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ABSTRACT
Two types of uncertainty are generally recognized in mod-

eling and simulation, including variability caused by inherent
randomness and incertitude due to the lack of perfect knowl-
edge. Generalized interval probability is able to model both
uncertainty components simultaneously, where epistemic uncer-
tainty is quantified by the generalized interval in addition to the
probabilistic measure. With the conditioning, independence, and
Markovian property uniquely defined, the calculus structures in
generalized interval probability resembles those in the classical
probability theory. An imprecise Markov chain model is pro-
posed with the ease of computation. A Krylov subspace projec-
tion method is developed to solve the interval master equation to
simulate jump processes with finite state transitions under uncer-
tainties. The state transitions with interval-valued probabilities
can be simulated, which provides the lower and upper bound in-
formation of evolving distributions as an alternative to the tradi-
tional sensitivity analysis.

1 INTRODUCTION
Reliable simulation requires uncertainty to be quantified.

Uncertainty in simulation and computation is composed of two
components. One is the inherent randomness because of fluctu-
ation and perturbation, called aleatory uncertainty, and the other
is due to lack of perfect knowledge about the system, called epis-
temic uncertainty.

In modeling and simulation, epistemic uncertainty is the re-
sult of the errors associated with the models and input data. For

instance, in finite-element analysis, epistemic uncertainty comes
from the truncation error involved in linear and nonlinear ap-
proximations of strain fields using polynomials, imprecise input
parameters in the model, mismatch of structures and geometric
configurations between the modeled and the true physical ones,
etc. In molecular dynamics simulation, epistemic uncertainty is
mainly from the inaccurate potential functions. In kinetic Monte
Carlo simulation, it is largely from the imperfect knowledge
about transition and reaction rates. In contrast to epistemic un-
certainty, various sources such as disturbed boundary and loading
conditions, different sampling sizes and running times, inherent
variations of material compositions, and other randomness and
fluctuation form the aleatory component of uncertainty.

1.1 Sources of epistemic uncertainty in modeling and
simulation

The sources of epistemic uncertainty [1–6] in modeling and
simulation (M&S) are summarized as follows .

1. Lack of data or missing data: the parameters of models,
probability distributions, and distribution types are uncer-
tain when the sample size for input analysis and data fitting
is small. In some situations, it may not be possible to collect
enough data on the random variables of interest. The lack of
enough information will introduce errors in models and re-
quires the analyst to find new ways to describe the associated
uncertainty more rigorously.

2. Conflicting information: if there are multiple sources of in-
formation, the analyst may face conflicts among them. It is
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not appropriate to draw a simple conclusion of distributions
from several pieces of contradictory evidence. The absence
of relevant information has to be properly modeled and in-
corporated in M&S.

3. Conflicting beliefs: when data are not available, the analyst
usually depends on experts’ judgments, opinions, and be-
liefs. The information obtained from experts is subjective
due to the diversity of their past experiences, which can lead
to inconsistent observations.

4. Lack of introspection: in some cases the analyst can not af-
ford the necessary time to think deliberately about an uncer-
tain event or an accurate description of physical systems.
The lack of introspection increases the risk of inaccurate
model of the system under study. The associated uncertain-
ties have to be reflected in the simulation input distributions
to receive more reliable outputs.

5. Lack of information about dependency: lack of knowledge
about the correlations among factors and variables as well
as unknown time dependency of these factors contribute in
the increased uncertainties of M&S. The consideration of
unknown dependency among variables will build more reli-
able simulation models.

6. Numerical errors because of truncation and round-off: ap-
proximation and truncation errors are inherent in numerical
methods used for simulations, as well as rounding and can-
cellation errors.

7. Measurement errors: all measurements are approximated
values (instead of true values) due to the limitations of mea-
suring device, measuring environment, process of measure-
ment, and human errors. The uncertainties associated with
the collected quantities should be addressed in parameteri-
zation in order to give more reliable outputs.

Since aleatory and epistemic uncertainties come from sepa-
rate sources and have very different characteristics in nature, we
should represent them differently, preferably in different forms,
so that they can be easily differentiated. Aleatory uncertainty
is traditionally and predominantly modeled by probability distri-
butions. In contrast, epistemic uncertainty has been modeled in
several ways, such as probability, interval, fuzzy set, random set,
basic probability assignment, etc. In this paper, interval is used
to quantify epistemic uncertainty.

