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ABSTRACT 
The objects in the Internet of Things (IoT) form a virtual 

space of information gathering and sharing through the 
networks. Designing IoT-compatible products that have the 
capabilities of data collection, processing, and communication 
requires open and resilient architecture with flexibility and 
adapability for dynamically evolving networks. Design for 
connectivity becomes an important subject in designing such 
products. To enable a resilience engineering approach for IoT 
systems design, quantitative measures of resilience are needed 
for analysis and optimization. In this paper, an approach for 
probabilistic design of IoT system architecture is proposed, 
where resilience is quantified with entropy and mutual 
information associated with the probabilities of detection, 
prediction, and communication among IoT-compatible products. 
Information fusion rules and sensitivities are also studied. 

1. INTRODUCTION 
Internet of Things (IoT) refers to uniquely identifiable 

physical objects that form an Internet-like structure in cyber 
space [1]. The original idea of IoT was to extend the capability 
of radio-frequency identification (RFID) chips with internet 
connectivity. Later, the concept was generalized to any physical 
objects with data collection, processing, and communication 
capabilities. We can imagine that in the future any object we 
interact with in our daily lives would probably have the functions 
of data collection and exchange, be it thermostat, pen, car seat, 
or traffic light. These objects form the so-called cyber-physical 
systems. All objects in the physical environment of IoT also form 
a virtual space of information gathering and sharing. This 
information can affect every decision we make daily, such as 
which jacket to wear, which medicine to take, which commute 
route to follow, etc. 

According to Gartner [2], “the IoT, which excludes personal 
computers, tablets, and smart phones, will grow to 26 billion 
units in 2020, representing an almost 30-fold increase from 0.9 

billion in 2009. By 2020, component costs will have come down 
to the point that connectivity will become a standard feature, 
even for processors costing less than $1.” Therefore, IoT is likely 
to affect each industry or consumer product we produce in the 
near future. Designing a product that is IoT-compatible will 
become a common subject for design engineers, regardless 
product types or industry sectors. 

There are some new challenges in designing IoT-compatible 
products. The complexity of IoT-compatible products and cyber-
physical systems has increased. Designing each product requires 
the consideration of hardware, software, as well as network 
connectivity, which is beyond the existing mechatronic systems, 
where hardware and software are simultaneously designed but 
with much lower complexity. IoT-compatible products are meant 
to be Internet-ready. Each product is an open system that can be 
re-configured and re-adapted into the evolution of the Internet 
itself. Therefore, the concept of open system design with robust 
and diverse connectivity becomes important. In addition, the 
functions cyber-physical systems are collected efforts from 
individuals. The confederated systems formed by IoT-
compability products do not have centralized control and 
monitoring units. Ad hoc networks are formed by vastly different 
products. The reliabilities as well as working conditions of the 
individual products and components can be highly diverse. Good 
adaptability and resilience are important in designing the 
architecture of such systems. Yet, different from traditional 
communication networks, IoT networks do not just transfer 
information. Each node of the networks also creates information. 
IoT networks are also different from traditional sensor networks, 
where the main task of sensors is collecting information whereas 
the logical reasoning for decision making is still done at 
centralized computers. In IoT networks, the level of 
computational intelligence and reasoning capability of the nodes 
are much higher and a major portion of decisions are done locally 
at individual nodes.  

In this paper, resilience of IoT architecture is studied. The 
term resilience has been loosely used by many and is 
semantically overloaded. There is a lack of standard definition of 
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what resilience is and how to measure it quantitatively for 
analysis. The definitions are domain dependent. Generally 
speaking, resilience refers to the capability of a system that can 
regain its function or performance after temporary degradation 
or breakdown. Recently researcher started looking into formal 
quantification of resilience. Nevertheless, how to quantify 
function or performance of existing systems such as 
communication and transportation networks still remains at a 
very abstract level. There is also a need of developing 
quantitative approaches to design emerging systems such as IoT 
networks. Here, a probabilistic design approach to design IoT 
system architecture is proposed to enable resilience engineering 
of the systems. A formal metric to quantify the functionality and 
performance of IoT systems is also proposed, which is based on 
entropy and mutual information associated with the detection, 
prediction, and communication capabilities of nodes.  

In the remainder of this paper, an overview of resilience 
research is provided in Section 2, which includes the quantitative 
studies of resilience and the applications in engineering and 
networks. It is seen that resilience is a common and 
interdisciplinary subject for complex system study across many 
domains. Yet, the effort of quantitative analysis for resilience 
engineering and system design is still very limited. In Section 3, 
a probabilistic model for IoT architecture design and the metrics 
to measure system performance are proposed for resilience 
engineering. Based on the metrics, a formal approach to design 
IoT architecture and optimization with sensitivity analysis is 
demonstrated in Section 4. 

2. BACKGROUND 

2.1 The Concepts of Resilience in Various Domains 
The history of systematic resilience study can be retrieved 

back to early 1960s by ecologists, who were interested in 
ecosystem stability. The researchers look at an ecosystem from 
the perspective of multiple time and size scales. The system thus 
may be stabilized at more than one stable equilibrium. In 
contrast, resilience traditionally studied in engineering focuses 
on the system behavior near a stable equilibrium and studies the 
rate at which a system approaches the steady state following a 
perturbation. The studies are about how to improve the ability to 
resist the change and how to reduce the time of recovery. 
Although the concept of resilience has appeared in the literature 
of various domains, such as ecology, economics, materials 
science, computer engineering, and computer networks, it has 
not been uniformly defined and characterized.  

