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ABSTRACT: Different from the Monte Carlo sampling approach to solve stochastic differential equations,
the Fokker-Planck equation (FPE) models the dynamics of the probability density for all possible states. The
evolution of the distribution is solved by the path integral alike methods. The major challenges of solving FPEs
include the memory requirement to store transition matrix in a fine-grained state space and the small time step
required for accurate estimation of short-time transition probabilities. In this paper, a new approach is presented
to accelerate the simulation of stochastic dynamics under a new computational paradigm, quantum computing.
A generic continuous-time quantum walk formulation is proposed to model stochastic drift-diffusion processes.
With a second formulation that combines quantum and random diffusions, drastic acceleration can be achieved
by taking advantages of non-local correlation in quantum systems, compared to the traditional path integral
method.

1 INTRODUCTION

Stochastic diffusionprocesses are universal and appear
in various physical, chemical, biological and econom-
ical systems. In engineering applications, we usually
need to simulate and design system dynamics, such
as in modeling suspension of vehicles on rough pave-
ment, analyzing vibration of structures under stochas-
tic load, and designing rotational machinery with
random excitation.
Stochastic differential equation (SDE) and Fokker-

Planck equation (FPE) are two general approaches to
describe the drift-diffusion processes in a stochastic
system. SDEs model the system under uncertainty
with samples of individual trajectories as a result of
the Wiener process, whereas FPEs capture the time
evolution of probability distributions directly. Solving
SDEs relies on the Monte Carlo sampling of system
trajectories. A large number of samples need to be
generated to draw statistical conclusions. In contrast,
a FPE captures the dynamics of the probability density
for all possible states andmodels the evolution process
of the overall distribution.
The main research challenge of solving SDEs and

FPEs is to develop efficient and robust numerical
methods to obtain the complete information about
probability distributions for the whole time period of
evolution. In SDEs, since one sample only provides
one out of the many possible trajectories, a complete
range estimation for variation requires a very large
number of samples. FPEs provide the global picture
of distributions and are solved typically by the path
integral alike methods. Yet, all possible states need
to be known during the solving process. The mem-
ory requirement to store transitionmatrix that captures

the dynamics in a fine-grained state space can become
prohibitive. Additionally, the time step is required to
be small enough for accurate estimation of short-time
transition probabilities in the path integral methods.
In this paper, a new approach to accelerate compu-

tation in simulating stochastic dynamics is proposed,
which is under an emerging computational paradigm,
quantum computing. Quantum computer takes advan-
tage of quantummechanical systems to solve complex
problems that require much more memory space and
time in the classical computer. The basic computation
unit is called qubit, which is mathematically regarded
as a vector in a two-dimensional (2-D) complex vec-
tor space with inner product (i.e. Hilbert space). An
N -qubit system can represent the state space of 2N

dimensions efficiently, where the associated complex-
valued coefficients or amplitudes under the normal-
ization condition correspond to the probabilities that
the system is at a particular state.
Here a generic quantum mechanical formulation

is developed to model stochastic drift-diffusion pro-
cesses. It is based on continuous-time quantum walks.
By solving an imaginary-time quantum system, the
evolution of probability distributions in random dif-
fusions can be captured. The numerical results show
that the proposed formulation provides an effective
approach to simulate stochastic drift-diffusion pro-
cesses. More importantly, with a second formulation
that combines quantum and random diffusions, drastic
acceleration can be achieved by the use of non-local
correlation in quantum systems. 1-D numerical exam-
ples show that the simulation can be hundreds of times
faster than the traditional path integral method.
In the remainder of the paper, Section 2 provides the

backgroundof numericalmethods of solvingFPEs and
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quantum walks. Section 3 presents the quantum walk
formulation of random diffusion processes. Section 4
describes the quantum walk formulation of quantum
diffusion and the combined algorithm to accelerate the
stochastic drift-diffusion processes. Section 5 gives
numerical examples to demonstrate the effectiveness
and efficiency of the proposed approach.