1.2 Interval to quantify epistemic uncertainty
Interval is as simple as a pair of numbers, i.e. the lower

and upper bounds. The reason to choose interval is two-fold.
First, interval is natural to human users and simple to use. It
has been widely used to represent a range of possible values, an
estimate of lower and upper bounds for numerical errors, and the
measurement error because of the available precision as the result
of instrument calibration. Second, interval can be regarded as the
most suitable way to represent the lack of knowledge. Compared

to other forms, interval has the least assumption. It only needs
two values for the bounds. In contrast, statistical distributions
need assumptions of distribution types, distribution parameters,
and the functional mapping from events to real values between 0
and 1. Fuzzy sets need assumptions of not only lower and upper
bounds, but also membership functions. Given that the lack of
knowledge is the nature of epistemic uncertainty, a representation
with the least assumption is the most desirable. Notice that an
interval [L,U ] only specifies its lower bound L and upper bound
U . It does not assume a uniform distribution of values between
L and U .

Probability has its limitations in representing epistemic un-
certainty. The accuracy of simulation prediction heavily depends
on the fundamental understanding of the underlying physical and
chemical processes. Lack of perfect knowledge and fundamen-
tal insight inevitably makes models imperfect. Any assumption
made about distributions in M&S has introduced a bias. The
most significant limitation of probability is that it does not differ-
entiate total ignorance from other probability distributions. Total
ignorance means that the analyst has zero knowledge about the
system under study. Based on the principle of maximum entropy,
uniform distributions are usually assumed when traditional prob-
ability theory is applied in this case. A problem arises because
introducing a uniform or any particular form of distribution has
itself introduced extra information that is not justifiable by the
zero knowledge. The commonly used uniform distribution where
all possible values are equally likely is not guaranteed to be true
because we are totally ignorant. This leads to the Bertrand-style
paradoxes such as the van Fraassen’s cube factory [7]. ”Know-
ing the unknown” does not represent the total ignorance. Al-
though the Bayesian approach has been proposed to reduce the
bias introduced in the distribution assumption, and it serves the
purpose well in an ideal situation where we have plenty of data
supply with no measurement errors, its limitation remains in the
real-world applications where lack of data or imperfect measure-
ment lingers. Other limitations of probability include capturing
group inconsistency and personal indeterminacy where precise
values of probabilities are difficult to determine. Therefore, it is
desirable to have more general and efficient approaches to incor-
porate epistemic uncertainty in M&S, with the least assumptions
of probability distributions and their parameters and less compu-
tationally demanding than the traditional Bayesian learning and
update approach.

In this paper, a generalized interval probability is used to
quantify the two components of uncertainty, where epistemic un-
certainty is represented by generalized intervals, in combination
with probability measures that capture aleatory uncertainty. Sim-
ilar to the traditional probability, generalized interval probability
is defined as a probability measure that obeys the axioms of Kol-
mogorov, which is different from other forms of imprecise prob-
ability. In addition, a logic coherence constraint for a mutually
disjoint partition of events is required. The conditional probabil-
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ity, independence, and generalized interval Bayes’ rule are in a
very similar form of those in the traditional probability theory.
As a result, the proposed imprecise Markov chain model based
on these fundamental properties enables the ease of computation.
An interval master equation is used to describe jump processes
under both uncertainty components. The master equation models
state transitions in jump processes and has been widely applied
in simulations of chemical reactions, quantum systems, and oth-
ers. Here a Krylov subspace projection method is developed to
compute interval matrix exponentials with the large and sparse
generator matrices. It is demonstrated that the simulation based
on generalized interval probability is algebraically tractable, as
an efficient alternative to sensitivity analysis.

In the remainder of this paper, the background of imprecise
probability and generalized interval is introduced in Section 2.
Section 3 presents the basics of generalized interval probability.
Section 4 describes the new imprecise Markov chain model with
generalized interval probability and the Krylov subspace projec-
tion method to solve the interval master equation to simulate
jump processes under both uncertainty components. Two nu-
merical examples are used to illustrated the proposed method in
Section 5.