The resilience perspective emerged in ecology more than 
four decades ago through the study of interacting population of 
predators and prey in an ecosystem [3 , 4 ,5 , 6 ]. Resilience is 
regarded as the capacity to absorb shocks and maintain dynamic 
stability in the constant transient states. The accepted definition 
of resilience in ecology is the capacity to persist within one or 
several stability domains. Resilience determines the persistence 
of relationships within an ecosystem and is a measure of the 
ability of these systems to absorb changes of state variables, 
driving variables, and parameters, and still persist [6]. The 

measure of resilience is the size of stability domains, or the 
amount of disturbance a system can take before its controls shift 
to another set of variables and relationships that dominate 
another stability region [ 7 ]. The concept of slow and fast 
variables at multiple time scales is observed in ecosystems.  
Because of the dynamic nature of the ecosystem, the terms 
“regimes” and “attractors” were proposed to replace “stable 
states” and “equilibria” [ 8 ]. The resilience of ecosystems 
emphasizes not only persistent and robustness upon disturbance, 
but also adaptive capacity to regenerate and renew in terms of 
recombination and self-reorganization. Ecosystem resilience has 
also been proposed to be a major index of environmental 
sustainability during economic growth. Economic activities are 
sustainable only if the life-support ecosystems on which they 
depend are resilient [9].  

The resilience of regional economics is generally considered 
as the capability of returning to a pre-shock state, as defined and 
measured by employment, output, and other variables, after 
disturbances or adverse events such as economic crisis, 
recessions, and natural disasters [ 10 , 11 ]. Several notions of 
regional resilience have been proposed. For example, Foster [12] 
defined regional resilience as the ability of a region to anticipate, 
prepare for, respond to, and recover from a disturbance. Hill et 
al. [13] defined it as the ability of a region to recover successfully 
from shocks to its economy that either throw it off its growth 
path or have the potential to throw it off its growth path. Yet, 
there is no standard and precise definition and measurement. 
Unlike physical or ecological systems, a regional economy may 
never be in an equilibrium state. It can grow continuously. 
Therefore, regional economics resilience emphasizes on 
returning to the pre-shock path or state, regardless whether it was 
in equilibrium or not. The four dimensions of regional resilience 
are: resistance (the vulnerability or sensitivity of a regional 
economy to disturbances and disruptions), recovery (the speed 
and extent to return to the pre-shock state), re-orientation (the 
adaptation and re-alignment of regional economy and its impact 
to the region’s output, jobs, and incomes), and renewal (the 
resumption of the growth path) [11].  

The term resilience has been used in materials science for 
decades. A material with good resilience is similar to a spring. It 
reacts on compression, tension, or shearing forces elastically and 
rebounds to its original shape. The term appeared in the literature 
of textile material [14,15,16] and rubber [17,18,19] as early as 
in 1930s. The resilience of a material is generally regarded as the 
energy dissipation property of storing and releasing energy 
elastically, and can be characterized as the ratio of energy given 
up in recovery from deformation to the energy applied to produce 
the deformation, which is measured through the energy loss 
during repeated load and unload cycles [19].  

With the continuing downscaling of CMOS technologies 
and reduction of power voltage, sporadic timing errors, device 
degradation, and external environment radiation may cause so-
called single-event transient errors in computer chips and 
microelectronic systems. Designers of such computing systems 
use resilience to describe the systems’ fault tolerance 
[20,21,22,23]. The main approaches to enhance error resilience 
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include error checking for recovery, co-design of hardware and 
software, and application-aware hardware implementation. 
Hardware resilience can be achieved by applying machine 
learning algorithms to process  data collected from fault-affected 
hardware and perform classification for inference and decision 
making [24 , 25 ]. Statistical error compensation [26 ] can be 
applied to maximize the probability of correct prediction given 
hardware errors.  

The reliability and resilience of cyberinfrastructure and 
cybersecurity have been the research focus for decades [27,28]. 
Resilience of computer network is regarded as the ability of the 
network to provide and maintain an acceptable level of service 
in the face of various faults and challenges to normal operation 
[29 ]. The considered factors for computer network resilience 
include fault tolerance due to accidents, failure, and human 
errors; disruption tolerance due to external environment such as 
weather, power outage, weak connectivity, and malicious 
attacks; and traffic tolerance because of legitimate flash crowd 
or denied of service attacks. Fault tolerance typically relies on 
redundancy if the failures of components are independent, 
whereas survivability depends on diversity for correlated 
failures.  

To improve the reliability and safety of socio-technical 
systems with a proactive and systems engineering approach, 
resilience engineering is a term people coined to promote the 
concept of enabling the capability of anticipating and adapting to 
the potential accidents and system failures [30]. It is the intrinsic 
ability of a system to adjust its functioning prior to, during, or 
following changes and disturbances, so that it can sustain 
required operations under both expected and unexpected 
conditions. The emphasized capabilities are anticipation, 
learning, monitoring, and responding. It is concerned with 
exploiting insights on failures in complex systems, 
organizational contributors to risk, and human performance 
drivers in order to develop proactive engineering practices. In 
resilience engineering, failure is seen as the inability to perform 
adaptations to cope with the dynamic conditions in real world, 
rather than as breakdown or malfunction [31 ]. The scope of 
systems includes both physical and human components, as 
human error is one of the major sources of system failures. 
Domain experts’ over-confidence could also impede the proper 
development of anticipation of unexpected severe situations 
[32].  The important issues of resilience engineering include the 
dynamics and stability of complex systems.  

