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ABSTRACT
One of the significant breakthroughs in quantum compu-

tation is Grover’s algorithm for unsorted database search. Re-
cently, the applications of Grover’s algorithm to solve global
optimization problems have been demonstrated, where unknown
optimum solutions are found by iteratively improving the thresh-
old value for the selective phase shift operator in Grover rotation.
In this paper, a hybrid approach that combines continuous-time
quantum walks with Grover search is proposed. By taking advan-
tage of quantum tunneling effect, local barriers are overcome and
better threshold values can be found at the early stage of search
process. The new algorithm based on the formalism is demon-
strated with benchmark examples of global optimization. The
results between the new algorithm and the Grover search method
are also compared.

1 Introduction
Efficient global optimization methods are important for

solving complex design problems. Algorithms such as particle
swarm optimization [1, 2], genetic algorithm [3, 4], and simu-
lated annealing [5,6] have been applied to solve multidisciplinary
design optimization problems. In this paper, a new global op-
timization scheme is developed based on an emerging quantum
computation paradigm. Quantum computing could exponentially
speed up some of the most difficult problems in searching and
quantum simulation. Different from the traditional digital com-
puter, quantum computers are based on the quantum mechani-
cal phenomena of superposition and entanglement. The poten-
tial of quantum computation to solve scientific and engineering

problems has been recognized in the past decade. The power
of quantum computers is in both time and space efficiency. The
major exciting breakthroughs include the discovery of Shor’s al-
gorithm [7] that factors integers in polynomial times which is
exponentially faster than any of the previously known classical
ones, and Grover’s algorithm [8] for unsorted database search
which has the quadratic speedup.

Rather than a bit, either 0 or 1 deterministically, used in the
classical digital computer, a quantum computer has a different
way to represent data. In quantum mechanics, the spin state of
an electron can be represented by a wave function |ψ⟩ which can
be further represented in terms of the linear combination of two
basic states, spin-down | ↓⟩ or |0⟩, and spin-up | ↑⟩ or |1⟩, written
as |ψ⟩= a|0⟩+b|1⟩. Such a wave function is defined as a quan-
tum bit or qubit. Here, a and b are complex-valued coefficients
or amplitudes under the normalization condition |a|2 + |b|2 = 1.
The state of a quantum system, as the value of qubit, is not as
”sharp” as classical bit (either 0 or 1). That is, a qubit has the
continuum (instead of binary) state as any of the possible lin-
ear combinations of |0⟩ and |1⟩. This is the phenomenon of so-
called superposition. Superposition enables a quantum particle
to ”have” two states simultaneously.

To represent a quantum state of N qubits, we entangle N
wave functions as |ψ⟩ = |ψ1⟩⊗ · · ·⊗ |ψN⟩. The new wave func-
tion can also be presented in terms of basis states as |ψ⟩ =
a0|00 . . .00⟩+ · · ·+ a2N−1|11 . . .11⟩ with ∑2N−1

k=0 |ak|2 = 1. As a
result, a system of N qubits can simultaneously represent a total
of 2N possible states, which the classical computer cannot do.
The power of a quantum computer is its massive parallel compu-
tation because it acts on the superposition of all states simultane-
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ously.

The computation in quantum computer is done through ap-
plying unitary operations on quantum registers formed by entan-
gled qubits. At the end of operations, the result is obtained by
measuring the state of the quantum system. Since the outcome
of measurement is not deterministic, the algorithms performed
by a quantum computer are probabilistic. A quantum algorithm
actually generates a probability distribution of possible outputs.
Yet, techniques such as amplitude amplification have been devel-
oped to increase the probability of obtaining the desirable output
to near one during measurement.

Grover’s search algorithm uses the amplitude amplification
approach to find one or more solutions out of all possible ones x∗

that meet some criterion such as f (x∗) = 0. Starting from a gen-
eral state with all possible solutions are equally likely, a selective
phase shift operation first performs a reflection and inverts the
phase of the solution. Then a Grover operator is applied to in-
vert all amplitudes around the mean value of all. This two-step
Grover rotation is repeatedly applied for some iterations such that
the amplitude corresponding to the solution is maximized. In lo-
cating one out of N items, Grover’s search algorithm requires
only O(

√
N) iterations of Grover rotations. In general, to lo-

cate one of m solutions out of a total of N possible items if m
is known, the upper bound for the number of Grover rotations is
⌈(π/4)

√
N/m⌉.