2 BACKGROUND
2.1 Existing approaches for robustness in modeling

and simulation
The ultimate goal of incorporating both components of un-

certainty in modeling and simulation is to improve the robustness
of predictions. Some of the standard approaches that have been
used to explore the impact of input uncertainties are sensitivity
analysis (SA) and design of experiment(DOE) [8–10]. When in-
put probability distributions with associated parameters are se-
lected, the analyst needs to know how sensitive the simulation
output performance is, with respect to (w.r.t.) the selected input
parameter values. A straightforward way is to vary the input val-
ues and study the impact resulted on the output. We can also de-
termine which input factors have the most significant impact on
the output by evaluating the amount of output variations as the
direct result of modifying the inputs. The sensitivity can be nu-
merically estimated with finite differences. Similarly, the DOE
approach is performed by varying the input parameters by levels
and examining the output changes.

A more efficient SA approach that is specific for stochas-
tic simulation is to estimate the derivatives of the expected val-
ues of output performance, i.e. the expected values of stochas-
tic derivatives or gradients, from simulation directly. This can
be achieved by either varying output performance w.r.t. input
parameters such as the infinitesimal perturbation analysis (IPA)
alike methods [11–13], or by varying the probability measures
w.r.t. inputs such as the likelihood ratio method [14–16].

Another popular simulation technique that represents the to-

tal uncertainty is based on the second order probability and sec-
ond order Monte Carlo (SOMC) (e.g. [17] ). A second-order
probabilistic sensitivity analysis is superimposed on the tradi-
tional simulation so that uncertainties are quantified by sampling
the parameters of the first-order probabilistic distributions. In
the double-loop simulation, the inner loop is the variability loop,
whereas the outer loop represents the uncertainty of the input pa-
rameters of the inner loop. Computationally SOMC is very ex-
pensive. Other approaches to consider input uncertainties in de-
terministic and stochastic simulation include the Bayesian anal-
ysis approach [18, 19] and the bootstrap approaches [20, 21].

The biggest issue of the above sensitivity analysis is the
computational efficiency. In SOMC, a large number of samples
have to be drawn as the possible values of the inputs in order
to make robust conclusions. Each sample is one complete run
of simulation itself. Similarly, in the IPA methods and Bayesian
approaches, the number of runs should be large enough to draw
credible conclusions. The result of Bayesian update is sensitively
dependent on the prior distribution, unless the amount of data
available for the update is substantially large. Therefore, com-
putational efficiency is the bottom-neck of those approaches for
robust simulation.

2.2 Imprecise probability
Imprecise probability [p, p] combines epistemic uncertainty

(as an interval) with aleatory uncertainty (as probability mea-
sure), which is regarded as a generalization of traditional prob-
ability. Gaining more knowledge can reduce the level of impre-
cision and indeterminacy, i.e. the interval width. When p = p,
the degenerated interval probability becomes a traditional precise
one.

Many forms of imprecise probabilities have been devel-
oped. For example, the Dempster-Shafer theory [22, 23] char-
acterizes evidence with discrete probability masses associated
with a power set of values. The theory of coherent lower previ-
sions [24] models uncertainties with the lower and upper previ-
sions with behavioral interpretations. The possibility theory [25]
represents uncertainties with Necessity-Possibility pairs. Prob-
ability bound analysis [26] captures uncertain information with
pairs of lower and upper distribution functions or p-boxes. In-
terval probability [27] characterizes statistical properties as in-
tervals. F-probability [28] incorporates intervals and represents
an interval probability as a set of probabilities which maintain
the Kolmogorov properties. A random set [29] is a multi-valued
mapping from the probability space to the value space. Fuzzy
probability [30] considers probability distributions with fuzzy
parameters. A cloud [31] is a combination of fuzzy sets, inter-
vals, and probability distributions.