2.2 Quantification of Resilience 
Most of the existing studies in resilience focus on the 

conceptual and qualitative level of system analysis. Although 
various definitions of resilience have been proposed [33 ,34 ], 
there are limited quantification methods to measure the 
resilience of systems for analysis and comparison. These 
methods calculate resilience metrics based on the curve of 
recovery. The curve of recovery shows the dynamic process that 
the function or performance of a system degrades during a shock 
and recovers afterwards. The typical concepts are illustrated in 
Figure 1, by which Francis and Bekera [34] used to define 

resilience factors. In the figure, Fo is the original stable system 
performance level, Fd is the performance level immediately post-
disruption, Fr

* is the performance level after an initial post-
disruption equilibrium state has been achieved, Fr is the 
performance at a new stable level after recovery efforts have 
been exhausted, tδ is the slack time before recovery ensues, and 
tr is the time to final recovery. Other researchers used the curves 
with minor variations, for instance, without explicit 
consideration of the initial post-disruption equilibrium state Fr

*, 
or the new stable state Fr being the same as the original stable 
state Fo.  

Several resilience metrics have been proposed. Francis and 
Bekera [34] proposed a resilience measurement based on the 
ratios between the new stable states and the original state as 

𝜌𝜌 = 𝑆𝑆𝑝𝑝
𝐹𝐹𝑟𝑟
𝐹𝐹𝑜𝑜
𝐹𝐹𝑑𝑑
𝐹𝐹𝑜𝑜

 

where Sp is the speed recovery factor calculated from recovery 
times to new equilibrium. In this metric of resilience, Fd/Fo 
captures the absorptive capacity of the system, and Fr/Fo 
expresses the adaptive capability. Therefore, the more 
functionality is retained relative to the original capacity, the 
higher the resilience is.  

 

 
Figure 1: System performance curve used by Francis and Bekera [34]. 

 
Bruneau and Reinhorn [35,36] quantified resilience by  

𝑅𝑅1 =
1

𝑡𝑡𝑟𝑟 − 𝑡𝑡𝑖𝑖
� 𝑄𝑄(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡𝑟𝑟

𝑡𝑡𝑖𝑖
 

where Q(t) is a dimensionless functionality function that has the 
value between 0 and 1, ti is the time when the adverse event 
occurs that causes the loss of functionality, and tr is the time of 
full recovery. That is, resilience is the area under the curve of 
performance divided by the time of duration, which is the 
average functionality. Among four factors of resilience that 
authors proposed, rapidity, robustness, resourcefulness, and 
redundancy, the first two are quantified. Rapidity is the slope of 
the functionality curve during recovery as ( ) /dQ t dt , whereas 
robustness is quantified as 1−L where L is a random variable that 
represents the loss of functionality due to the adverse event. 
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Ouyang et al. [37] proposed a resilience metric based on the 
expected area under the performance curve as 

𝑅𝑅2 =
∫ 𝐹𝐹(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟
𝑡𝑡𝑖𝑖

∫ 𝐹𝐹∗(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟
𝑡𝑡𝑖𝑖

 

where F is the performance curve as a stochastic variable, and F* 
is the target performance curve. The resistant, absorptive, and 
restorative capabilities are considered all together in the integral 
form.  

To provide more granularity for different failure and 
recovery modes, Ayuub [38] proposed the metric 

𝑅𝑅3 =

𝑇𝑇𝑑𝑑 �
∫ 𝐹𝐹(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑
𝑡𝑡𝑖𝑖

∫ 𝐹𝐹∗(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑
𝑡𝑡𝑖𝑖

� + 𝑇𝑇𝑟𝑟 �
∫ 𝐹𝐹(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟
𝑡𝑡𝑑𝑑

∫ 𝐹𝐹∗(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟
𝑡𝑡𝑑𝑑

�

𝑇𝑇𝑑𝑑 + 𝑇𝑇𝑟𝑟
 

where 𝑇𝑇𝑑𝑑 = 𝑡𝑡𝑑𝑑 − 𝑡𝑡𝑖𝑖  and 𝑇𝑇𝑟𝑟 = 𝑡𝑡𝑟𝑟 − 𝑡𝑡𝑑𝑑  are the disruption and 
recovery time periods respectively. This metric provides the 
additional measures of failure and recovery speeds. 

2.3 Resilience of Communication Networks 
The most relevant domain to IoT system resilience is the 

resilience of telecommunication networks such as Internet, 
wireless networks, and vehicular networks [29,39]. Resilience 
can be qualitatively measured in a state space formed by service 
parameters and operational state. The quantitative approaches 
measure system resilience by message delivery failure 
probabilities due to packet loss [40], payload error [41], or delay 
[ 42 ] during transmission. For topological analysis, the 
communication failures are quantified based on the connectivity 
in the Erdös-Rényi random graph [43]. Simulation models [44] 
have also been developed. The performance and resilience of 
networks are measured by packet delivery ratio [44], route 
diversity [45], node valence and connectivity [46,47], or quality 
of service [48].  

Different from the above efforts which focus only on 
communication, the probabilistic model proposed here is to 
model both communication and reasoning capabilities of IoT 
systems, which is described in the following section.  