Recently, Grover’s algorithm was applied to solve global op-
timization problems. The problem is formulated as to find solu-
tions of f (x) ≤ c for minimization ( f (x) ≥ c for maximization)
where c is a threshold value and is improved iteratively during
search. The challenge is that the threshold value needs to be
decided at run time. Therefore, the number of solutions m is un-
known, therefore the optimum number of Grover rotations is un-
known either. Several approaches have been proposed to decide
the number of Grover rotations for each iteration. In this paper, a
new Grover search algorithm for global optimization is proposed,
where a continuous-time quantum walk is applied as the prepro-
cessing step. Quantum walk introduces tunneling so that a better
guess of the threshold value at the initial steps of search could
be found. This extra step helps accelerate the Grover search
for global optima by increasing the sampling probabilities of the
global optimum states through quantum accelerated diffusion.

In the remainder of the paper, the applications of Grover’s
algorithm for global optimization is reviewed and quantum walk
is introduced in Section 2. The continuous-time quantum walk
formulation is described in Section 3. The new global optimiza-
tion algorithm that combines quantum walk and Grover search
will be presented in Section 4. The computational study that
simulates the quantum algorithm on the conventional computer
will be described in Section 5.

2 Background
2.1 Grover’s Algorithm for Optimization

Here, the Grover’s algorithm is briefly introduced. Suppose
there are m different solutions to problem f (x) = 0. We are inter-
ested in finding any of the solutions, assuming the value of m is
known. Define normalized states |α⟩= (1/

√
N −m)∑x: f (x)̸=0 |x⟩

and |β⟩ = (1/
√

m)∑x: f (x)=0 |x⟩. The initial state |ψ⟩ with
uniform distribution of amplitude is |ψ⟩ =

√
(N −m)/N|α⟩+√

m/N|β⟩, which is in the space spanned by |α⟩ and |β⟩. Grover
rotation operator, denoted as G, consists of two steps. Af-
ter the first step, the selective phase shift operator S results in
S|ψ⟩ =

√
(N −m)/N|α⟩−

√
m/N|β⟩. For the second step, the

Grover operation uses a unitary operator (2|ψ⟩⟨ψ| − I) to per-
form a reflection. Let cos(θ/2) =

√
(N −m)/N. Then |ψ⟩ =

cos(θ/2)|α⟩+ sin(θ/2)|β⟩. After k iterations of Grover rotation,
Gk|ψ⟩ = cos((2k + 1)θ/2)|α⟩+ sin((2k + 1)θ/2)|β⟩. If a k is
found so that the amplitude value sin((2k + 1)θ/2) associated
with |β⟩ is maximized (as close to 1 as possible), then a mea-
surement of the quantum state will most likely results in a |β⟩,
which is one of the m solutions.

Dürr and Høyer [9] first applied Grover’s algorithm in op-
timization by randomly selecting a possible solution, using its
functional evaluation as the threshold in the selective phase shift
operator, and applying a certain number of Grover rotations for
each optimum search iteration. The number of Grover rotations
is increased gradually based on the upper bound of Grover search
with unknown number of solutions [10]. Bulger et al. [11] took
an adaptive search strategy to change the number of Grover rota-
tions per iteration dynamically, where the number of Grover rota-
tions is also randomly sampled between zero and the incremental
limit. Baritompa et al. [12] developed a further improved adap-
tive algorithm where the number of Grover rotations for each
iteration is determined by a strategy of maximizing the benefit-
cost ratio as the expected value gain to the number of rotations. A
static sequence of rotation numbers was also generated to heuris-
tically implement the strategy. Bulger [13] combined Grover’s
search algorithm with local search techniques where Grover’s al-
gorithm is only used to locate the basin that possibly contains
the global optimum solution. Liu and Koehler [14] provided a
different strategy where Bayesian update is applied to determine
the benefit-cost ratio, where the static sequence of rotation num-
bers can be calculated more efficiently. The static sequence has
been extended to include 43 iterations. The static sequence of
rotations, as the state of the art of Grover optimization, performs
fairly well in the searching process. Liu and Koehler [15] also
further improved the computational efficiency by taking only one
Grover rotation at the early stage of search when the threshold is
far from the global optimum and at least one fourth of all possible
solutions have better functional evaluations than the threshold,
in which case the selective phase shift operator takes cos−1(1/9)
instead of π as in the classical Grover search.
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The new search algorithm proposed in this paper combines
Grover search with quantum walks and takes the advantage of
quantum tunneling to quickly improve the threshold functional
value in Grover’s algorithm at the early stage of search with only
few Grover rotations. The existing Grover methods for global
optimization only considered the improvement of computational
efficiency by optimizing the number of Grover rotations. There
is yet another aspect of the search efficiency, which is the thresh-
old functional value. The threshold is important in convergence
speed because it determines the number of solutions m out of a
total of N possibilities in the discretized solution space. That is,
there are m solutions of which the functional evaluations are bet-
ter than the threshold value. If m is large, the magnitude of am-
plitude and thus the probability of finding the optimum will not
be ‘sharp’, and the sampling of threshold is not effective in find-
ing the actual optimum. The goal of our approach is to introduce
a quantum walk mechanism so as to increase the ‘sharpness’ of
probability distribution at the early stage of search with only a
few Grover rotations. Here we use the heuristic static sequence
of rotations as the basis for comparison.

