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Abstract 

 
Reliable simulation protocols supporting integrated computational materials engineering (ICME) 
requires uncertainty to be quantified. In general, two types of uncertainties are recognized. 
Aleatory uncertainty is inherent randomness, whereas epistemic uncertainty is due to lack of 
knowledge. Aleatory and epistemic uncertainties need to be differentiated in validating 
multiscale models, where measurement data for unconventionally very small or large systems are 
scarce, or vary greatly in forms and quality (i.e., sources of epistemic uncertainty). In this paper, 
a recently proposed generalized hidden Markov model (GHMM) is used for cross-scale and 
cross-domain information fusion under the two types of uncertainties. The dependency 
relationships among the observable and hidden state variables at multiple scales and physical 
domains are captured by generalized interval probability. The update of imprecise credence and 
model validation are based on a generalized interval Bayes’ rule (GIBR). 
 

Introduction 
 
Not all uncertainties or errors in simulation can be readily represented by classical probability 
distributions. In general, two types of uncertainties are recognized. Aleatory uncertainty is 
inherent randomness, whereas epistemic uncertainty is due to lack of knowledge. Epistemic 
uncertainty is a result of conflicting information from multiple sources, conflicting beliefs among 
experts’ opinions, lack of data, lack of time for introspection, measurement error, lack of 
dependency information, truncation errors during numerical treatments, etc.  In contrast to 
aleatory uncertainty, epistemic uncertainty can be reduced. 
 
In modeling and simulation (M&S), epistemic uncertainty manifests from errors associated with 
the models and input data. For instance, in finite-element analysis, epistemic uncertainty arises 
from the truncation error involved in linear and nonlinear approximations of strain fields using 
polynomials, imprecise input parameters in the model, mismatch of structures and geometric 
configurations between the modeled and the true physical ones, etc. In kinetic Monte Carlo 
simulation, epistemic uncertainty is largely from the imperfect knowledge and resulting 
simplification of transition paths and reaction rates, as well as dynamic rates because of external 
loads, crowding effects, and other unknown correlations. In molecular dynamics simulation, 
epistemic uncertainty is mainly from the inaccurate potential functions (both forms and 
parameters), boundary conditions, local approximation of potentials, cut-off distance, high strain 
rates/short simulation time scales, as well as measurement errors in experimental data during 
model calibration. In contrast to epistemic uncertainty, various sources such as disturbed 
boundary and loading conditions, different sampling sizes and running times, inherent variations 
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of material compositions, and other randomness and fluctuation contribute to the aleatory 
component of uncertainty. 
 
Since aleatory and epistemic uncertainties arise from distinct sources and have very different 
characteristics, we should represent them differently, preferably in different forms, so that they 
can be easily differentiated. Aleatory uncertainty is traditionally and predominantly modeled 
using probability distributions. In contrast, epistemic uncertainty has been modeled in several 
ways, such as probability, interval, fuzzy set, random set, basic probability assignment, etc. Here 
we use intervals to quantify epistemic uncertainty. 
 
Interval is as simple as a pair of numbers, i.e. the lower and upper bounds. The reason to choose 
an interval representation is two-fold. First, an interval is a natural means for human users to 
communicate information and is simple to use. It has been widely used to represent a range of 
possible values, an estimate of lower and upper bounds for numerical errors, and the 
measurement error because of the available precision as the result of instrument calibration. 
Second, an interval can be regarded as the most suitable way to represent the lack of knowledge. 
Compared to other forms, specification via an interval has the least assumptions. It only needs 
lower and upper bounds, without any assumption of distributions between them. Given that 
epistemic uncertainty arises intrinsically from lack of knowledge, a representation with the least 
assumptions is most desirable.  
 
