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ABSTRACT
Stochastic diffusion is a general phenomenon observed in

various national and engineering systems. It is typically modeled
by either stochastic differential equation (SDE) or Fokker-Planck
equation (FPE), which are equivalent approaches. Path integral
is an accurate and effective method to solve FPEs. Yet, compu-
tational efficiency is the common challenge for path integral and
other numerical methods, include time and space complexities.
Previously, one-dimensional continuous-time quantum walk was
used to simulate diffusion. By combining quantum diffusion and
random diffusion, the new approach can accelerate the simula-
tion with longer time steps than those in path integral. It was
demonstrated that simulation can be dozens or even hundreds of
times faster. In this paper, a new generic quantum operator is pro-
posed to simulate drift-diffusion processes in high-dimensional
space, which combines quantum walks on graphs with traditional
path integral approaches. Probability amplitudes are computed
efficiently by spectral analysis. The efficiency of the new method
is demonstrated with stochastic resonance problems.

1 INTRODUCTION
Stochastic diffusion processes are universally observed in

various physical, chemical, biological and economical systems.
In engineering applications, we need to simulate the diffusion
phenomena and design systems and device with desirable dy-
namics, such as in modeling suspension of vehicles on rough
pavement, analyzing vibration of structures under stochastic
load, and designing rotational machinery with random excitation.

Stochastic processes are typically modeled with stochas-
tic differential equations (SDEs) or Fokker-Planck equations
(FPEs). These two approaches are equivalent in describing the
drift-diffusion processes. SDEs simulate systems under noises
by considering the possible trajectories of the systems as a re-
sult of Wiener process, whereas FPEs describe the behaviors by
modeling the time evoluation of the probability distributions of
possible system states .

Except for a few simple ones with closed-form solutions or
using backward approaches, solving SDEs typically relies on the
Monte Carlo sampling of system trajectories, i.e. the solutions of
ordinary differential equations, with randomly generated inputs
to describe the stochastic processes. A large number of sam-
ples thus need to be generated and output statistics are collected
to draw meaningful conclusions. Obviously large sample sizes
make solving SDEs inefficient. In contrast, a FPE captures the
dynamics of the probability density for all possible states at a
time and the solution as probability densities is found determin-
istically. The evolution process of the overall probability distri-
bution is described by the equation.

The main research challenge of solving SDEs and FPEs
is to develop efficient and robust numerical methods to obtain
the complete information about probability distributions for the
whole time period of evolution. In SDEs, since one sample only
provides one out of the many possible trajectories, a complete
range estimation for variation requires a very large number of
samples. FPEs provide the global picture of distributions and are
solved typically by the path integral like methods. The path in-
tegral method [1] is proven to be a simple yet accurate approach
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to solve FPEs. Nevertheless, the approach has two limitations.
First, all possible states need to be known during the solving
process. The memory requirement to store transition matrix that
captures the dynamics in a very fine-grained state space can be-
come prohibitive. Second, the time step is required to be small
enough for accurate estimation of the so-called short-time tran-
sition probabilities in the path integral methods. Thus the sim-
ulation will be slow and expensive for systems that require long
time periods of simulation. Other alternative methods to solve
FPEs such as Monte Carlo, finite element, finite difference, spec-
tral approximation similarly face the above two space and time
limitations.

Recently, a novel continuous-time quantum walk based sim-
ulation formulation was proposed to simulate stochastic drift-
diffusion processes in one-dimensional lattice space [2]. The
new formulation is based on the concept that a quantum drift-
diffusion process is typically described by the Schrödinger equa-
tion as a real-time quantum system, whereas a stochastic drift-
diffusion process is modeled as an imaginary-time quantum sys-
tem, as an extension. The main idea of the hybrid approach
is to combine quantum diffusion with stochastic diffusion in
simulating stochastic dynamics. Quantum diffusion is modeled
with continuous-time quantum walks, whereas stochastic diffu-
sion with random walks. Quantum walk has the special property
of quantum tunneling that captures long-range spatial correlation
effect. As a result, continuous-time quantum walk with long time
steps can be chosen in simulating the dynamics. We combine
quantum walks with stochastic diffusion so that the simulation
of stochastic dynamics can be accelerated compared to the tra-
ditional path integral method. The acceleration is achieved by
choosing long time steps of continuous-time quantum walks. In
each iteration of simulation, a long time step of quantum walk is
applied, followed by a short time step of random walk as stochas-
tic diffusion. This acceleration is particularly helpful in nonlinear
dynamics system such as stochastic resonance.