2.2 Quantum Walks
In the proposed approach, quantum walks are applied when-

ever there is no improvement on the optimum solution during
the iterative searching process. The goal is to take advantage
of the tunneling effect to escape local minima for possible bet-
ter thresholds. Quantum walk can be considered as a quantum
version of the classical random walk, where a stochastic system
is modeled in terms of probability amplitudes instead of prob-
abilities. In random walk, the system’s state x at time t is de-
scribed by a probability distribution p(x, t). The system evolves
by transitions. The state distribution after a time period of τ is
p(x, t +τ) = T (τ)p(x, t) where T (τ) is the transition operator. In
quantum walk, the system’s state is described by the complex-
valued amplitude ψ(x, t). Its relationship with the probability
is ψ∗ψ = |ψ|2 = p. The system evolution then is modeled by
the quantum walk ψ(x, t + τ) =U(τ)ψ(x, t) with U being a uni-
tary and reversible operator. In quantum walks, probability is
replaced by amplitude and Markovian dynamics is replaced by
unitary dynamics.

Similar to random walks, there are discrete-time quan-
tum walks and continuous-time quantum walks. The study of
discrete-time quantum walks started from 1990s [16, 17] in the
context of quantum algorithm and computation [18–20]. Al-
though the term, continuous-time quantum walk, was introduced
more recently [21], the research of the topic can be traced back
much earlier in studying the dynamics of quantum systems, par-
ticularly in the path integral formulation of quantum mechanics
generalized by Feynman [22] in 1940’s. The relationship be-
tween the discrete- and continuous-time quantum walks was also
studied. The two models have similar speed performance and in-

trinsic relationships. The convergence of discrete-time quantum
walks toward continuous-time quantum walks has been demon-
strated [23, 24].

3 Continuous-time quantum walk
The dynamics of quantum systems is described by

Schrödinger’s equation

i
d
dt

ψ(x, t) = H(t)ψ(x, t) (1)

where H(t) is the Hamiltonian and i =
√
−1. Continuous-time

quantum walks in one-dimensional (1-D) space can be formu-
lated to model the quantum drift-diffusion process, described by

i
∂
∂t

ψ(x, t) =−b
2

∂2

∂x2 ψ(x, t)− iV (x, t)ψ(x, t) (2)

where b is the diffusion coefficient and V (x, t) is the potential
function. Assuming that a minimization problem minx f (x) is to
be solved, we then have V (x) = f (x).

Path integral is a classical approach to solve the quantum
dynamics problem. To construct the unitary operator U that
describes quantum state transitions, a general functional inte-
gral [25]

Fjk :=
∫

dq jke−i
∫ t0+τ

t0
Wq(s)ds ∏

l→m
eiθml (3)

for a path from state xk to state x j is applied. Here, dq jk is the
probabilistic measure on the path from xk to x j, which is anal-
ogous to continuous-time Markov chain model. A path q(s) is
defined as a functional mapping from time s to the state space.
For instance, q(t0) = xk and q(t0 + τ) = x j represent the transi-
tional path from state xk to state x j during a time period of τ.∫ t0+τ

t0 Wq(s)ds gives the overall probability of all possible paths

from xk at time t0 to x j at time t0 + τ. e−i
∫ t0+τ

t0
Wq(s)ds can be re-

garded as the weight of transition from xk to x j. ∏l→m eiθml is the
total phase shift factor for all jumps in transition from xk to x j,
where each of eiθml corresponds to the phase shift for one of the
jumps during the transition.

Similar to the classical Chapman-Kolmogorov equation of
state transitions, a transition rate from state xk to state x j at time
t in terms of probability amplitude is

ρ jkeiθ jk :=−i⟨x j|H(t)|xk⟩ (4)

where ρ jk is the magnitude of transition rate and θ jk is the phase.
Then the magnitude of leaving state xk is

ρk := ∑
k ̸= j

ρ jk (5)

and the overall transition rate for state xk is determined by

Wk := ⟨xk|H(t)|xk⟩+ iρk (6)
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The elements of the Hamiltonian matrix Ĥ for 1-D lattice
space that has integer indices and the spacing ∆ are given by

⟨ j|Ĥ|k⟩=− b
2∆2 δ j,k−1 +(

b
∆2 − iVk)δ j,k −

b
2∆2 δ j,k+1 (7)

where δ j,k is the Kronecker delta, and the states are simply de-
noted by integers as x = . . . ,−2,−1,0,1,2, . . ..