3. PROBABILISTIC MODEL OF IOT ARCHITECTURE 
In this paper, the architecture of IoT is modeled as a graph 

𝒢𝒢 = {𝒱𝒱,ℰ}, in which 𝒱𝒱 = {𝑣𝑣𝑖𝑖} is a set of N nodes represent IoT-
compatible products, and ℰ = {(𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗)}  is a set of edges that 
indicate the information flow between nodes. An adjacency 
matrix 𝑨𝑨 ∈ 𝕀𝕀𝑁𝑁×𝑁𝑁 is used to model the topology and its elements 
defined as 

𝐴𝐴𝑖𝑖𝑗𝑗 = �
1, (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) ∈ ℰ
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

In the probabilistic model, the correlations among nodes are 
represented with the correlation probability matrix 𝑪𝑪 ∈ [0,1]𝑁𝑁×𝑁𝑁 
and its elements are conditional probabilities 𝐶𝐶𝑖𝑖𝑗𝑗 = 𝑃𝑃(𝑥𝑥𝑗𝑗|𝑥𝑥𝑖𝑖) 
with random state variables 𝑥𝑥 ’s associated with the nodes. 
Therefore the edges in the probabilistic graph model are directed. 

3.1 Probabilistic Model 
In an IoT system, suppose that each node has its own 

sensing, computation, and reasoning capabilities. The prediction 
probability that node 𝑣𝑣𝑖𝑖 detects the true state of world 𝜃𝜃 is 
 𝑃𝑃(𝑥𝑥𝑖𝑖 = 𝜃𝜃) = 𝑝𝑝𝑖𝑖 (1) 
where 𝑥𝑥𝑖𝑖  is the state variable. The information dependency 
between nodes is modeled with reliance probability 
 𝑃𝑃�𝑥𝑥𝑗𝑗 = 𝜃𝜃�𝑥𝑥𝑖𝑖 = 𝜃𝜃� = 𝑝𝑝𝑖𝑖𝑗𝑗 (2) 
which is the probability that node 𝑣𝑣𝑗𝑗  predicts the true state of 
world given that node 𝑣𝑣𝑖𝑖  predicts correctly. Similarly, we also 
have 
 𝑃𝑃�𝑥𝑥𝑗𝑗 = 𝜃𝜃�𝑥𝑥𝑖𝑖 ≠ 𝜃𝜃� = 𝑞𝑞𝑖𝑖𝑗𝑗 (3) 

The entropy corresponding to the prediction probability of 
the ith node is 
 𝐻𝐻(𝑥𝑥𝑖𝑖) = −𝑝𝑝𝑖𝑖 log𝑝𝑝𝑖𝑖 − (1 − 𝑝𝑝𝑖𝑖) log(1 − 𝑝𝑝𝑖𝑖) (4) 
and the ones to reliance probabilities are 
 𝐻𝐻�𝑥𝑥𝑖𝑖𝑗𝑗� = −𝑝𝑝𝑖𝑖𝑗𝑗 log𝑝𝑝𝑖𝑖𝑗𝑗 − �1 − 𝑝𝑝𝑖𝑖𝑗𝑗� log�1 − 𝑝𝑝𝑖𝑖𝑗𝑗�  
 𝐻𝐻�𝑥𝑥𝑖𝑖𝑗𝑗𝐶𝐶 � = −𝑞𝑞𝑖𝑖𝑗𝑗 log 𝑞𝑞𝑖𝑖𝑗𝑗 − �1 − 𝑞𝑞𝑖𝑖𝑗𝑗� log�1 − 𝑞𝑞𝑖𝑖𝑗𝑗� (5) 
Additionally, the conditional entropies that quantify the 
information inter-dependency between state variables 𝑥𝑥𝑖𝑖 ’s are 
defined as 
 𝐻𝐻�𝑥𝑥𝑗𝑗�𝑥𝑥𝑖𝑖� = −∑ ∑ 𝑃𝑃�𝑥𝑥𝑗𝑗�𝑥𝑥𝑖𝑖�𝑃𝑃(𝑥𝑥𝑖𝑖) log𝑃𝑃�𝑥𝑥𝑗𝑗�𝑥𝑥𝑖𝑖�𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖  

= −𝑝𝑝𝑖𝑖𝑗𝑗𝑝𝑝𝑖𝑖 log𝑝𝑝𝑖𝑖𝑗𝑗 − (1 − 𝑝𝑝𝑖𝑖𝑗𝑗)𝑝𝑝𝑖𝑖 log(1 − 𝑝𝑝𝑖𝑖𝑗𝑗) 
−𝑞𝑞𝑖𝑖𝑗𝑗(1 − 𝑝𝑝𝑖𝑖) log 𝑞𝑞𝑖𝑖𝑗𝑗 − (1 − 𝑞𝑞𝑖𝑖𝑗𝑗)(1 − 𝑝𝑝𝑖𝑖) log(1 − 𝑞𝑞𝑖𝑖𝑗𝑗) 

  (6) 
The mutual information between state variables 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 is 

defined as  
 𝑀𝑀�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 𝐻𝐻�𝑥𝑥𝑗𝑗� − 𝐻𝐻�𝑥𝑥𝑗𝑗�𝑥𝑥𝑖𝑖� = 𝐻𝐻(𝑥𝑥𝑖𝑖) −𝐻𝐻�𝑥𝑥𝑖𝑖�𝑥𝑥𝑗𝑗� (7) 
which measures the extent that knowing one variable influences 
the knowledge about the other. It is zero if the two variables are 
independent. Mutual information thus can give an estimate of 
how much information exchange occurs among nodes in an IoT 
system. In a normal situation, the system is functioning at a 
stable level of information exchange. When the system is 
disrupted with connections broken down, the amount of 
information exchange will reduce. Therefore, mutual 
information is proposed here to measure the performance of an 
IoT system, described in the next section. 