To generalize the proposed quantum walks based simulation
to high-dimensional systems, a graph-based formalism is pro-
posed in this paper. Multi-dimensional lattice structures with
graph representation can be constructed by a comb product op-
eration. The purpose is to construct graphs such that the topo-
logical distance from a source node to all other nodes can be
easily tracked. Then the diffusion on graphs can be modeled
based on the topological distance. A new quantum walk operator
on graphs thus is constructed based on functional decomposi-
tion with respect to the stratified layers of nodes according to the
topological distances.

In the remainder of the paper, Section 2 provides the back-
ground of numerical methods of solving FPEs and quantum
walks. Section 3 summarizes the 1-D continuous-time quantum
walk formulation to accelerate the stochastic drift-diffusion pro-
cesses. In Section 4, the 1-D formulation is generalized to high-
dimensional diffusion problems with quantum walks on graphs.

In Section 5, a numerical example is given to demonstrate the
effectiveness and efficiency of the proposed approach.

2 BACKGROUND
2.1 Solving Fokker-Planck Equations for Stochastic

Diffusions
Stochastic drift-diffusion processes can be generally mod-

eled by FPEs, which describe the time evolution of probability
density functions in the state space. Various numerical methods
to solve FPEs have been developed, including Monte Carlo [3],
finite element [4], finite difference [5], spectral approximation
by characteristic functions [6], polynomials [7, 8], and complex
fractional moments [9], and path integral [1].

In particular, the path integral method has been shown as a
simple yet accurate approach. Wehner and Wolfer [10] used a
short-time transition probability density matrix to approximate
the evolution of drift-diffusion processes. To improve numeri-
cal efficiency and accuracy, Naess et al. [11, 12] developed a B-
spline interpolation approach where continuous probability den-
sity functions are approximated based upon limited discrete eval-
uations such that the error reduction speed is increased to O(τ)
with time step size τ. Spencer and Bergman [13] solved the equa-
tion by direct polynomial interpolations in the state space. Di
Paola and Santoro [14] extended the path integral approach for
systems under Gaussian white noise perturbation as in the clas-
sical Fokker-Planck equation to the Kolmogorov-Feller equation
under Poisson white noise. Kougioumtzoglou and Spanos [15]
developed an analytical approach to calculate distributions based
on a variational formulation for nonlinear oscillation problems,
instead of using short time steps as in path integrals, to improve
the computational efficiency. Narayanan and Kumar [16] used
Gauss-Legendre integration to approximate non-Gaussian tran-
sition probability densities.

2.2 Quantum Walks
In this paper, a new formulation to simulate stochastic dif-

fusions based on quantum walks is proposed. Quantum walk
can be considered as a quantum version of the classical random
walk, where a stochastic system is modeled in terms of proba-
bility amplitudes instead of probabilities. In the random walk,
the system’s state x at time t is described by a probability dis-
tribution p(x, t). The system evolves by transitions. The state
distribution after a time period of τ is p(x, t + τ) = T (τ)p(x, t)
where T (τ) is the transition operator. In the quantum walk,
the system’s state is described by the complex-valued amplitude
ψ(x, t). Its relationship with the probability is ψ∗ψ = |ψ|2 = p.
The system evolution then is modeled by the quantum walk
ψ(x, t + τ) = U(τ)ψ(x, t) with U being a unitary and reversible
operator. In quantum walks, probability is replaced by amplitude
and Markovian dynamics is replaced by unitary dynamics.
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Similar to random walks, there are discrete-time quan-
tum walks and continuous-time quantum walks. The study of
discrete-time quantum walks started from 1990s [17, 18] in the
context of quantum algorithm and computation [19–21]. Al-
though the term, continuous-time quantum walk, was introduced
more recently [22], the research of the topic can be traced back
much earlier in studying the dynamics of quantum systems, par-
ticularly in the path integral formulation of quantum mechanics
generalized by Feynman [23] in 1940’s. The relationship be-
tween the discrete- and continuous-time quantum walks was also
studied. The two models have similar speed performance and in-
trinsic relationships. The convergence of discrete-time quantum
walks toward continuous-time quantum walks has been demon-
strated [24, 25].