For a transitional path with k ̸= j,

ρ jk =
b

2∆2 [δ j,k−1 +δ j,k+1]

eiθ jk = i

ρk = ρk−1,k +ρk+1,k =
b

∆2

Wk =
b

∆2 − iVk + i
b

∆2

3.1 Functional integral
Consider that the 1-D transitions are memoryless and the

transition rate is b/(2∆2) per unit time. The numbers of transi-
tions to the left or right direction within a time period follows
a Poisson distribution. That is, the probability that there are l
transitions to the left for time τ is e−bτ/(2∆2)(bτ/(2∆2))l/l!. Sim-
ilarly it is e−bτ/(2∆2)(bτ/(2∆2))r/r! for r transitions to the right.
Assuming the final state is at n steps away and on the right to the
initial state, r− l = n. The probabilistic measure dq jk in Eq.(3)
for one path from state 0 to n∆ that has l left jumps is

dq(l)n,0 =
e−bτ/(2∆2)(bτ/(2∆2))l

l!
e−bτ/(2∆2)(bτ/(2∆2))n+l

(n+ l)!
(8)

For a transition with n steps away from the initial state for a
total period τ, the weight in the functional integral can be calcu-
lated as

e−i∑l Wlτl = e−i∑l [
b

∆2 +i( b
∆2 −Vl)]τl ≈ e(1−i) b

∆2 τ−Vnτ

where Vn denotes the potential at the final state and ∑l τl = τ.
With the probabilistic measure as in Eq.(8), the functional inte-
gral for quantum drift-diffusion processes in Eq.(3) becomes

Fn,0 =
∞

∑
l=0

[dq(l)n,0e−iτ(1+i)b/∆2−Vnτ(−1)l in]

=
∞

∑
l=0

e−bτ/∆2 (
bτ

2∆2 )
2l+n

l!(n+ l)!
e−iτ(1+i)b/∆2−Vnτ(−1)l in

= ine−ibτ/∆2−Vnτ
∞

∑
l=0

(−1)l( bτ
2∆2 )

2l+n

l!(n+ l)!

= ine−ibτ/∆2−VnτJn(
bτ
∆2 )

(9)

where Jn(y) is the Bessel function of first kind with integer order
n and input y (y ≥ 0). Additionally, J−n(y) = (−1)nJn(y).

Based on Eq.(9), the elements of the unitary quantum walk
operator U = (u jk)N×N are updated as u jk = F( j−k),0 for the given
space resolution ∆ and time resolution τ.

3.2 Choice of time step τ
Compared to random walk, the power of quantum walk lies

in its capability of capturing the long-range spatial correlation
and thus the tunneling effect. This is largely due to the Bessel
function. Given the amplitudes ψ(t) associated with all states at
time t, one step of quantum walk will yield ψ(t + τ) with the jth

element ( j = 1, . . . ,N) updated by

ψ j(t + τ) = ∑
k

F( j−k),0ψk(t)

Consider that the system starts at state K with ψK(t) = 1.0 and
ψk ̸=K(t) = 0.0, where K is any index between 1 and N. The jth

element is then updated to

ψ j(t + τ) = F( j−K),0 = i( j−K)e−ibτ/∆2−V jτJ( j−K)(
bτ
∆2 )

The corresponding updated probability that state j is observed is

Pr(x = j) = ψ∗
j(t + τ)ψ j(t + τ) =C0e−2V jτJ2

( j−K)(
bτ
∆2 ) (10)

where C0 is a normalization factor to ensure that ∑N
j=1 Pr(x =

j) = 1. With Eq.(10), the probability of arriving certain state can
be adjusted by selecting appropriate time step τ and diffusion
coefficient b. Given that the Bessel functions of the first kind
Jn’s are continuous and oscillatory with values between −1 and
1, Pr(x = j) in Eq.(10) has the local maximum values where τ
satisfies ∂J( j−K)/∂τ = 0 with fixed b and ∆.