3.2 Performance Measure of IoT System 
A metric that measures the performance of IoT systems 

should have the following properties. First, the metric should be 
deterministic and monotone so that one-to-one correspondence 
between systems and measures can be established. Mutual 
information of two random variables 𝑥𝑥 and 𝑦𝑦 is non-negative. It 
is zero when the two variables are totally uncorrelated. It reaches 
maximum when the two are the same variable. That is, 0 ≤
𝑀𝑀(𝑥𝑥,𝑦𝑦) ≤ 𝑀𝑀(𝑥𝑥, 𝑥𝑥) . In addition, mutual information is a 
symmetric metric and 𝑀𝑀(𝑥𝑥,𝑦𝑦) = 𝑀𝑀(𝑦𝑦, 𝑥𝑥).  

Second, the metric should be dimensionality independent so 
that the performances of systems can be compared regardless 
their sizes. Calculating the average value of pairwise mutual 
information is necessary so that the measure is independent of 
the number of nodes. In addition, mutual information of random 



 5 Copyright © 2016 by ASME 

variables with discrete probability distributions also depends on 
the number of possible values for the random state variables, i.e. 
the size of state space or the probability mass functions 
associated with the state variables. A dimensionless measure for 
probabilistic design should incorporate the degrees of freedom 
for the system and the sizes of the state space. 

Third, the metric should be sensitive to the change of 
systems when used for resilience measurement. The function and 
reliability of a system are sensitively dependent on those of 
subsystems and components. The metric should also be sensitive 
enough to reflect the changes at the component level.  

Based on the above requirements, the proposed performance 
metric for an IoT system with N nodes and D-nary state variables 
is  
 𝐹𝐹 = 1

𝐷𝐷𝑁𝑁2
∑ ∑ 𝑀𝑀�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1  (8) 

which is the average pairwise mutual information of the system. 
In the current setting of probabilistic design, D=2 (i.e. 𝑥𝑥𝑖𝑖 = 𝜃𝜃 
and 𝑥𝑥𝑖𝑖 ≠ 𝜃𝜃).  

To demonstrate and evaluate the applicability of the 
proposed mutual information based performance metric to 
resilience measurement, a simulation study is conducted. In this 
study, the prediction and reliance probabilities for an IoT 
network are first randomly generated. Then samples of the 
random state variables are generated based on the prediction and 
reliance probabilities. Within each iteration, for each state 
variable 𝑥𝑥𝑖𝑖, its value as either true or false prediction is sampled 
based on prediction probability 𝑝𝑝𝑖𝑖 in Eq.(1). The prediction of 𝑥𝑥𝑗𝑗 
is then updated to a sample that is drawn based on reliance 
probability either 𝑝𝑝𝑖𝑖𝑗𝑗 in Eq.(2) or 𝑞𝑞𝑖𝑖𝑗𝑗 in Eq.(3), depending on the 
value of 𝑥𝑥𝑖𝑖. The update of prediction is based on the following 
best-case rule of information fusion 
 𝑃𝑃�𝑥𝑥𝑗𝑗 = 𝜃𝜃� = 1 −∏ �1 − 𝑃𝑃(𝑥𝑥𝑗𝑗 = 𝜃𝜃|𝑥𝑥𝑖𝑖)�𝑁𝑁

𝑖𝑖=1  (9) 
where any correct prediction as a result of the information cue 
from any connected node leads to a success. The sampling 
iterations continue until enough numbers of samples for all nodes 
are drawn for one time step. The prediction probabilities for all 
nodes are then updated based on the frequencies of correct 
predictions from the samples. The mutual information for each 
pair is calculated and the system performance in Eq.(8) is 
estimated. With the updated prediction probabilities, the system 
moves on to the next time step, and the same sampling and 
update procedures continue until the predetermined time limit is 
reached.  

During the simulation, the system disruption and recovery 
occur at certain time steps, which are modeled with the changes 
of reliance probabilities. When the disruption occurs, the reliance 
probabilities (both 𝑝𝑝𝑖𝑖𝑗𝑗 and 𝑞𝑞𝑖𝑖𝑗𝑗) of some randomly selected pairs 
are set to be zeros. At the recovery stage, these disconnected 
pairs are reconnected with the previous reliance probabilities 
recovered. 

The performance measures from the simulation of a system 
with 10 nodes is shown in Figure 2. For each iteration, 500 
samples are drawn. The disruption starts at time step 50 and ends 
at time step 100, during which a number of connections are 
randomly selected as disrupted edges at each time step. By the 

time step of 100, the total number of disrupted connections is 39 
for the case in Figure 2(a) and is 76 for the case in Figure 2(b). 
The recovery period starts from time step 150 and ends at time 
step 200. The system is fully recovered by time step 250 and 
reaches the new equilibrium.  It is seen that the proposed 
performance metric can sensitively detect disruptions from its 
trend. The volatility is mostly due to the relatively small number 
of nodes and sample sizes. 