2 BACKGROUND

2.1 Solving fokker-planck equations
for stochastic diffusions

Various numerical methods to solve FPEs have
been developed, including Monte Carlo (Ermak &
Buckholz 1980), finite element (Masud & Bergman
2005), finite difference (Park & Petrosian 1996),
spectral approximation (Wei 1999, Spanos, Sofi, &
Di Paola 2007), and path integral (Haken 1975).
In particular, the path integral method has been

shown as a simple yet accurate approach. It typi-
cally uses a short-time transition probability density
matrix to approximate the evolution of drift-diffusion
processes (Wehner & Wolfer 1983). Numerical effi-
ciency and accuracy can be improved by interpolation
of continuous density functions with discrete states
(Naess & Johnsen 1993, Spencer & Bergman 1993,
Naess &Moe 2000, Narayanan & Kumar 2012). Effi-
ciency can be further improved in special problems
(Kougioumtzoglou & Spanos 2012) or with special
forms of distributions (Di Paola & Santoro 2008).

2.2 Quantum walks

In this paper, a new formulation to simulate stochas-
tic diffusions based on quantum walks is proposed.
Quantum walk can be considered as a quantum ver-
sion of the classical random walk, where a stochastic
system is modeled in terms of probability amplitudes
instead of probabilities. In the random walk, the sys-
tem’s state x at time t is described by a probability
distribution p(x, t). The system evolves by transitions.
The state distribution after a time period of τ is
p(x, t + τ)= T (τ)p(x, t) where T (τ) is the transition
operator. In the quantum walk, the system’s state is
described by the complex-valued amplitude ψ(x, t).
Its relationshipwith the probability isψ∗ψ = |ψ|2 = p.
The system evolution then is modeled by the quantum
walkψ(x, t + τ)= U (τ)ψ(x, t) withU being a unitary
and reversible operator. In quantum walks, probability
is replaced by amplitude and Markovian dynamics is
replaced by unitary dynamics.
Similar to random walks, there are discrete-time

quantum walks and continuous-time quantum walks.
The study of discrete-time quantumwalks started from
1990s (Meyer 1996, Ambainis, Bach, Nayak, Vish-
wanath, & Watrous 2001) in the context of quantum
algorithm and computation (Kempe 2003, Kendon
2007, Konno 2008). Although the term, continuous-
time quantum walk, was introduced more recently

(Farhi & Gutmann 1998), the research of the topic can
be traced back much earlier in studying the dynamics
of quantum systems, particularly in the path integral
formulation of quantum mechanics generalized by
Feynman (Feynman 1948) in 1940’s. The convergence
of discrete-time quantum walks toward continuous-
time quantum walks has been demonstrated (Strauch
2006, Childs 2010).

3 QUANTUMWALK FORMULATION OF
STOCHASTIC DIFFUSION

In this paper, the dynamics of probability distri-
bution in drift-diffusion processes is formulated as
continuous-time quantum walks. In the new formu-
lation, a stochastic drift-diffusion process is modeled
as an imaginary-time quantum system, described by

where Ĥ (t) is a generic Hamiltonian, andψ(x, t) is the
probability amplitude for the system that is found to
be at state x at time t. A transition rate from state xk to
state xj is defined as

where i = √−1, ρjk (ρjk ≥ 0) is the magnitude of tran-
sition, and θjk is the phase shift associated with the
transition. Then the probability magnitude of leaving
state xk is

and the overall transition rate for state xk is determined
by

A path x(t) is defined as a function of time t. For
instance, x(t0)= i and x(t0 + τ)= j represent the tran-
sitional path from state xi to state xj during a time
period of τ. A general functional integral for the tran-
sition from state xi to state xj is given by (Farhi &
Gutmann 1992)

where dqji is the probabilistic measure on the path
from xi to xj ,

∫ t0+τ

t0
Wx(s)ds gives the overall proba-

bility of all possible paths from xi at time t0 to xj at
time t0 + τ. At time s, Wx(s) takes the value given by
Eq.(4). e−i

∫ t0+τ

t0 Wx(s)ds can be regarded as the weight of
transition from xi to xj .