Probability has certain limitations in representing epistemic uncertainty. The accuracy of a 
predictive simulation depends heavily on fundamental understanding of the underlying physical 
and chemical processes. Lack of perfect knowledge and fundamental insight inevitably renders 
models imperfect. Any assumption regarding distributions in M&S introduces a bias. The most 
significant limitation of probability is that it does not differentiate ‘total ignorance’ from other 
probability distributions. A problem arises because introducing a uniform or any particular form 
of distribution implicitly introduces extra information that cannot be justified in the case of zero 
knowledge. This leads to the Bertrand-style paradoxes. “Knowing the unknown” does not 
represent total ignorance. Although the Bayesian approach has been proposed to reduce the bias 
introduced in assuming a distribution, and it serves the purpose well in an ideal situation where 
we have plentiful data without measurement errors, its limitation remains in the real-world 
applications where lack of data or imperfect measurement lingers. Therefore, it is desirable to 
have more general and efficient approaches to incorporate epistemic uncertainty in M&S, with 
minimal assumptions regarding probability distributions and their parameters.  Moreover, it is 
desired that such approaches be less computationally demanding than the traditional Bayesian 
learning and update approach. 
 

Basic Elements of Generalized Interval Probability 
 
Interval or imprecise probability, represented by lower and upper probability bounds as [ , ]p p , is 
a generalization of classical probability that simultaneously models the two uncertainty 
components; aleatory uncertainty is modeled by probability whereas epistemic uncertainty by 
interval. When p p= , the degenerated interval probability becomes the traditional probability. 
Differing from other forms of imprecise probabilities, such as Dempster-Shafer theory [1,2], 
coherent lower prevision [3], p-box [4], etc., the recently proposed generalized interval 
probability [5] provides a simplified probabilistic calculus structure that ensures ease of 
application.  
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Generalized Interval Probability 
 
A generalized interval : [ , ]x xx =  is defined as a pair of numbers. [ , ]x x  is called proper if 
x x≤ , and improper if x x≥ . The introduction of improper intervals greatly simplifies the 
calculus structure of interval probability and makes it very similar to the one in the classical 
precise probability theory. The calculation of generalized intervals is based on the Kaucher 
interval arithmetic [6]. In generalized interval probability theory, the probability measure has the 
value of generalized interval. Therefore, both [0.2,0.4] and [0.4,0.2] are valid probabilities. The 
relationship between proper and improper intervals is established by a dual operator. For 
instance, dual[0.2,0.4]=[0.4,0.2] and dual[0.4,0.2]=[0.2,0.4].  
 
In generalized interval probability, conditional probability is uniquely defined as 

( | ) : ( ) / dual ( ) [ ( ) / ( ), ( ) / ( )]X Y XY Y p XY p Y p XY p Yp p p= = . As a result, the generalized 

interval Bayes’ rule states that ( | ) ( | ) ( ) dual ( | )dual ( )
1=

= ∑p p p p pn
i i i j jj

E A A E E A E E  where  Ei 

(i=1,..,n) are mutually disjoint events as the partition of the sample space, and most importantly 

1
( ) 1

=
=∑n

jj
Ep , which is called the logic coherent constraint (LCC). With simple algebraic 

calculation, the probabilistic reasoning based on generalized interval probability is very similar 
to the traditional one in the classical probability. In contrast, other forms of imprecise 
probabilities must rely on linear or nonlinear optimization methods to estimate probability lower 
and upper bounds, which is computationally cumbersome.  
 
Generalized Hidden Markov Model (GHMM) 
 
A GHMM [7] was recently proposed to capture correlations of variables between scales, as 
illustrated in Fig. 1, where dependencies between random variables at three length scales Ωx, Ωy, 
and Ωz are captured. The state variables, denoted as xi, yj, and zk, respectively associated with 
these three scales, are hidden. Their true values have to be predicted and inferred by some 
measurable or observable quantities Xi, Yj, and Zk, respectively, via physical experiments. The 
correlation relationships are expressed as conditional probabilities. For instance, p(xi |xi,1, xi,2) 
captures the dependency within one scale, p(yj|xi,1, xi,2) captures the one between scales, and 
p(Xi|xi), p(Yj|yj), and p(Zk|zk) are between the observable and hidden variables.  It should be 
noted that these ‘scales’ may also be constituted by domains (e.g., time, different loosely coupled 
model environments), so that the conditional probabilities can be expressed not only in terms of 
disparate length and time scales, but associated sets of models, even multiple models.  
 