3 QUANTUM WALKS IN ONE-DIMENSIONAL LATTICE
SPACE
The quantum diffusion is described by the Schrödinger

equation

i
d
dt

ψ(x, t) = Ĥ(t)ψ(x, t) (1)

where H(t) is the Hamiltonian and i =
√
−1. Continuous-time

quantum walks in one-dimensional (1-D) space can be formu-
lated to model the quantum drift-diffusion process, described by

i
∂
∂t

ψ(x, t) =−b
2

∂2

∂x2 ψ(x, t)− iV (x, t)ψ(x, t) (2)

where b is the diffusion coefficient and V (x, t) is the potential
function. Path integral is a classical approach to solve the quan-
tum dynamics problem. To construct the unitary operator U that
describes quantum state transitions, a general functional inte-
gral [26]

Fjk :=
∫

dq jke−i
∫ t0+τ

t0
Wq(s)ds ∏

l→m
eiθml (3)

for a path from state xk to state x j is applied. Here, dq jk is the
probabilistic measure on the path from xk to x j, which is anal-
ogous to continuous-time Markov chain model. A path q(s) is
defined as a functional mapping from time s to the state space.
For instance, q(t0) = xk and q(t0 + τ) = x j represent the transi-
tional path from state xk to state x j during a time period of τ.∫ t0+τ

t0 Wq(s)ds gives the overall probability of all possible paths

from xk at time t0 to x j at time t0 + τ. e−i
∫ t0+τ

t0
Wq(s)ds can be re-

garded as the weight of transition from xk to x j. ∏l→m eiθml is the
total phase shift factor for all jumps in transition from xk to x j,
where each of eiθml corresponds to the phase shift for one of the
jumps during the transition.

Similar to the classical Chapman-Kolmogorov equation of
state transitions, a transition rate from state xk to state x j at time
t in terms of probability amplitude is

ρ jkeiθ jk :=−i⟨x j|H(t)|xk⟩ (4)

where ρ jk is the magnitude of transition rate and θ jk is the phase.
Then the magnitude of leaving state xk is

ρk := ∑
k ̸= j

ρ jk (5)

and the overall transition rate for state xk is determined by

Wk := ⟨xk|H(t)|xk⟩+ iρk (6)

The elements of the Hamiltonian matrix Ĥ for 1-D lattice
space that has integer indices and the spacing ∆ are given by

⟨ j|Ĥ|k⟩=− b
2∆2 δ j,k−1 +(

b
∆2 − iVk)δ j,k −

b
2∆2 δ j,k+1 (7)

where δ j,k is the Kronecker delta, and the states are simply de-
noted by integers as x = . . . ,−2,−1,0,1,2, . . ..

For a transitional path with k ̸= j,

ρ jk =
b

2∆2 [δ j,k−1 +δ j,k+1]

eiθ jk = i

ρk = ρk−1,k +ρk+1,k =
b

∆2

Wk =
b

∆2 − iVk + i
b

∆2

Consider that the 1-D transitional paths are memoryless and
the transition rate is b/(2∆2) per unit time. The numbers of
jumps to the left or right direction within a time period follows
a Poisson distribution. That is, the probability that there are l
jumps to the left for time τ is e−bτ/(2∆2)(bτ/(2∆2))l/l!. Similarly
it is e−bτ/(2∆2)(bτ/(2∆2))r/r! for r jumps to the right. Assuming
the final state is at n steps away and on the right to the initial
state, r− l = n. The probabilistic measure dq jk in Eq.(3) for one
path from state 0 to n∆ that has l left jumps is

dq(l)n,0 =
e−bτ/(2∆2)(bτ/(2∆2))l

l!
e−bτ/(2∆2)(bτ/(2∆2))n+l

(n+ l)!
(8)