∏
l→k eiθkl is the total phase
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shift factor for all jumps in transition from xi to xj ,
where each of eiθkl corresponds to the phase shift for
one of the jumps during the transition.
With the functional integral in Eq.(5), the evolution

of probability amplitude is computed by

where ψi(t) is the amplitude of state xi at time t and
N0(t + τ) is the normalization factor.

3.1 Random diffusion process

The random diffusion process is described by

where b is the diffusion coefficient. Consider a dis-
cretized 1-D lattice space that has a spacing �,
where the states are simply denoted by integers as
x = . . . ,−2,−1, 0, 1, 2, . . .. Based on the finite differ-
ence approximation, the elements of the Hamiltonian
matrix are given by

where δj,k is theDirac delta function defined as δj,k = 0
if j �= k and δk ,k = 1. That is, 〈k − 1|Ĥ |k〉 = −b/(2�2)
for left jump, 〈k + 1|Ĥ |k〉 = −b/(2�2) for right jump,
and 〈k|Ĥ |k〉 = b/�2. As a result of Eq.(2), for any
transition with k �= j, ρjk = [δj,k−1 + δj,k+1]b/(2�2),
and eiθjk = 1. From Eq.(3), we have ρk = ρk−1,k +
ρk+1,k = b/�2. From Eq.(4), we have Wk = −b/�2 +
b/�2 = 0.
Consider that the 1-D transitions are memoryless

and the transition rate is b/(2�2) per unit time. The
numbers of transitions to the left or right direction
within a time period follows a Poisson distribution.
That is, the probability that there are l transitions to
the left for time τ is e−bτ/(2�2)(bτ/(2�2))l/l!. Simi-
larly it is e−bτ/(2�2)(bτ/(2�2))r/r! for r transitions to
the right. Assuming the final state is at n steps away
and on the right to the initial state, r − l = n. The prob-
abilistic measure in Eq.(5) for one path from state 0 to
n� that has l left jumps is

With zero weight and no phase shift, the com-
plete functional integral in Eq.(5) for randomdiffusion

processes is the summation of Eq.(9) over all possible
paths with l = 0, ...,∞ as

where In(y) is themodified Bessel function of first kind
with integer order n and input y (y ≥ 0). Additionally,
I−n(y)= In(y).

3.2 Random drift-diffusion process

The random drift-diffusion process is described by

where V (x, t) is the potential function. The elements
of the Hamiltonian matrix are given by

Similar to Section 3.1, we have ρjk = b
2�2 [δj,k−1 +

δj,k+1] for (k �= j), eiθjk = 1, ρk = b/�2, and Wk =
−iVk .
Here, theweight inEq.(5) becomes e−i

∑
l Wlτl where

τl is the duration that the system stays at state l dur-
ing the transition. If the total duration of transition
τ = ∑

l τl is small, then the weight can be numerically
approximated as e−iWnτ where Wn is the transition rate
corresponding to the final state at time t0 + τ.
With the same probabilistic measure as in Eq.(9),

the final functional integral for random drift-diffusion
processes is

where Vn is the potential corresponding to the final
state at time t0 + τ.

3.3 Correspondence to FPEs and SDEs

For 1-D state space where x ∈ R, the FPE is

where a(x, t) and b(x, t) (b ≥ 0) are the drift and diffu-
sion coefficients respectively.The equivalent quantum
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walkbaseddrift-diffusion equation, as a generalization
of Eq.(11), is

where ψ∗ψ = p, and the potential V is related to the
drift coefficienta as ∂V (x, t)/∂t = −a(x, t) orV (x, t)=
−a(x, t)x + A0 where A0 is a constant that repre-
sents a potential shift. Notice that the value of A0 is
not important because the normalization procedure in
Eq.(6).
The corresponding SDE is

where W(t) denotes the Wiener process.
The algorithm to simulate stochastic drift-diffusion