Application of GHMM in Model Validation under Uncertainties 
 
Similar to the Bayesian approach in model validation [8, 9], the validation of simulation models 
under both epistemic and aleatory uncertainties at multiple scales can be performed based on the 
generalized interval Bayes’ rule. Given the experimental measurements Y1, …, YM and Z1, …, 
ZN in separate domains or scales, the interval probability that the model has the parameter x is 
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Figure 1. The generalized hidden Markov model captures spatial and scale dependencies. 

where y1, …, yM and z1, …, zN are hidden variables of physical properties at different domains or 
scales and related to x. In the numerator of Eq.(1), p(z1,…,zN|y1,…,yM) and p(y1,…,yM |x) 
represent the correlations between hidden variables of properties at different scales, whereas 
p(Z1,…,ZN|z1,…,zN) and p(Y1,…,YM|y1,…,yM) capture the correlations between hidden and 
measurable properties. The key to applying Eq. (1) is to find conditional probability values from 
experiments and prior experience. 
 
An Example of A Molecular Dynamic Simulation Model for Irradiation on Fe 
 
Here we demonstrate how to validate models using the generic GHMM approach with a 
molecular dynamics (MD) simulation of point defect generation in Fe crystals that are subject to 
high energy knock-on atom collisions (irradiation) and resulting cascade events. A MD 
simulation model of the Fe crystal was constructed in LAMMPS. For each combination of 
different energy levels and radiation angles, 16 simulation runs are conducted. The probabilities 
that a stable Frenkel pair are generated, also equivalently known as damage function ν(T) with 
the transfer or recoil energy T,  are collected and shown in Fig. 2 with the label ‘mid’. Because of 
the model and numerical errors involved, the probabilities do not necessarily always increase as 
the energy level increases, as shown in Fig. 2(b) and (c). Therefore, interval probabilities with 
lower and upper limits are used. The interval probability widths are calculated by the standard 
deviation of binomial distributions, where error bounds are added to and subtracted from the 
middle or nominal values of probabilities. Interval probabilities capture the uncertainties and 
errors involved in the MD simulation model. To ensure the non-decreasing pattern of the lower 
and upper cumulative distribution functions (CDF) P(T≤t), a filtering procedure is taken to 
‘smooth out’ the empirical CDF’s as follows. If the upper CDF value at a given energy level is 
less than the one at a lower energy level (immediately on its left in the chart), its value is set to 
be the same as the one at the immediate lower energy level. Similarly, if the lower CDF value at 
an energy level is larger than the one at a higher energy level (immediately on its right in the 
chart), its value is set to be the same as the one at the immediate higher energy level.  
 
During physical experiments, the total displacement cross section σ, as the indicator of the 
amount of point defects, is not measured directly. Rather, it is based on the measurement of the 
electrical resistivity change rates Δρ/n that is correlated with σ. Instead of using the traditional 
empirical analytical relationship between Δρ/n and σ where uncertainty is ignored, we consider 
the correlation between the two in terms of conditional probability. Some examples of the 
correspondence between the two quantities from experimental measurement are shown in Table I 
[10], where the measurement error is listed in terms of the minimum and maximum values of 
Δρ/n. In other words, at a particular level of maximum transmitted energy Tm, one value of σ 
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corresponds to a range of possible values of Δρ/n and a uniform distribution between the bounds 
can be assumed. The correlation between the two quantities thus can be represented as 
conditional probability P(Δρ/n|σ,Tm). Similarly, the correspondence between the total 
displacement cross section σ and the damage function ν is established by conditional probability 

P(σ,Tm|T), instead of using an empirical analytical relation 
0

( ) ( )= ∫
mT

σ ν T dσ T dT  where ( )dσ T  is 

the differential recoil energy cross section or the probability of producing a recoil of energy 
between T and T+dT. The range of energy in the experiments is from 20eV to 130eV. 
 