In the applications of interval probability, the interval
bounds p and p can be solicited as the lowest and highest subjec-
tive probabilities about a particular event from a domain expert,
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where probability represents the degree of belief. One expert
may hesitate to offer just a precise value of probability. Differ-
ent experts could have different beliefs. In both cases, the range
of probabilities gives the interval bounds. When used in data
analysis with frequency interpretation, the interval bounds can
be confidence intervals that are calculated from data (e.g. the
Kolmogorov-Smirnov confidence band) to enclose a cumulative
distribution function. If extra data are collected, the interval dis-
tribution converges toward a precise distribution function. For
parametric distributions such as exponential and Gaussian, the
epistemic uncertainty is represented by interval values of the pa-
rameters.

2.3 Imprecise Markov chain models
Markov chain is commonly used to model and simulate time

evolution of stochastic systems. In addition to the stochastic-
ity, epistemic uncertainty associated with model parameters have
been studied. The early work on Markov chain model with im-
precise transition probabilities appeared in the study of Marko-
vian decision processes [32, 33]. Hartfiel [34] used the name
Markov set-chains and developed a so-called Hi-Lo algorithm
based on convexity to calculate lower and upper bounds of state
probabilities with interval transition probabilities. In the more
general setting of interval probability, Kozine and Utkin [35]
developed a linear programming based algorithm to estimation
lower and upper bounds of F-probability with interval transi-
tion probabilities. Škulj [36, 37] developed formulations of F-
probability and coherent lower prevision to predict transitions.
With a formulation of coherent upper prevision, de Cooman et
al. [38] developed an algorithm with linear complexity to esti-
mate the credal set evolution in imprecise Markov chains.

Imprecise probability quantifies aleatory and epistemic un-
certainties simultaneously and can be used as an alternative to
sensitivity analysis in assessing robustness of M&S. In this paper,
a new form of imprecise probability, generalized interval proba-
bility, is described and applied in modeling and simulation. This
new form is based on a generalized interval, which is an algebraic
and semantic extension of the classical set-based interval. As a
results, the probabilistic calculus in generalized interval proba-
bility is greatly simplified.

2.4 Generalized interval
The classical set-based interval [39] is defined as Ja,bK :=

{x ∈ R|a≤ x≤ b}. Therefore Ja,bK is invalid when a > b. In
contrast, generalized interval [40–42] does not have such re-
striction. A generalized interval is defined as a pair of numbers
x := [x,x](x,x ∈ R).

The calculation of generalized interval is based on the
Kaucher interval arithmetic [43]. Compared to the semi-group
formed by the classical set-based intervals without invertibil-
ity, generalized intervals form a group. This property signifi-

cantly simplifies the computational structure. The set of gener-
alized intervals is denoted by KR = {[x,x]|x,x ∈ R}. The set of
proper intervals is IR = {[x,x]|x≤ x}, and the set of improper
intervals is IR= {[x,x]|x≥ x}. The relationship between proper
and improper intervals is established with the operator dual as
dual([x,x]) := [x,x] Thus, the group of generalized intervals is
formed with x−dualx = 0 and x÷dualx = 1.

The inclusion relationship ⊆ between generalized intervals
x = [x,x] and y = [y,y] is defined as

[x,x]⊆ [y,y] ⇐⇒ x≥ y∧ x≤ y (1)

The less-than-or-equal-to relationship ≤ is defined as

[x,x]≤ [y,y] ⇐⇒ x≤ y∧ x≤ y (2)

The relationship between generalized interval and classical inter-
val is established with the operator△ defined as

[x,x]△ := Jmin(x,x),max(x,x)K (3)

The absolute value of x = [x,x] is defined as

|x| :=


[−x,−x] (x < 0,x < 0)
[0,max(−x,x)] (x < 0,x≥ 0)
[max(x,−x),0] (x≥ 0,x < 0)
[x,x] (x≥ 0,x≥ 0)

(4)

The absolute value of a vector X = [x1, . . . ,xn]
T is |X| :=

[|x1|, . . . , |xn|]T , where T denotes matrix transpose. The L2-norm
of the vector X is ∥X∥2 :=

√
|XT X|. An interval function as

a pair of real-valued functions is defined as f(x) := [ f (x), f (x)].
The integral of f(x) is defined as

∫
f(x)dx := [

∫
f (x)dx,

∫
f (x)dx]