processes by quantum walks is listed in Table 1. Com-
pared to the traditional path integral method, this
algorithm takes the advantage of the extra informa-
tion about the long range correlation between states
in the form of Bessel functions. In the traditional
path integral method, such information is not avail-
able. Therefore, the short-time transition probability
is restricted to small τ. In contrast, the numerical
efficiency can be improved based on the proposed
quantum walk formulation with longer time steps.
The examples in Section 5 will demonstrate that the
time step can be 5 to 10 times longer than the one in
the traditional path integral. Yet, the most significant
improvement on time step efficiency by the proposed
quantumwalk approach comes froma secondquantum
walk formulation that simulates quantum diffusion,
which will be described next in Section 4. The exam-
ples in Section 5 will show that the second algorithm
with the combination of quantum and random diffu-
sions can make the time step increment hundreds of
times larger.

Table 1. The quantum walk algorithm to simulate stochas-
tic diffusion processes based on the formulation of random
diffusion.

Random_Drift_Diffusion()
Input: initial state ψ0(x), diffusion coefficient b(t),
potential function V (x, t), time step τ,
simulation time T
Output: final state ψ(x)

ψ = ψ0(x);
t = 0;
WHILE t < T

update unitary operator U = F(τ, b,V , x, t)
by Eq.(13);

|ψ〉 = U |ψ〉;
t = t + τ;

END

4 QUANTUMWALK FORMULATION OF
QUANTUM DIFFUSION

The Schrödinger equation

describes quantum diffusion, where Ĥ (t) is the Hamil-
tonian. The transition rate from state xk to state xj

is ρjk eiθjk := −i〈xj|Ĥ |xk 〉. Notice the extra phase shift
of i for a transition. Similarly, the probability mag-
nitude of leaving state xk is ρk := ∑

k �=j ρjk and the
overall transition rate for state xk is determined by
Wk := 〈xk |Ĥ |xk 〉 + iρk .
Similar to Section 3, continuous-time quantum

walks can be formulated to model the quantum dif-
fusion and drift-diffusion processes.

4.1 Quantum diffusion process

The quantum diffusion process is described by

where b is the diffusion coefficient. The elements of
the Hamiltonian matrix for 1-D lattice space are the
same as Eq.(8). For any transition with k �= j, ρjk =

b
2�2 [δj,k−1 + δj,k+1], eiθjk = i, ρk = ρk−1,k + ρk+1,k =
b

�2 , and Wk = b
�2 + i b

�2 .
Theprobabilisticmeasure inEq.(9) still applies.The

weight in Eq.(5) now is e−i
∫ t0+τ

t0 Wx(s)ds = e−iτ(1+i)b/�2 .
For each small jump to the left or right, there is a
phase shift of i. Therefore there is a total phase shift
of il in+l = i2l+n = ( − 1)l in for l left jumps and n + l
right jumps. Then the complete functional integral for
quantum diffusion processes becomes

where Jn(y) is the Bessel function of first kind with
integer order n and input y (y ≥ 0). Additionally,
J−n(y)= ( − 1)nJn(y).

4.2 Quantum drift-diffusion process

The quantum drift-diffusion process is described by
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where b is the diffusion coefficient and V is the poten-
tial function. The elements of the Hamiltonian matrix
for 1-D lattice space are the same as Eq.(12). For
any transition with k �= j, ρjk = b

2�2 [δj,k−1 + δj,k+1],
eiθjk = i, ρk = ρk−1,k + ρk+1,k = b

�2 , and Wk = b
�2 −

iVk + i b
�2 .

For a transition with n steps away from the initial
state for a total period τ, the weight in the functional
integral can be calculated as

where Vn denotes the potential at the final state and∑
l τl = τ. With the probabilistic measure as in Eq.(9)

and similar to the derivation of Eq.(16), the com-
plete functional integral for quantum drift-diffusion
processes is

4.3 Quantum acceleration

The wave of quantum diffusion propagates quadrat-
ically faster than the random diffusion. By taking
advantage of the strong non-local correlation in quan-
tum diffusion, we combine the quantum walk for
quantum diffusion with the one for random diffu-
sion, which significantly accelerates the simulation of
stochastic diffusion.
Table 2 lists the new algorithmwith the combination

of quantum walks for quantum diffusion and random
diffusion.Two different time steps, τQ for quantumdif-
fusion and τR for random diffusion, are needed. The
timing of simulation is based on τQ, since the two
respective systems for quantum and randomdiffusions
are in two orthogonal time domains. A large τQ can be
chosen so that the acceleration is achieved.