 
Figure 2. The example cumulative probability distributions of the generation of a stable Frenkel 
pair at different recoil energy (eV) and angles by MD simulation. 

Table I. Examples of correspondence between the displacement cross section σ (barns) and the 
resistivity change rates Δρ/n (10−26 Ωcm/(e−/cm2)) (with minimum and maximum values) at each 
level of maximum transmitted energy Tm (eV) in a head-on collision [10] 

<100> <111> 
Tm σ Δρ/n: min Δρ/n: max Tm σ Δρ/n: min Δρ/n: max 
70 23.1578947 7.3366283 8.21892725 70 29.0789474 9.25116666 9.55835715 

100 32.8947368 9.51916799 10.4014669 100 39.2105263 12.8622778 13.1694683 
 
To validate the MD simulation model by the experiments that are conducted at macroscopic 
scale, we can compare the prior probability of model parameters θ in MD P(θ) and the posterior 
probability P(θ|Δρ/n), calculated as 

[ ]
[ ]

( ) (Δ / | , ) ( , | ) ( | )
( | Δ / )

dual (Δ / | , ) ( , | ) ( | ) ( )
= ∫ ∫

∫ ∫
m m m

m m m

θ ρ n σ T σ T T T θ dTdσdT
θ ρ n

ρ n σ T σ T T T θ θ dTdσdT dθ

p p p p
p

p p p p

�

�
          (2) 

As an illustration, a simple numerical example is shown as follows. Given a set of MD 
simulation model parameter θ, the interval probability that a Frenkel pair will be generated at an 
energy level less than 70 eV at direction <111> is estimated from Fig.2(b) as 
P(T≤70|θ)=[0.7923,1]. From LCC, we know P(T>70|θ)=[0.2077,0]. Additionally, 
P(T≤70|~θ)=[0,1] and P(T>70|~θ)=[1,0] since there is a lack of knowledge when the model 
parameters are different.  
 
From Table I and the assumption of uniform distribution of Δρ/n, we have 
P(Δρ/n≤9.4048|σ=29.0789,Tm=70)=[0.5,0.5], P(Δρ/n>9.4048|σ=29.0789,Tm=70)=[0.5,0.5], 
P(Δρ/n≤9.4048|σ=39.2105,Tm=100)=[0,0], and P(Δρ/n>9.4048|σ=39.2105,Tm=100)=[1,1]. We 
do not have any information about what we did not measure. That is, with total ignorance, we 
have P(Δρ/n≤9.4048|σ≠29.0789,Tm≠70)=[0,1], P(Δρ/n>9.4048|σ≠29.0789,Tm≠70)=[1,0], 
P(Δρ/n≤9.4048|σ≠39.2105,Tm≠100)=[0,1], and P(Δρ/n>9.4048|σ≠39.2105,Tm≠100)=[1,0]. 
Furthermore, P(σ=29.0789,Tm=70|T≤70)=[0.01,1], P(σ≠29.0789,Tm≠70|T≤70)=[0.99,0], 

(a) (b) (c) 
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P(σ=39.2105,Tm=100|T≤70)=[0,0.01], P(σ≠39.2105,Tm≠100|T≤70)=[1,0.99], 
P(σ=29.0789,Tm=70|T>70)=[0,0.01], P(σ≠29.0789,Tm≠70|T>70)=[1,0.99], 
P(σ=39.2105,Tm=100|T>70)=[0.01,1], P(σ≠39.2105,Tm≠100|T>70)=[0.99,0].  
 