The first derivatives of Bessel function Jn(z)’s with respect
to z can be derived and calculated recursively. From the recur-
rence forms of Bessel function

d
dz

[znJn(z)] = znJn−1(z)

and
d
dz

[z−nJn(z)] =−z−nJn+1(z)

we can further receive

nz−1Jn(z)+ J′n(z) = Jn−1(z) (11)

and

−nz−1Jn(z)+ J′n(z) =−Jn+1(z) (12)

respectively. The summation of Eqs.(11) and (12) yields

J′n(z) =
1
2
[Jn−1(z)− Jn+1(z)] (13)

Additionally, from Eq.(12)

J′0(z) =−J1(z)

The zeros of J′n(z)’s determine where the local maximum
probabilities in Eq.(10) are obtained with the oscillatory pattern.
Some example solutions of J′n(z) = 0 are listed in Table 1. Notice
that the coefficient e−2V jτ in Eq.(10) adds the modulation effect
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Table 1. Example solutions of J′n(z) = 0

n=0 3.83170597 7.01558667 10.17346814 13.32369194
n=1 1.84118378 5.33144277 8.53631637 11.7060049
n=2 3.05423693 6.70613319 9.96946782 13.17037086
n=3 4.20118894 8.0152366 11.34592431 14.58584829

of the potential or objective function onto the probability distri-
bution. As a result, the states with lower energy levels tend to
have higher probability values. In addition, the zeros of Jn(z)’s
determine where the probabilities become zeros and no samples
will be drawn from those states.

The choice of time step τ affects the probability value in
Eq.(10). The temptation is to choose τ to be as large as possible
such that the quantum walk can span over the major portion of
state space. However, a balanced approach should be taken, be-
cause ∑n Jn(z) = 1 regardless z. That is, the overall oscillatory
amplitudes are reduced if large z’s are taken, and the advantage
of introducing quantum walk over the uniform initial sampling in
other Grover approaches [12, 14, 15] may diminish. If the global
optimum solution has been known within some particular regions
in the solution space, the time step size can be tailored so that the
quantum walk do not under or over shoot so that the regions are
fully covered and without overestimation.

Eq.(13) also indicates that the maximum probability for a
spatial walking step size n is achieved at the time step where
the probabilities for the spatial step size n− 1 and n+ 1 are the
same, if the effect of potential is not considered. This gives
a unique pattern of spatial-temporal relationship for quantum
walks. It is seen in Eq.(10) that the PDF is quadratically more
sensitive to spatial resolution than to temporal resolution because
of Jn(bτ/∆2). That is, the amplitude is proportional to 1/∆2 and τ
respectively. A variation in ∆ results in a more prominent change
of PDF than a variation in τ.

To solve min f (x) by the optimization methods based on
Grover search, if there are m solutions out of a total of N possible
ones such that f is less than a threshold value c, then the proba-
bility of finding a better functional evaluation after r Grover ro-
tations is Pr( fr(x) < c) = sin2[(2r+ 1)arcsin

√
m/N] [10]. The

sampling efficiency of quantum walk with a chosen τ is stated as
follows.
Theorem 1. If there is a J(L)(bτ/∆2) such that J2

(L)(bτ/∆2) ≤
J2
( j)(bτ/∆2) (∀ j ∈ { j|Vj < c}) with diffusion coefficient b, spa-

tial resolution ∆, and time step τ, and
√

C0me−cτ|J(L)(bτ/∆2)|>
sin[(2r + 1)arcsin

√
m/N], quantum walk search is more effi-

cient than the Grover search with the probability of finding m
solutions out of N possible ones with the threshold value c based
on r rotations.

Proof. From Eq.(10), the probability of finding a better
evaluation than c after one iteration of quantum walk is

C0 ∑V j<c e−2V jτJ2
( j)(bτ/∆2). In order to ensure that quan-

tum walk can locate a better threshold value, we need
C0 ∑V j<c e−2V jτJ2

( j)(bτ/∆2)> sin2[(2r+1)arcsin
√

m/N]. Given
that ∑V j<c e−2V jτ ≥ me−2cτ and if we can find a J(L)(bτ/∆2) such
that J2

(L)(bτ/∆2)≤ J2
( j)(bτ/∆2) for all j such that Vj < c, then√

C0 ∑
V j<c

e−2V jτJ2
( j)(bτ/∆2)≥

√
C0me−cτ|J(L)(bτ/∆2)|

4 The new global optimization algorithm
The proposed algorithm starts with one step of continuous-

time quantum walk so that the probabilities of states are dis-
tributed according to the objective function, where the mini-
mum solutions have higher sampling probabilities during quan-
tum measurement. The functional evaluation of the sampled so-
lution is used as the threshold to decide the selective phase shift
operation in the Grover rotation. The heuristic Grover optimiza-
tion algorithm [12, 14] is used as the basis for comparison. The
sequence is Rc = (0,0,0,0,1,1,0,1,1,2,1,2,3,1,4,5,1,6,2,7,
9,11,13,16,5,20,24,28,34,2,41,49,4,60,72,9,88,105,125,
3,149,22,183,219). At the beginning of search, the number of
rotations is very small. Therefore, the measurements at the early
process are dependent on almost uniform samplings. Our algo-
rithm replaces these small number of Grover rotations with one
step of quantum walk. That is, based on a predetermined thresh-
old rotation value R0, if the rotation number is not greater than
R0, we use one step of quantum walk instead of Grover rotation.
After a number of Grover rotations, a new sample is drawn from
the resulted amplitude. If the functional evaluation has improved,
then the new value will be used as the updated threshold for the
next iteration of Grover search. The iteration continues until cer-
tain stop criteria are met. The new algorithm is listed in Table
2.