Table 2. The quantumwalk algorithm to simulate stochastic
diffusion processes based on the formulation of quantum and
random diffusions.

Quantum_Random_Drift_Diffusion()
Input: initial state ψ0(x), diffusion coefficient b(t),
potential function V (x, t), time step τQ ,
time step τR, simulation time T
Output: final state ψ(x)

ψ′ = ψ0(x);
t = 0;
WHILE t < T

update operator UQ = F(τQ , b,V , x, t) by Eq.(18);
|ψ′〉 = UQ|ψ′〉;
update operator UR = F(τR, b,V , x, t) by Eq.(13);
|ψ〉 = UR|ψ′〉;
t = t + τQ;

END

5 NUMERICAL EXAMPLES

We developed a quantum computing emulator and the
1-D quantum walk formulation was implemented and
tested in this environment. Here two examples are used
to demonstrate. The first example is a diffusion pro-
cess with a linear drift and the second one is a bi-stable
stochastic resonance system. The effectiveness of the
proposed approach is first demonstrated by compar-
isons with the traditional FPE path integral and SDE
Monte Carlo sampling methods. Then the efficiency
of the new approach compared to the path integral
method is demonstrated.

5.1 Linear drift diffusion process

The SDE for the diffusion process with a linear drift
coefficient is

The corresponding potential function in the quantum
walk formulation is

The first set of parameters used in this example
are c1 = −0.1, c2 = 0.2, and σ = 0.3. With the initial
distribution p(x = 5.0)= 1.0, the results calculated by
the proposed quantum walk formulation and the tradi-
tional path integral method based on FPEs are shown
in Figure 1. The time steps used for the two methods
are both τ = 0.2.
A further comparison among the quantum walk

formulation, path integral, and Monte Carlo (MC)
sampling based on SDEs are shown in Figure 2 where
the distributions at times t = 6 and t = 70 are com-
pared. The number of sample trajectories used in the
SDE sampling is 50, 000. The second set of parame-
ters used are c1 = −0.1, c2 = 0.2, and σ = 0.6. With
the same initial distribution and time step, the results
of the three methods are compared in Figure 3.With a

Figure 1. Comparison between the results of the quan-
tum walk and FPE path integral methods for the linear drift
diffusion σ = 0.3.
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Figure 2. Comparison of distributions from the quantum
walk, FPE path integral, and SDEMC sampling methods for
the linear drift diffusion σ = 0.3.

Figure 3. Comparison of distributions from the quantum
walk, FPE path integral, and SDEMC sampling methods for
the linear drift diffusion σ = 0.6.

larger diffusion coefficient than the previous one, the
distribution spreads wider. It is seen that the quantum
walk formulation gives the similar results as the path
integral and the SDE sampling methods.

5.2 Bi-stable stochastic resonance

The bi-stable stochastic resonance phenomenon is
a nonlinear response of a system with sinusoidal
inputs simultaneously subject to noises, where the sys-
tem oscillates between two states as transitions. The
example system is modeled by the SDE

where state x changes along time t, c1 and c2 are
coefficients, a0 and f0 are the amplitude and mod-
ulation frequency of the periodic input respectively,
and the noise N (t)= √

2Bξ(t) has the intensity of
B with E[N (t),N (t + s)]= 2Bδ(s), δ( · ) is the Dirac
delta function, and ξ(t) is a zero-mean, unit variance

Figure 4. Comparison between the results of the quantum
walk and FPE path integral methods.