Suppose the prior probability is P(θ)=[0.4,0.5], the posterior probability after an instance of 
Δρ/n≤9.4048 is observed is  P(θ|Δρ/n≤9.4048)=[1,0.5] based on Eq. (2). The value of posterior 
probability increases compared to the prior. However, because of the lack of knowledge, the 
width of the interval probability also increases. Interval probability provides the extra 
information of how significant the epistemic component of uncertainty plays in the model 
validation. The slight overlap between the two intervals does not invalidate the model. Further 
experiments are needed, if more robust conclusions are desirable. As more knowledge is 
obtained, the posterior probability will converge to the classical precise one with the interval 
width gradually reduced. 
 

Concluding Remarks 
 
The GHMM and generalized interval Bayes’ rule improve the robustness of the model validation 
process, where measurement data have inherent systematic errors and computational models 
contain intrinsic model errors. During validation, interval-valued posterior probability 
distributions of model parameters or model predictions are updated with the collected data from 
multiple scales or domains based on the generalized interval Bayes’ rule. Validation is done by 
comparing the interval posterior probability with the prior. A substantial difference between the 
two invalidates the model. The epistemic uncertainty component during the inference provides 
us extra information so that more robust conclusions can be obtained.  
 

Acknowledgements  
This research is being performed using funding received from the DOE Office of Nuclear 
Energy's Nuclear Energy University Programs. 
 

References 
 
[1] Dempster A. (1967) Upper and lower probabilities induced by a multi-valued mapping. Annals of 

Mathematical Statistics, 38(2):325-339 
[2] Shafer G.A. (1990) Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ. 
[3] Walley P. (1991) Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, London. 
[4] Ferson S., Kreinovich V. Ginzburg L., Myers D.S., and Sentz K. (2003) Constructing probability 

boxes and Dempster-shafer structures. Sandia National Laboratories Technical report SAND2002-
4015, Albuquerque, NM. 

[5] Wang Y. (2010) Imprecise probabilities based on generalized intervals for system reliability 
assessment. International Journal of Reliability & Safety, 4(4): 319-342  

[6] Kaucher E. (1980) Interval analysis in the extended interval space IR. Computing Supplementa, 
Vol.2, 33-49 

[7] Wang Y. (2010) Multiscale uncertainty quantification based on a generalized hidden Markov model. 
Journal of Mechanical Design, 133(3): 031004  

[8] Babuška, I., Nobile, F., and Tempone, R. (2008). A systematic approach to model validation based 
on Bayesian updates and prediction related rejection criteria. Computer Methods in Applied 
Mechanics and Engineering, 197(29), 2517-2539.  

[9] Oden, T., Moser, R., and Ghattas, O. (2010). Computer predictions with quantified uncertainty, Part 
I. SIAM News, 43(9), 1-3.  

[10] Vajda, P. (1977). Anisotropy of electron radiation damage in metal crystals. Reviews of Modern 
Physics, 49(3), 481.  

154


	Welcome
	Title Page
	Copyright Page
	Preface
	Acknowledgements
	Conference Editors/Organizers
	Table of Contents
	2nd World Congress on Integrated Computational Materials Engineering
	ICME Success Stories and Applications
	Application of Computational Thermodynamics and CALPHAD in Magnesium Alloy Development
	Modelling Precipitation Kinetics During Aging of Al-Mg-Si Alloys
	Modeling Processing-Property Relationships to Predict Final Aluminum Coil Quality
	Residual Stress Modeling in Aluminum Wrought Alloys
	ICME Approach to Corrosion Pit Growth Prediction
	Steel-Ab Initio: Quantum Mechanics Guided Design of New Fe-Based Materials
	Microstructure Mediated Design of Material and Product
	Virtual Prototyping of Lightweight Designs Made with Cold and Hot Formed Tailored Solutions