As shown in Table 2, the position of the initial state x0 can
be either randomly or deterministically selected with its ampli-
tude as one. As the search starts, one step of quantum walk is
performed. The first measurement is obtained by sampling from
the resulted distribution and the value is set to be the threshold
c. If the static number of rotations is less than a predetermined
rotation threshold R0, then one step of quantum walk is applied
instead of Grover rotations. Notice that one quantum walk re-
quires one evaluation of objective function, whereas R Grover
rotations requires R evaluations.
Lemma 1. In solving minx∈Ω f (x), the solution sampled based
on the amplitude ψQW (x) resulted from quantum walk operator
has better expected value than the one based on the amplitude
ψH(x) resulted from Hadamard operator, i.e. Eψ2

QW
[ f ]< Eψ2

H
[ f ].

Proof. Suppose |Ω| = N in a discretized space. From Eq.(10),
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Table 2. The quantum walk enhanced Grover search algorithm for mini-
mization problems

QW Grover Minimization Search()
Input: objective function V (x), diffusion coefficient b(t),
time step τ, iterations IT ER
Output: optimum solution x∗, optimum value c
iter = 0;
count = 0;
initialize ψ(x) as ψ(x0) = 1.0 at a selected position x0;
compute unitary operator U = F(τ,∆,b(t),V ) by Eq.(9);
|ψ⟩=U |ψ⟩;
randomly sample an x∗ based on distribution ψ2(x);
initialize threshold value c =V (x∗);
BBW sequence = [0,0,0,0,1,1,0,1,1,2,1,2,3,1,4,5,1,6,2,7,
9,11,13,16,5,20,24,28,34,2,41,49,4,60,72,9,88,105,125,
3,149,22,183,219];
%main iterations of search%
WHILE iter < IT ER and stop criteria not met

R = BBW sequence[iter];
IF R ≤ R0 %perform one random walk %

initialize ψ(x) as ψ(x0) = 1.0;
|ψ⟩=U |ψ⟩;
randomly sample an x1 based on distribution ψ2(x);
IF V (x1)<V (x∗) %update the threshold %

c =V (x1);
x∗ = x1;

END IF
ELSE %perform R Grover rotations %

initialize ψ(x) as a uniform distribution;
FOR r = 1 to R

apply Grover rotation operator to ψ(x);
END FOR
randomly sample an x1 based on distribution ψ2(x);
IF V (x1)<V (x∗) %update the threshold %

c =V (x1);
x∗ = x1;

END IF
END IF
iter = iter+1;

END WHILE

the expected value after one iteration of quantum walk is

Eψ2
QW

[ f ] =
N

∑
j=1

f ( j)e−2 f ( j)τJ2
( j−K)(

bτ
∆2 )/

N

∑
j=1

e−2 f ( j)τJ2
( j−K)(

bτ
∆2 )

for a N-qubit system. With e−2 f ( j)τ in the probability den-
sity, solutions with smaller f (x)’s correspond to higher proba-
bilities. Therefore, the expected value Eψ2

QW
[ f ] is smaller than

Eψ2
H
[ f ] = ∑N

j=1 f ( j)/N based on the amplitude ψH(x) = 1/
√

N
after Hadamard operation.

Lemma 2. In solving minx∈Ω f (x), the solution sampled based
on the amplitude ψQW (x) resulted from quantum walk operator
has a smaller variance than the one based on the amplitude ψH(x)
resulted from Hadamard operator, i.e. Eψ2

QW
[( f −Eψ2

QW
[ f ])2] <

Eψ2
H
[( f −Eψ2

H
[ f ])2].