For a transition with n steps away from the initial state for a
total period τ, the weight for the functional integral in Eq.(3) can
be calculated as

e−i∑l Wlτl = e−i∑l [
b

∆2 +i( b
∆2 −Vl)]τl ≈ e(1−i) b

∆2 τ−Vnτ

where Vn denotes the potential at the final state and ∑l τl = τ.
With the probabilistic measure as in Eq.(8), the complete func-
tional integral for quantum drift-diffusion processes is [27]

Fn,0 = ine−ibτ/∆2−VnτJn(
bτ
∆2 ) (9)

where Jn(y) is the Bessel function of first kind with integer order
n and input y (y ≥ 0). Notice that for diffusion processes without
drift, the potential Vn in Eq.(9) is a constant or zero.
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3.1 Random Drift-Diffusion Process
The one-dimensional random drift-diffusion process is de-

scribed by an imaginary-time quantum system as

− ∂
∂t

ψ(x, t) =−b
2

∂2

∂x2 ψ(x, t)− iV (x, t)ψ(x, t) (10)

where V (x, t) is the potential function. Here, the weight in Eq.(3)
becomes e−i∑l Wlτl where τl is the duration that the system stays
at state l during the transition. If the total duration of transition
τ = ∑l τl is small, then the weight can be numerically approxi-
mated as e−iWnτ where Wn is the transition rate corresponding to
the final state at time t0 + τ.

With the same probabilistic measure as in Eq.(8), the final
functional integral for random drift-diffusion processes is [27]

Fn,0 =
∞

∑
l=0

e−bτVndq(l)ji = e−(Vn+b/∆2)τIn(
bτ
∆2 ) (11)

where Vn is the potential corresponding to the final state at time
t0 + τ, and In(y) is the modified Bessel function of first kind with
integer order n and input y (y ≥ 0).

4 QUANTUM DIFFUSION ON GRAPHS
4.1 Quantum Diffusion on Graphs

Quantum diffusion on graphs based on CTQW formulation
can be computed by spectral analysis. Suppose that the adja-
cency matrix of a graph G = (V ,E) is H, where V = {vi} is a
set of nodes and E = {(vi,v j)} is a set of edges. The elements
of the adjacency matrix H are defined as Hi j = 1 if (vi,v j) ∈ E ,
Hi j = 0 otherwise, and Hii = 0 for i, j = 1,2, . . .. We use ∂(vi,v j)
to denote the shortest graph distance between nodes vi and v j as
a natural number. For instance, ∂(vi,vi) = 0. ∂(vi,v j) = 1 if there
exists an edge (vi,v j) ∈ E .

Let Γ be a K-dimensional Hilbert space with an orthonormal
basis {ϕ0,ϕ1, . . . ,ϕK−1}. We define a creation operator H+, an
annihilation operator H−, and a conservation operator H◦ such
that [28]

H+ϕk =
√

ωk+1ϕk+1 (k = 0,1,2, . . .)
H−ϕk =

√
ωkϕk−1 (k = 1,2, . . .), H−ϕ0 = 0 (12)

H◦ϕk = αk+1ϕk (k = 0,1,2, . . .)

A pair of sequences ({ωk},{αk}) is called Jacobi parameters or
Jacobi coefficients with {ωk} being a Jacobi sequence.

The adjacency matrix is decomposed as H =H++H−+H◦.
Its interpretation in quantum walks on graphs is by stratification
as follows. By specifying a reference or origin node v0 in the
graph G = (V ,E), we decompose the nodes in G into strata as
V =

∪
Vk, where Vk = {v ∈ V : ∂(v,v0) = k} is the stratified set

of nodes that has a shortest graph distance of k to the origin node
v0.