  

 
Figure 2: Performance measure in Eq.(8) for a simulated IoT system 
with 10 nodes. (a) The maximum number of disconnected edges is 39. 
(b) The maximum number of disconnected edges is 76. 

 
The dynamics of entropies and probabilities in the system in 

Figure 2(b) is shown in Figure 3. The average values of 
conditional entropies calculated from Eq.(6) and the average 
values of entropies calculated from the prediction probabilities 
in Eq.(4) are shown in Figure 3(a). During the disruption, the 
conditional entropies decrease, while the entropies associated 
with the prediction probabilities increase. The entropies have 

(b) 

(a) 
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small values during the normal working period, because the 
prediction probabilities are relatively high. This is illustrated in 
Figure 3(b) where the maximum and minimum values of 
prediction probabilities among the 10 nodes are compared. The 
highest prediction probability is one. During the disruption, the 
differences between the prediction probabilities significantly 
increase. In other words, disruption affect the prediction 
capabilities of some nodes, and their prediction probability drop. 
This in turn affects other nodes. It is seen the highest value of 
prediction probability among the nodes is not one any more. 

 

 
Figure 3: The entropies and prediction probabilities of the simulated 
system in Figure 2(b) where the maximum number disconnected edges 
is 76. (a) The average conditional entropy calculated from Eq.(6) and 
the average entropy calculated from prediction probability in Eq.(4). (b) 
The minimum and maximum values of prediction probabilities among 
10 nodes. 
 

 
The number of nodes affects the overall performance and 

reliability of the system. Figure 4 shows the simulation results 

when the number of nodes increases to 30 and the total number 
of connections is 870. It is seen in Figure 4(a) that the system 
performs fairly robustly when the maximum number of disrupted 
connections is 49. The mutual information increases slightly 
instead of decrease during the disruption. This is because mutual 
information includes two components, entropy and conditional 
entropy, according to Eq.(7). During the disruption period, the 
conditional entropies associated with those disrupted edges 
reduce to zeros, whereas the prediction probabilities thus 
entropies of the relevant nodes are not affected. As a result, the 
mutual information increases. This phenomenon is also observed 
in Figure 4(b) where the maximum number of disrupted 
connections is 828. Shortly after the disruption starts at time step 
50, the average mutual information increases. Again, this is due 
to the reduction of conditional entropies while entropies 
associated with prediction probabilities remain unchanged, 
which is verified by plotting the average entropies and 
conditional entropies in Figure 5(a) and the maximum and 
minimum prediction probabilities in Figure 5(b). As the number 
of disconnected edges keeps increasing, prediction probabilities 
are affected. Mutual information starts decreasing until the 
maximum number of 828 disconnections is reached at time step 
100. The system is stabilized in the next 50 time steps until 
recovery starts. During recovery, mutual information returns to 
the level prior to disruption reversely. After time step 200, the 
system is fully recovered.  

Notice that the average entropies are zeros at the normal 
working condition for the large network of 30 nodes in Figure 
5(a). This is because the prediction probabilities of all nodes are 
ones before disruption, shown in Figure 5(b). The network is 
fully connected at the beginning because all pair-wise reliance 
probabilities are randomly generated. The predictions by all 
nodes are accurate. The predictions become not reliable after the 
number of disconnected edges reach certain level after disruption 
has started. Some of the prediction probabilities reduce. As a 
result, the average entropy increases. The prediction capabilities 
of the nodes quickly recover after some of the connections 
resume. Intuitively the system should become more resilient to 
disruption when the number of nodes increases. It is confirmed 
by the simulation results. The examples show that the mutual 
entropy based performance measure is sensitive to the system 
topological change. It provides detailed information about the 
changes of prediction and reliance probabilities. The metric 
allows us to quantify the resilience of IoT systems described with 
the probabilistic model. This performance measure is applied in 
the further study of system resilience and probabilistic design of 
the system architecture. 

4. PROBABILISTIC DESIGN OF IOT ARCHITECTURE 
With the performance metric quantitatively defined, system 

design and optimization can be performed. The overall goal of 
the design of IoT system architecture is to find optimum network 
topology such that the system performance is maximized.  

It is seen that the reliability of prediction is related to the 
number of nodes in the system and connections that are available 
during disruption. Larger systems with more nodes and more 

(b) 

(a) 
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connections tend to be more robust and give correct predictions 
than smaller systems. Therefore the design decision variables 
need to include the number of nodes, the respective prediction 
probabilities, and pair-wise reliance probabilities. Note that the 
topology of networks in our probabilistic model is quantified by. 
reliance probabilities instead of binary connectivity. In addition, 
the performance of prediction is also related to the information 
fusion rules, based on which the prediction probabilities are 
updated. Design decisions also include the selection of the rules. 

In this section, several information fusion rules for 
reasoning and decision making are described. The sensitivities 
of system performance with respect to the prediction and reliance 
probabilities are also analyzed. Sensitivity analysis of design 
variables provides some insight of search domains in design 
optimization. 

 
 

 
Figure 4: Performance measure of a simulated IoT system with 30 
nodes. (a) The maximum number of disconnected edges is 49. (b) The 
maximum number of disconnected edges is 834. 