	Process Optimization
	Multiscale Model for Non-Metallic Inclusions/Steel Composite System Using Data Science Enabled Structure-Property Linkages
	A Multi-Scale, Multi-Physics Optimization Framework for Additively Manufactured Structural Components
	Optimal Process Control Through Feature-Based State Tracking Along Process Chains
	Application of ICME Methods for the Development of Rapid Manufacturing Technologies
	Analytical Modeling and Performance Prediction of Remanufactured Gearbox Components
	Design Optimization of Transmission of Si/SiO2 and Ge/SiO2 Multilayer Coatings
	The Study on the Induction Heating System: The Establishment of Analytical Model with Experimental Verification and the Phenomenological Study on the Process from Simulation Perspective
	Modelling the Process Chain of Cold Rolled Dual Phase Steel for Automotive Application
	Geometric Analysis of Casting Components
	A Microstructure-Strength Calculation Model for Predicting Tensile Strength of AlSi7Mg Alloy Castings
	Validation of High Strength Cast Al-Zn-Mg-Cu Aluminum for Use in Manufacturing Process Design
	The Simulation as Prediction Tool to Determine the Method of Riser Calculation More Efficient
	Multi-Objective Optimization of Microstructure in Wrought Magnesium Alloys
	A Computational Framework for Integrated Process Design of High Performance Parts

	Materials Data for ICME
	Consideration of Ecosystem for ICME
	Cross-Scale, Cross-Domain Model Validation Based on Generalized Hidden Markov Model and Generalized Interval Bayes' Rule
	Application of Statistical and Machine Learning Techniques for Correlating Properties to Composition and Manufacturing Processes of Steels

	Building Blocks for ICME
	Towards an Integrative Simulation of Microstructural Response to Case Hardening of Microalloyed Steels
	Ductility Prediction for Complex Magnesium Alloy Castings Using Quality Mapping
	Advanced Dilatometry and Calorimetry for the Validation of Materials Mechanical and Transformation Models
	The 3D X-Ray Crystal Microscope: An Unprecedented Tool for ICME
	3D Hybrid Atomistic Modeling of Beta'' in Al-Mg-Si: Putting the Full Coherency of a Needle Shaped Precipitate to the Test
	The Role of the CALPHAD Approach in ICME
	Simulations of Precipitate Microstructure Evolution During Heat Treatment
	Development of Gradient Cemented Carbides Through ICME Strategy
	Full-Field Multi-Scale Modelling of Sheet Metal Forming Taking the Evolution of Texture and Plastic Anisotropy into Account
	Integrating Quench Modeling into the ICME Workflow
	Modeling Crack Propagation in Polycrystalline Alloys Using a Variational Multiscale Cohesive Method
	A Coupled Approach to Weld Pool, Phase and Residual Stress Modelling of Laser Direct Metal Deposition (LDMD) Processes
	Prediction of the Uncertainty in the Response of Lightweight Structures Consisting of Solid Foams
	Building 3D Microstructure Database Using an Advanced Metallographic Serial Sectioning Technique and Robust 3D Segmentation Tools
	A Brief Review of Precipitation Hardening Models for Aluminum Alloys
	Crystal Plasticity Finite Element Modeling of Single Crystal Niobium Tensile Tests with Weighted Dynamic Hardening Rule
	Three Dimensional X-ray Diffraction Contrast Tomography Reconstruction of Polycrystalline Strontium Titanate during Sintering and Electron Backscatter Diffraction Validation
	Towards the Interface Level Understanding of Internally Oxidized Metal-Oxide Composites: Cu-Al2O3
	Dislocation Density Based Crystal Plasticity Finite Element Model of Polycrystals with Grain Boundary Effect

	ICME Challenges and Education
	Integrated Realization of Engineered Materials and Products: A Foundational Problem
	ICME - A Mere Coupling of Models or a Discipline of Its Own?
	Knowledge Assisted Integrated Design of a Component and Its Manufacturing Process



	Author Index
	Subject Index
	Print
	Search
	Exit

	HEADER1: 