The orthonormal basis in Eq.(12) can be constructed as

ϕk =
1√
|Vk|

∑
v∈Vk

|k,v⟩ (13)

where |k,v⟩ denotes the eigenket of vertex v in the k-th stratum of
nodes Vk. Then the elements of H+, H−, and H◦ are defined as
follows. For vi ∈ Vk, H+

ji = H ji if v j ∈ Vk+1, otherwise H+
ji = 0.

H−
ji = H ji if v j ∈ Vk−1, otherwise H−

ji = 0. H◦
ji = H ji if v j ∈

Vk, otherwise H◦
ji = 0. Therefore, H+, H−, and H◦ specify the

adjacency relations between the nodes of the current stratum and
those of the ‘forward’ stratum, between of the current and of the
‘backward’, as well as within the current stratum, respectively.
Then the diffusion process on a graph can be modeled as CTQWs
on the graph starting from v0. The propagation is through the
strata of nodes.

The Jacobi coefficients capture the edge valences between
strata. For j ∈ Vk+1,

√ωk+1 = κ−
j

√
|Vk+1|/|Vk| where κ−

j =

|{v ∈ Vk : ∂(v,v j) = 1}|. For i ∈ Vk, αk+1 = κ◦
i where κ◦

i = |{v ∈
Vk : ∂(v,vi) = 1}|. That is, ωk’s characterize the inter-strata va-
lence whereas αk+1 represents the valence inside the k-th stra-
tum.

With Gram-Schmidt orthogonalization, polynomials
{Pk(ξ)}∞

k=0 can be obtained as

P0(ξ) = 1,
P1(ξ) = ξ−α1,

xPk(ξ) = Pk+1(ξ)+αn+1Pn(ξ)+ωkPk−1(ξ) (k = 1,2, . . .) (14)

Based on Eqs.(12) and (14), given a probability measure µ
defined by the moments

⟨e0,(H++H−+H◦)me0⟩=
∫ +∞

−∞
ξmµ(ξ)dξ (m= 1,2, . . .) (15)

we have

⟨ϕk,Hmϕ0⟩=
1

√
ω1ω2 . . .ωk

∫ +∞

−∞
ξmPk(ξ)µ(ξ)dξ (m = 1,2, . . .)

(16)
The functional integral for amplitude update at the k-th stratum
for CTQW on the graph is

Fk,0(τ) = ⟨ϕk,e−iHτϕ0⟩=
1

√
ω1ω2 . . .ωk

∫ +∞

−∞
e−iξτPk(ξ)µ(ξ)dξ

(17)

4.2 Quantum Drift-Diffusion on Graphs
Different from the above CTQWs on graphs, the quantum

drift-diffusion process on graphs has an external potential field
involved. As an extension of Eq.(9), the functional integral for
quantum drift-diffusion processes in graphs proposed here is

Fk,0(xn,x0,τ) =
e−iC(xn,x0,τ)−V (xn,t)τ

√
ω1ω2 . . .ωk

∫ +∞

−∞
e−iξτPk(ξ)µ(ξ)dξ

(18)
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where V (x, t) is the potential field in the configuration space and
is associated with drift, C(xn,x0,τ) is the work of diffusion from
node x0 to node xn, and t is the time.

To illustrate, a two-dimensional (2-D) Euclidean space χ =
{x = (x,y)} in the neighborhood of x0 = (x0,y0) is discretized
to N1 × N2 nodes as a regular grid χd = {. . . ,(x0 − 1,y0 −
1),(x0−1,y0),(x0,y0−1),(x0,y0),(x0+1,y0),(x0,y0+1),(x0+
1,y0 + 1), . . .}. A graph is formed with each edge connect-
ing two spatially adjacent nodes. and partitioned into K sub-
spaces {χd

1 , . . . ,χ
d
K} according to the distances. For instance,

χd
1 = {(x0−1,y0),(x0+1,y0),(x0,y0−1),(x0,y0+1)}, and χd

2 =
{(x0−2,y0),(x0−1,y0−1),(x0−1,y0+1),(x0,y0−2),(x0,y0+
2),(x0 + 1,y0 − 1),(x0 + 1,y0 + 1),(x0 + 2,y0)}. The nodes
χd

1 , . . . ,χ
d
K correspond to K strata in the graph.