4.1 Rules of Information Fusion 
The prediction probabilities are also sensitively dependent 

on the rules of information fusion during prediction update. 
When receiving different cues from topologically correlated 
neighbors, a node needs to update its prediction probability to 
reflect the true state of the world. Several rules can be devised in 
addition to the best-case rule in Eq. (9). They are listed as 
follows. 

• Best-case (optimistic) 

𝑃𝑃�𝑥𝑥𝑗𝑗� = 1 −� �1 − 𝑃𝑃(𝑥𝑥𝑗𝑗|𝑥𝑥𝑖𝑖)�
𝑀𝑀

𝑖𝑖=1
 

If any of the M correlated nodes provides a positive cue, the 
prediction of the node is positive. Some variations of the rule 
include when the cases of negatively correlated nodes are also 
considered, as 

 

 
Figure 5: The entropies and prediction probabilities of the simulated 
system in Figure 4(b) where the maximum number disconnected edges 
is 834. (a) The average conditional entropy and the average entropy. (b) 
The minimum and maximum values of prediction probabilities among 
30 nodes. 

(a) 

(b) 
(b) 

(a) 
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𝑃𝑃�𝑥𝑥𝑗𝑗� = 1 −� �1 − 𝑃𝑃(𝑥𝑥𝑗𝑗|𝑥𝑥𝑖𝑖)��1 − 𝑃𝑃(𝑥𝑥𝑗𝑗|𝑥𝑥𝑖𝑖𝐶𝐶)�
𝑀𝑀

𝑖𝑖=1
 

as well as when the node’s own observation is excluded, as 

𝑃𝑃�𝑥𝑥𝑗𝑗� = 1 −� �1 − 𝑃𝑃(𝑥𝑥𝑗𝑗|𝑥𝑥𝑖𝑖)�
𝑀𝑀

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗
 

• Worst-case (pessimistic) 

𝑃𝑃�𝑥𝑥𝑗𝑗� = � 𝑃𝑃(𝑥𝑥𝑗𝑗|𝑥𝑥𝑖𝑖)
𝑀𝑀

𝑖𝑖=1
 

The prediction of the node is positive only if all of the M 
correlated nodes provide positive cues. Similarly, there could be 
some variations of the rule, such as 

𝑃𝑃�𝑥𝑥𝑗𝑗� = � 𝑃𝑃(𝑥𝑥𝑗𝑗|𝑥𝑥𝑖𝑖)
𝑀𝑀

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗
 

• Bayesian 

𝑃𝑃′�𝑥𝑥𝑗𝑗� ∝ 𝑃𝑃(𝑥𝑥𝑗𝑗)�𝑃𝑃(𝑥𝑥𝑗𝑗)�𝑟𝑟 �1 − 𝑃𝑃�𝑥𝑥𝑗𝑗��
𝑀𝑀−𝑟𝑟

 
The prediction of the node is updated to 𝑃𝑃′  from prior 

prediction 𝑃𝑃 given the cues that the M correlated nodes provide, 
among which r of them provide a positive cue. 

The simulation results based on the Bayesian fusion rule is 
shown in Figure 6, where the update of prediction probabilities 
is gradual and much slower than the update based on the other 
two rules.  

Some other rules can be defined for information fusion, such 
as product-sum, weighted average, evidence-based, etc. Those 
empirical rules are less restrictive than the above three 
conventional ones.  

4.2 Sensitivities of Probabilities 
The closed-form local sensitivities of conditional entropies 

with respect to prediction and reliance probabilities can be 
obtained as  
   

 
𝜕𝜕𝐻𝐻(𝑥𝑥𝑗𝑗|𝑥𝑥𝑖𝑖)
𝜕𝜕𝑝𝑝𝑖𝑖𝑗𝑗

= 𝑝𝑝𝑖𝑖 log
1 − 𝑝𝑝𝑖𝑖𝑗𝑗
𝑝𝑝𝑖𝑖𝑗𝑗

 (10) 

 
𝜕𝜕𝐻𝐻(𝑥𝑥𝑗𝑗|𝑥𝑥𝑖𝑖)
𝜕𝜕𝑞𝑞𝑖𝑖𝑗𝑗

= (1 − 𝑝𝑝𝑖𝑖) log
1 − 𝑞𝑞𝑖𝑖𝑗𝑗
𝑞𝑞𝑖𝑖𝑗𝑗

 (11) 

𝜕𝜕𝐻𝐻(𝑥𝑥𝑗𝑗|𝑥𝑥𝑖𝑖)
𝜕𝜕𝑝𝑝𝑖𝑖

= 𝑝𝑝𝑖𝑖𝑗𝑗 log
1 − 𝑝𝑝𝑖𝑖𝑗𝑗
𝑝𝑝𝑖𝑖𝑗𝑗

+ 𝑞𝑞𝑖𝑖𝑗𝑗 log
𝑞𝑞𝑖𝑖𝑗𝑗

1 − 𝑞𝑞𝑖𝑖𝑗𝑗
+ log

1 − 𝑞𝑞𝑖𝑖𝑗𝑗
1 − 𝑝𝑝𝑖𝑖𝑗𝑗

 

(12) 
It is seen in Eqs.(10) and (11) that the first derivatives of 

conditional entropy with respect to reliance probabilities are 
monotonically positive when 𝑝𝑝𝑖𝑖𝑗𝑗 < 0.5 and  𝑞𝑞𝑖𝑖𝑗𝑗 < 0.5. For small 
probabilities, increasing their values would increase the 
conditional entropies. They become negative when 𝑝𝑝𝑖𝑖𝑗𝑗 > 0.5 
and  𝑞𝑞𝑖𝑖𝑗𝑗 > 0.5, and the trend is the opposite.  