Figure 5. comparison of distributions from the quantum
walk, FPE path integral, and SDE MC sampling methods
at time t = 80.

Gaussian white noise. The drift and diffusion coeffi-
cients of the corresponding FPE are

and B respectively. In the quantum walk formulation
of Eq.(11), the potential function used here is

In this example, the parameter values are c1 = 1,
c2 = 1, a0 = 1, f0 = 0.01, and B = 0.31. The range of
x in the state space is between −2 and 2. The cho-
sen time step size is τ = 0.2. The initial distribution is
chosen as p(x = −1.0)= 1.0. Figure 4 shows the com-
parison between the new quantum walk formulation
and the traditional path integral method for the same
problem. Different from the previous example, it is
seen that the variation range predicted by the quan-
tum walk method is slightly larger than that of the
traditional path integral method by a closer look.
A further comparison is done with the MC trajecto-

ries to solve the corresponding SDE. Figure 5 shows
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Figure 6. Comparison between the quantum walk and FPE
path integral methods with different time step τ.

the typical results from the three methods, which are
at time t = 80, where 50, 000 trajectories are sampled
in the MC simulation. Again, it is seen that the new
quantum walk formulation has the similar accuracy as
the path integral method.
The simulation acceleration of the quantum walk

formulation is also demonstrated by the bi-stable
stochastic resonance system. When time step size τ
increases, the distributions calculated by the tradition
path integral method tend to spread out.When the time
step reaches τ = 0.6, the distributions can become very
different from the original solution. Figure 6 compares
the results of the quantumwalk based on randomdiffu-
sion only and FPE path integral methodswith different
time step sizes. The bistable resonance phenomenon
has disappeared in the path integral simulation, as
shown in Figure 6-(a). In contrast, there is little change
in the simulation by quantumwalks. Evenwhen a large
step size of τ = 2.0 is taken in quantumwalk, as shown
in Figure 6-(b), it is still similar to the original one from

Figure 7. Drastic acceleration achieved by the combination
of quantum and random diffusions.
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the path integral method with the step size τ = 0.2. To
reach the time t = 200, it takes 1000 iterations with
τ = 0.2. However, the similar result is obtained by
only 100 iterations with τ = 2.0 by the quantum walk
method.
The drastic acceleration is achieved by the com-

bined quantum-randomdiffusion simulation described
in Section 4.3. For each iteration of simulation, a very
large step of quantum diffusion is followed by a small
step of random diffusion. Figure 7 shows four differ-
ent choices of quantum diffusion step size τQ. For each
one of the four cases, the random diffusion step size
is τR = 0.2. It is seen that the choices of large step
sizes can accelerate the simulation significantly. For
the case of τQ = 20, the simulation is 100 times faster
than the path integral with τ = 0.2.

6 CONCLUSIONS

In this paper, the potential of quantum computation
in stochastic simulation has been demonstrated. A
new continuous-time quantum walk formulation is
developed to simulate stochastic diffusion processes.
The random drift-diffusion process is modeled as the
dynamics of imaginary-time quantum systems. The
formulation is generic and applicable to diffusions
with specific potential functions available.
In the traditional path integral method, the assump-

tion ofMarkovian property results in the independence
between states that are not immediately adjacent.Thus
the long-range interaction is not modeled. In contrast,
quantum walks can represent the spatial correlation or
coherence with longer distances as quantum dynamics
by the Bessel functions. By combining quantum and
random diffusions in a quantum system, the quantum
effect of non-local correlation can have a quadratic
speed-up compared to classical random walks. This
acceleration has significantly improved the efficiency
of diffusion process simulation.
The test examples have showed the effectiveness

of the new approach in comparison with the tradi-
tional path integral and Monte Carlo sampling. More
rigorous error study is needed in the future to com-
pare the accuracies among the three approaches. The
current implementation of the new algorithms is still
on classical computers, which has not fully harnessed
the power of quantum computers yet.Themechanisms
of superposition and quantum parallelism of a quan-
tum computer will dramatically accelerate stochastic
simulation with much greater accuracy.
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