Suppose that the diffusion matrix in the 2-D space is
B(x, t) ∈ R2×2 and the drift vector is A(x, t) ∈ R2×1 for a 2-D
problem. The relation between the drift vector and the potential
function is A= [−∂V/∂x,−∂V/∂y]T . In the Euclidean space, the
work of diffusion from node x0 to node xn is calculated as

C(xn,x0,τ) = ((xn −x0 −Aτ)T B−1(xn −x0 −Aτ))/(2τ) (19)

4.3 Quantum-Random Drift-Diffusion in 2-D Space
The functional integral in Eq.(18) describes the process of

quantum drift-diffusion in two or higher dimensional space. Sim-
ilar to the one-dimensional case in Section 3.1, the random
drift-diffusion process in 2-D space can be described with an
imaginary-time quantum formulation. The proposed functional
integral becomes

Fk,0(xn,x0,τ) =
e−C(xn,x0,τ)−V (xn,t)τ

√
ω1ω2 . . .ωk

∫ +∞

−∞
e−iξτPk(ξ)µ(ξ)dξ

(20)
To build a graph to cover the 2-D space, a comb graph [29] is

chosen because it provides an effective structure yet with simple
polynomials. The comb product of a backbone graph G1 and a
finger graph G2 is obtained by grafting a copy of G2 into each
vertex of G1 at G2’s reference vertex o, as shown in Fig. 1.

Figure 1. Comb product combines two 1-D lattices into a 2-D lattice

In the 2-D comb lattice in Fig. 2, the strata are indicated
by the dashed lines, with respect to the reference node in white.

The number of nodes in strata are |V0| = 1 and |Vk| = 4k (k =
1,2, . . .). The Jacobi coefficients are ω1 = 4, ωk = k/(k−1) (k =
2,3, . . .), and αk = 0 (k = 1,2, . . .). It has been shown that [29,30]

µ(ξ) =
1

π
√

8−ξ2
(2
√

2 ≤ ξ ≤−2
√

2) (21)

Based on Eq.(14), we have

P0(ξ) = 1
P1(ξ) = ξ

P2(ξ) = ξ2 −4
Pk+1(ξ) = xPk(ξ)− k/(k−1)Pk−1(ξ) (k = 2,3, . . .) (22)

Then the functional integral in Eq.(20) can be calculated as

Fk,0(xn,x0,τ) =
e−C(xn,x0,τ)−V (xn,t)τ

√
ω1ω2 . . .ωk

∫ 2
√

2

−2
√

2

e−iξτPk(ξ)
π
√

8−ξ2
dξ (23)

Figure 2. The strata in the 2-D comb lattice

With the advantage of the strong non-local correlation in
quantum diffusion, large step sizes can be taken during the simu-
lation, which significantly accelerates the simulation of stochas-
tic diffusion. Algorithm 1 shows the algorithm of simulating dif-
fusion. The timing of simulation is based on the quantum walk
time step τQ. A much shorter time step τR is used to perform one
step of traditional path integral for probability distribution up-
date. In other words, one step of quantum walk based on quan-
tum operator UQ is followed by one step of traditional path in-
tegral based on the short-time transition probability TR in each
iteration of the simulation.