Proof. From Lemma 1, we know Eψ2
QW

[ f ] < Eψ2
H
[ f ]. The state

or solution space is divided into the following four subspaces:
Ω1 = {x| f ≤ Eψ2

QW
[ f ]}, Ω2 = {x|Eψ2

QW
[ f ] < f ≤ Eψ2

H
[ f ], | f −

Eψ2
QW

[ f ]| ≤ | f −Eψ2
H
[ f ]|}, Ω3 = {x|Eψ2

QW
[ f ]< f ≤Eψ2

H
[ f ], | f −

Eψ2
QW

[ f ]| > | f −Eψ2
H
[ f ]|}, and Ω4 = {x| f > Eψ2

H
[ f ]}. For sub-

spaces Ω1 and Ω2, ( f − Eψ2
QW

[ f ])2 ≤ ( f − Eψ2
H
[ f ])2. If we

use E(k)
ψ2

QW
[ f ] to denote the expected value for the k-th subspace

where the probability values are the same as the original ones
within the subspace and are zeros outside the subspace, then
E(1∪2)

ψ2
QW

[( f −Eψ2
QW

[ f ])2]< E(1∪2)
ψ2

H
[( f −Eψ2

QW
[ f ])2]≤ E(1∪2)

ψ2
H

[( f −

Eψ2
H
[ f ])2]. For subspaces Ω3 and Ω4, ( f − Eψ2

QW
[ f ])2 >

( f − Eψ2
H
[ f ])2. Then E(3∪4)

ψ2
H

[( f − Eψ2
QW

[ f ])2] > E(3∪4)
ψ2

QW
[( f −

Eψ2
QW

[ f ])2]≥ E(3∪4)
ψ2

QW
[( f −Eψ2

QW
[ f ])2]. The original expectations

are Eψ2
H
= E(1∪2)

ψ2
H

+E(3∪4)
ψ2

H
and Eψ2

QW
= E(1∪2)

ψ2
QW

+E(3∪4)
ψ2

QW
. There-

fore, Eψ2
QW

[( f −Eψ2
QW

[ f ])2]< Eψ2
H
[( f −Eψ2

H
[ f ])2].

Theorem 2. In searching the global optimum in the solution
space Ω, sampling based on ψ2

QW (x) after one iteration of quan-
tum walk provides a better solution than the one based on ψ2

H(x)
after Hadamard operation.

Proof. For minimization problems, Lemma 1 shows that the ex-
pected value from samplings based on ψ2

QW (x) is less than the
one based on ψ2

H(x). Lemma 2 shows that the variance of sam-
ples based on ψ2

QW (x) is also less than the one based on ψ2
H(x).

The similar proof can be obtained for maximization problems.

Theorem 3. In searching the global optimum in the solution
space Ω, sampling based on ψ2

QW (x) after one iteration of quan-
tum walk results in a threshold value that is better than the one
based on ψ2

G(x) after one iteration of Grover operation, if the
quantum walk successfully locates the basin of global optimum.

Proof. It is well known that one iteration of Grover operation can
locate one of m solutions with the probability of one if m = N/4
where N is the size of discrete solution space [10]. In this case,
for the minimization problem minx∈Ω f (x), |{x| f (x) ≤ c}| =
|Ω|/4. One iteration of Grover operation results in ψ2

G(x) =

6 Copyright c⃝ 2014 by ASME
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Figure 1. Test functions: Rastrigin, Ackely, Schwefel

4/|Ω| for subspace {x| f (x) ≤ c} and ψ2
G(x) = 0 for subspace

{x| f (x)> c}.

5 Implementation and numerical experiments
Both the new algorithm denoted by BBW-QW and the BBW

algorithm [12, 14] are implemented in a quantum computer em-
ulator written in python. Experiments are conducted by several
test functions, including Rastrigin f (x) = 10+ x2 −10cos(2πx),
Schwefel f (x) = −4.189829 + 30xsin(

√
|30x|), and Ackley

f (x) =−20exp(−0.2|4x|)−exp(cos(2πx)). All of the functions
are challenging for local search because of the multiple steep
wells of local optimums, as shown in Figure 1, and have been
widely used as benchmarks in global optimization.

For our experiments, 9 qubits are taken to represent the dis-
crete solution space. The corresponding spatial resolution is
∆ = (xU − xL)/29 given the lower bound xL and upper bound
xU of the considered solution range. We also implemented the
BBW algorithm with both dynamic and static rotation strategies.
In the dynamic strategy, the numbers of rotations are calculated
at run time to maximize the benefit-cost ratio for each iteration,
whereas in the static strategy, the numbers of rotations are fixed
as a sequence of values. Our experiments showed that the static
rotation strategy actually performs more robust with higher prob-
abilities of success for these benchmark functions used in this
paper. Therefore the static strategy is used to compared with the
proposed quantum walk based method.

