · E2)

.

If the error of Krylov subspace approximation is large, the algorithm iterative reduces the step
size �t such that for each small step the approximation is within a preset threshold ε. That is, a
jump for a time period of τ is subdivided into several jumps with smaller step sizes.
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16 Y. Wang

U computed from the algorithm is a vector of probabilities. A normalization procedure

U′
i(t) = Ui(t)

dual
∑N

l=1 Ul(t)
(19)

is required to satisfy the LCC. The normalization at each step of the iterative process for time
evolution avoids the problem of overly pessimistic estimation of interval ranges, yet at the cost
of enclosure completeness.

6.2 Numerical illustration

Here we use two numerical examples to illustrate the developed algorithm for solving the interval
master equation. The first example is the well-known Lotka–Volterra predatory–prey model, and
the second one is the Michaelis–Menten enzyme kinetics.

The first example is the Lotka–Volterra predatory–prey model with two species, predator and
prey. The dynamics of the system is described by three kinetic equations, as given in Table 2. The
first equation is the growth of prey, the second one is the growth of predatory, and the third one is
the death of predator. Npredator and Nprey are the numbers of species. With the initial distributions
p(Npredator = 5) = 1.0 and p(Nprey = 5) = 1.0 and the time step τ = 0.1, the simulation results
are shown in Figure 1 where the distributions for the numbers of predator and prey evolve along
time. The lower and upper bounds of probability density is compared with the result of a real-
valued traditional simulation, where the rate constants take the values of c1 = 0.1, c2 = 0.01, and
c3 = 0.1.

The combination of different numbers of species form the state space. For a system of M
species with the maximal numbers as N , the numbers of possible states is in the order of NM . Yet
the probabilities that most of the states are occupied are zeros. Therefore, both the infinitesimal
generator H and probability vector eτHQ are very sparse.

Table 2. An example of Lotka–Volterra predatory–prey model.

Reaction Propensity Rate constant

Prey
c1−→ 2Prey α1 = c1NPrey c1 = [0.09, 0.11]

Predator + Prey
c2−→ Predator α2 = c2NPredatorNPrey c2 = [0.009, 0.011]

Predator
c3−→ ∅ α3 = c3NPredator c3 = [0.09, 0.11]

Figure 1. Evolution of probability densities in the predator–prey model: (a) predator and (b) prey.
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Table 3. An example of Michaelis–Menten enzyme
kinetics [17].

Reaction Propensity Rate constant

S + E
c1−→ ES α1 = c1NSNE c1 = [0.9, 1.1]

ES
c2−→ E + S α2 = c2NES c2 = [0.9, 1.1]

ES
c3−→ P + E α3 = c3NES c3 = [0.09, 0.11]

Figure 2. Time evolution of probability densities in the Michaelis–Menten enzyme kinetics example: (a) S, (b) E, (c)
ES, and (d) P.

The second example is the Michaelis–Menten enzyme kinetics [17]. The involved reactions and
species are listed in Table 3, where enzymes E catalyse the reaction of substrates S into products
P by forming intermediate enzyme/substrate complexes ES. There are three reactions with the
respective interval-valued rate constants specified. The propensities are functions of the number
of reactant species NS, NE, and NES.

The combination of different numbers of species forms the state space. For a system of M
species with the maximal numbers as N , the numbers of possible states is in the order of NM . Yet
the probabilities that most of the states are occupied are zeros. Therefore, both the infinitesimal
generator H and probability vector eτHQ are very sparse.

In this example, the initial numbers of species are NS = 5, NE = 1, NES = 0, and NP = 0. The
time step size is τ = 0.1. Figure 2 shows the evolution of the probability densities for the four
species.
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7. Concluding remarks

In this paper, a new approach to perform stochastic simulation under both aleatory and epistemic
uncertainties is presented. The underlying theoretical basis is generalized interval probability,
which integrates generalized interval and probability. The new approach simulates the dynamics
of stochastic systems with imprecise model parameters without the need of the traditional SA to
assess the robustness of simulation results.

Different from other imprecise probability theories, generalized interval probability has an
algebraic framework that resembles the traditional precise probability so that probabilistic cal-
culus and reasoning can be greatly simplified. Its definitions of conditioning, independence,
and Markovian properties provide a convenient calculation structure. Its unique semantics with
logic interpretations also allows us to assess the interval range estimation for completeness and
soundness.

The FPE and master equations are extended with generalized interval probability to model
the time evolution of both uncertainty components simultaneously. The drift–diffusion and jump
processes with uncertain models and parameters thus can be simulated. A path-integral algorithm
is used to solve the interval FPE, whereas a Krylov subspace projection method is proposed
for the interval master equation. Numerical examples demonstrated that the developed approach
provides an insight on the effect of uncertain model and parameters. Confidence of the simulation
reliability and robustness can be obtained directly from the resulted lower and upper probabilities
without introducing the overhead of SA.

The logic coherence constraint of generalized interval probability ensures that the interval-
valued probabilities satisfy the three axioms of Kolmogorov. It greatly simplifies the calculus
structure. Yet, the completeness of interval range estimation is not guaranteed any more during
the computation, just as in the classical interval arithmetic. More work of completeness and
soundness analysis is needed so that confidence of robustness can be further improved.
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