The first derivatives of conditional entropies with respect to 
prediction probabilities are not monotonic, as seen in Eq.(12). 
They are functions of reliance probabilities, which have (0.5,0.5) 
as a saddle point, as shown in Figure 7. When 𝑞𝑞𝑖𝑖𝑗𝑗 < 0.5  and 
𝑞𝑞𝑖𝑖𝑗𝑗 < 𝑝𝑝𝑖𝑖𝑗𝑗 < 1 − 𝑞𝑞𝑖𝑖𝑗𝑗 , or  𝑞𝑞𝑖𝑖𝑗𝑗 > 0.5  and 1 − 𝑞𝑞𝑖𝑖𝑗𝑗 < 𝑝𝑝𝑖𝑖𝑗𝑗 < 𝑞𝑞𝑖𝑖𝑗𝑗 , the 
sensitivities are in the positive domain. 

 
Figure 6: Simulation results based on the Bayesian fusion rule for a 
system of 30 nodes with a maximum of 826 disrupted connections. (a) 
Average mutual information performance measure. (b) Average 
conditional entropy and entropy. 
 

 
Figure 7: Sensitivity of conditional entropy with respect to prediction 
probability 

(a) 

(b) 
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Figure 8: Sensitivity analysis based on the best-case fusion rule by 
increasing and reducing all reliance probabilities by 25% (+/−25%), 
increasing and reducing only those large probabilities that are greater 
than 0.5 by 25% (Large+/−25%), and increasing and reducing only 
those small probabilities that are less than 0.5 by 25% (Small+/−25%). 
(a) Average conditional entropies and entropies. (b) Average mutual 
information. 

 
 
Understanding the local sensitivity of conditional entropies 

is useful for local adjustment of probabilities especially when the 
system’s prediction probabilities are not sensitive to the changes 
of reliance probabilities. Further increasing the reliance 
probabilities that are greater than 0.5 or decreasing the ones that 
are less than 0.5 for those uninterrupted nodes will reduce the 
conditional entropies. It could suggest that adjustment of reliance 
probabilities can be focused more on those ones with larger 
values. 

The sensitivity analysis is verified by the results of 
sensitivity analysis shown in Figure 8. The sensitivity analysis is 
done by varying the levels of reliance probabilities. Six different 
situations are tested, including increasing and reducing all 
reliance probabilities by 25%, increasing and reducing only 
those large probabilities that are greater than 0.5 by 25%, and 

increasing and reducing only those small probabilities that are 
less than 0.5 by 25%. When a modified probability value exceeds 
1, it is set to be the maximum value of 1. It is seen in Figure 8(a) 
that both conditional entropies and entropies are more sensitive 
to the large reliance probabilities than to the small ones. The 
changes applied to large probabilities are more effective than the 
changes to all probabilities for conditional entropies, as 
previously predicted. Similarly, changing large reliance 
probabilities gives the similar results of changing all of the 
probabilities.  

Therefore, improving those relatively reliable connections 
or sources of information with large reliance probabilities is 
more effective to optimize the system performance than 
simultaneously considering all connections in a system.   

The sensitivity of the system is also dependent on the 
information fusion rules. When the Bayesian rule is applied, the 
system is not sensitive to the changes of reliance probabilities 
any more. As shown in Figure 9, the variation of the average 
mutual information as a result of different reliance probabilities 
is small.  

According to the quantitative definitions of resilience in 
Section 2.2, the systems with the Bayesian rule are more robust 
with respect to the changes of reliance probabilities, however 
less resilient with respect to disruption, than the ones with the 
best-case rule. In the above sensitivity studies, common random 
numbers are used in the comparison among different systems. 
This is to reduce variance introduced in the simulation. 

 

 
Figure 9: Sensitivity analysis based on the Bayesian rule 
 

5. DISCUSSIONS AND CONCLUSION 
In this paper, a probabilistic deign framework for designing 

IoT system architecture is proposed. In IoT networks, each node 
corresponds to an IoT-compatible product. The processes of 
communication during information exchange between nodes and 
reasoning at individual nodes are characterized with reliance and 
prediction probabilities respectively. The resilience of the system 
is quantified with the proposed performance metrics of entropy 

(a) 

(b) 
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and mutual information. These metrics measure how 
communication and reasoning capabilities are affected during 
network disruption. The metrics are shown to be sensitive to the 
changes of network topology.  

Several information fusion rules are also defined so that the 
probabilities associated with a node are updated based on the 
received information from neighboring nodes during reasoning. 
The system performance is also sensitively dependent on the 
fusion rules. During the design process of IoT systems, 
information aggregation rules also need to be optimized based 
on the expected dynamic performance. 

The sensitivity studies also show that the system 
performance is influenced more by the tightly coupled nodes, 
where reliance probabilities are high, than those loosely coupled 
ones. The optimization of systems is more effective if efforts are 
focused on these connections with high reliance probabilities, if 
the available resource is limited for improvement.   

The proposed metrics perform reasonably well with the 
simple reasoning scheme. As future extensions, the proposed 
metrics need to be further tested with some other information 
fusion rules. The optimization methods also need to be explored 
based on the sensitivity analysis results from this work. 
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