5 A NUMERICAL EXAMPLE
In this section, a numerical example of stochastic resonance

is used to demonstrate the new quantum walk based diffusion
simulation method. Stochastic resonance is a phenomenon that
a nonlinear system is boosted by a combination of external pe-
riodic modulation (typically sinusoidal) and noise thus oscillates
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Algorithm 1 The quantum walk algorithm to simulate stochastic
drift-diffusion processes based on the formulation of quantum
and random diffusions

1: ψ = ψ0(x);
2: t = 0;
3: while t < T do ◃ main iterations of search
4: update quantum operator UQ = F(τQ,A,B,V,x, t) by

Eq.(20);
5: |ψ⟩=UQ|ψ⟩;
6: P = ⟨ψ|ψ⟩;
7: update short-time transition probability TR =

C(τR,A,B,x, t) by Eq.(19)
8: P = TRP;
9: output probability P at time t;

10: t = t + τQ;
11: end while

between stable states. It has been observed in many systems.
Stochastic resonance has been observed in climate system, elec-
tronic circuits, neuron neuron systems, and others. In addition,
it was applied to detect faults in rotational machinery [31] and
optimize the potential well for energy harvesting [32, 33].

To simulate stochastic resonance using traditional path inte-
gral approaches, small time step sizes need to be chosen so that
the simulated paths represent the actual dynamics in the physical
system. In contrast, quantum walk based drift-diffusion simula-
tion can use much larger step sizes so that the simulation can be
accelerated.

The simulated system is described by

∂
∂t

p(x1,x2, t) =− ∂
∂x1

(g1(x1,x2)p(x1,x2, t))−
∂

∂x2
(g2(x1,x2)p(x1,x2, t))

+D
∂2

∂x2
2

p(x1,x2, t) (24)

where the position x1 and velocity x2 represent the system’s state
that evolves along time t. Functions

g1(x1,x2) = x2

g2(x1,x2, t) = x1 −2ζεx2 −a0 sin(2π f0t)

define the drifting coefficients, where ζ and ε damping param-
eters, a0 is the oscillation coefficient, and f0 is the oscillation
frequency. The corresponding potential function is

V (x1,x2, t) =−x1x2 −ζ(1− εx2
2)+a0 sin(2π f0t)x2

In this example, the values of the parameters are ζ = 0.5,
ε = 1.0, D = 1.0, a0 = 20, and f0 = 0.1. The drift vector is
A = [g1(x1,x2),g2(x1,x2, t)]T and the diffusion matrix is

B =

[
D 0
0 Dx2

2

]

In the simulation, the step size for quantum walks is τQ = 1.0
whereas the one in the path integral method is τR = 0.1. For com-
parison, the system is also simulated by the path integral method
with a time step size of τ = 0.1. Figs. 3 and 4 show the prob-
ability evolutions computed by traditional path integral and the
proposed CTQW based methods respectively. The system oscil-
lates between two stable states, which appear at times t = 5 and
t = 10 respectively. A ‘rotational’ motion appears during the dy-
namic transition process. Figs. 5 and 6 compare the respective
contour lines of probability densities by the two methods.

6 CONCLUDING REMARKS
In this paper, a new continuous-time quantum walk operator

is developed to simulate stochastic diffusion processes in two- or
higher-dimensional spaces. The operator enables the accelerated
simulation of diffusion processes as quantum walks on graphs or
dynamic real-time quantum systems. The continuous-time quan-
tum walk is combined with random walks in imaginary-time sys-
tems or path integral. The proposed mathematical formalism is
a generalization of the previous formulation for one-dimensional
systems and supports various stochstic diffusion processes. The
advantages of the proposed approach is the significant accelera-
tion of simulation with much larger time step sizes than the ones
used in path integral. The acceleration is particularly helpful for
nonlinear system dynamics such as stochastic resonance, where
the systems oscillates between stable states. The quantum tun-
neling effect helps the acceleration while avoiding the issue of
possibly missing stable states in traditional path integral.

Similar to path integral, the proposed formulation is still
based on Gaussian type of noises. Gaussian distribution is as-
sumed in the short-time transition probabilities in the path in-
tegral formulation. As a result, the time step has to be small
enough. Quantum walks with non-Gaussian distributions in the
proposed formalism require investigation. The space complexity
of the new formalism is the same as the one in path integral.
Therefore, the computational efficiency is still limited by the
state space if very high fidelity solutions are needed. In addition,
it was assumed that the diffusion on graphs is homogeneously
dependent on the topological distances. The anisotropicity of
diffusion thus needs to be modeled. Geometry and orientation
information thus needs to be included in future extension.
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