As shown in Figure 2, the average PDF’s over 20 runs of
search are compared between the proposed quantum walk grover
search algorithm and the BBW algorithm, where the rotation
threshold R0 is 2. The typical PDF’s for only one run of search
by the two algorithms are compared in Figure 3. It is seen that
the PDF’s are flat and close to the uniform distribution for few
rotations in the BBW algorithm. In the proposed BBW-QW al-
gorithm, they are replaced by a sharper distribution after one step

of quantum walk. The efficiency of the two algorithms is com-
pared in Figure 4, where the probabilities of successful samplings
with respect to (w.r.t.) the number of iterations and the number
of functional evaluations are compared with different values of
rotation threshold R0. At the initial stage of search with few it-
erations, quantum walk provides higher probabilities of success.
It is seen that when R0 = 2, the difference between the BBW-
QW and BBW algorithms is the most significant. The benefit of
quantum walk is also seen at the later stage of the search. The
number of functional evaluations is a better criterion to evaluate
the efficiency. Figure 4-(b) illustrates the difference between the
BBW and BBW-QW algorithms. Figure 4-(c) compares the effi-
ciencies of BBW and BBW-QW algorithm when the domain size
is increased from x ∈ [−5,5] to x ∈ [−15,15]. The efficiency of
the BBW algorithms slightly decreases at the early search stage
as the domain size increases, whereas it does not change much
for the BBW-QW algorithm. It is also seen that with about 50
evaluations, both BBW and BBW-QW algorithms increase the
probability of success to about 90%. The difference between the
two starts to emerge when more iterations are taken.

To provide an overall picture of how the quantum search
algorithms are compared with traditional global optimization
methods, the probabilities of successful search w.r.t. the num-
ber of functional evaluations in the BBW, BBW-QW, simulated
annealing, and genetic algorithms (GA) for Rastrigin function
are compared in Figure 5. The results from the genetic algo-
rithms with different population sizes (5, 25, and 50) and simu-
lated annealing with different initial temperature (100 and 1000)
are shown. The optimum solution is known at x = 0. When the
distance between a located solution and the known optimum so-
lution is less than a threshold value of 1.0× 10−4, the search is
regarded as a success. The threshold is chosen to be compatible
with the resolution used in the quantum algorithms as a result of
the number of available qubits. The number of iterations affect
the probability of success. Among the three population sizes, the
population size of 25 is the best. Yet it is still much less effi-
cient than the quantum search algorithms. Similarly, simulated
annealing is not as efficient as the quantum search algorithms.

The results of the BBW and BBW-QW algorithms in search-
ing for Schwefel function are compared in Figure 6 where R0 =
0. The efficiencies of the BBW and BBW-QW algorithms with
different R0 values are also compared in Figure 7. It is seen that
the quantum search algorithms work more efficiently for Schwe-
fel function than for Rastrigin function. The optimum solution
can be found with the probability of one with only few iterations.
As a result, the difference between the two algorithms is rela-
tively small. Figure 8 compares the efficiencies of the BBW and
BBW-QW algorithms for Ackley function. Similar to Rastrigin
function, R0 = 2 provides an obvious improvement for Schwe-
fel and Ackley functions. It should be noted that the rotational
threshold R0 plays a key role of efficiency for the BBW-QW
compared to BBW. If R0 is too large, more quantum walks (with
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Figure 2. Comparison between average PDF’s for Rastrigin function

additional functional evaluations) are applied during the search,
which will decrease the efficiency of the search algorithm. The
test results show that a threshold value of R0 < 2 is good for the
test functions. In general, the selection of the value of R0 depends
on the complexity of the objective function. If the function has
more local optima or wells in the search domain, more quantum
walks are necessary, therefore a larger value of R0 needs to be
chosen.

6 Concluding remarks
In this paper, a hybrid approach that combines quantum

walks with Grover search to solve global optimization problems
is proposed. By taking advantages of quantum tunneling effect,
quantum walks can enhance the traditional Grover search algo-
rithm and improve the efficiency of search. The acceleration is
achieved by quickly improving the threshold value at the early
stage of search so that the solution space can be reduced faster
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Figure 3. Comparison between typical PDF’s for Rastrigin function

during the Grover search.
Different from existing Grover search algorithms that focus

on optimizing the number of Grover rotations only, the new al-
gorithm tries to improve the search efficiency by accelerating the
convergence of threshold value toward the optimum. Neverthe-
less, as the threshold approaches the optimum value, the number
of Grover rotations also increases. Therefore, a balance between
the number of rotations and the number of iterations is needed for
particular problems or applications. In an actual quantum com-
putation environment, each sampling or measurement after per-
forming a number of Grover rotations will actually destroy the
quantum coherence. The amplitudes of the system will turn into
one for the measured solution and zeros for all others. For each
iteration, the Grover rotation always starts from the uniform dis-
tribution. Therefore, there is an overhead when the quantum reg-
ister is initialized by Hadamard operation for each iteration. Re-
ducing the number of iterations thus can improve the efficiency
of computation in general.
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