[41].
Not only generalized interval based on the Kaucher arith-

metic simplifies the computational structure, it also provides
more semantics than the classical set-based interval. In a func-
tional relation, each generalized interval has an associated logic
quantifier, either existential (∃) or universal (∀). The semantics
of a generalized interval x∈KR is denoted by (Qxx∈ x△) where
Q : KR 7→ {∃,∀}. x is called existential if Qx = ∃, or universal
if Qx = ∀. If a real relation z = f (x1, . . . ,xn) is extended to the
interval relation z = f(x1, . . . ,xn), the interval relation z is inter-
pretable if there is a semantic relation

(Qx1x1 ∈ x△1 ) · · ·(Qxnxn ∈ x△n )(Qzz ∈ z△)(z = f (x1, . . . ,xn))

Generalized interval provides more semantic power to help
verify completeness and soundness of range estimations by logic
interpretations. A complete range estimation of possible values
includes all possible occurrences without underestimation. A
sound range estimation does not include impossible occurrences
without overestimation. The four examples in Table 1 illustrate
the interpretations for operator “+”.
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Table 1. Illustrations of the semantic extension of generalized interval

Algebraic relation
[x,x]+ [y,y] = [z,z] Corresponding logic interpretation Quantifier of [z,z] Range estimation of [z,z]
[2,3]+ [2,4] = [4,7] (∀x ∈ J2,3K)((∀y ∈ J2,4K)((∃z ∈ J4,7K)(x+ y = z) ∃ J4,7K is complete
[2,3]+ [4,2] = [6,5] (∀x ∈ J2,3K)((∀z ∈ J5,6K)((∃y ∈ J2,4K)(x+ y = z) ∀ J5,6K is sound
[3,2]+ [2,4] = [5,6] (∀y ∈ J2,4K)((∃x ∈ J2,3K)((∃z ∈ J5,6K)(x+ y = z) ∃ J5,6K is complete
[3,2]+ [4,2] = [7,4] (∀z ∈ J4,7K)((∃x ∈ J2,3K)((∃y ∈ J2,4K)(x+ y = z) ∀ J4,7K is sound

3 Basics of generalized interval probability
The basics of generalized interval probability are defined as

follows [44].
Given a sample space Ω and a σ-algebra A of random events

over Ω, we define the generalized interval probability p ∈KR as
p : A → [0,1]× [0,1] which obeys the axioms of Kolmogorov:
(1) p(Ω) = [1,1]; (2) [0,0] ≤ p(E) ≤ [1,1] (∀E ∈ A); and (3)
for any countable mutually disjoint events Ei ∩E j = /0 (i ̸= j),
p(

∪n
i=1 Ei) = ∑n

i=1 p(Ei).
A generalized interval probability p = [p, p] is a generalized

interval without the restriction of p ≤ p. The new definition of
interval probability also implies p( /0) = [0,0]. The probability of
union is defined as p(A) := ∑S⊆A(−dual)|A|−|S|p(S) for A⊆Ω.

3.1 Logic coherence constraint (LCC)
The assignments of interval-valued probabilities to events

are not arbitrary. They should meet certain requirements. In
generalized interval probability, the interval probability values
should satisfy the logic coherence constraint (LCC). For a mutu-
ally disjoint event partition

∪n
i=1 Ei = Ω, ∑n

i=1 p(Ei) = 1. If the
sample space is continuous,

∫
x∈Ω p(x)dx = 1.

Notice that the LCC is more restrictive than Walley’s coher-
ence and avoid sure loss constraints [24]. The LCC ensures that
generalized interval probability is logically coherent with pre-
cise probability. Suppose that p(Ei) ∈ IR (for i = 1, . . . ,k) and
p(Ei) ∈ IR (for i = k+1, . . . ,n). It can be interpreted as

∀p1 ∈ p△(E1), . . . ,∀pk ∈ p△(Ek),

∃pk+1 ∈ p△(Ek+1), . . . ,∃pn ∈ p△(En),
n

∑
i=1

pi = 1

For instance, given that p(down) = [0.2,0.3], p(idle) =
[0.3,0.5], and p(working) = [0.5,0.2] for a system’s working sta-
tus, we can interpret it as

(∀p1 ∈ J0.2,0.3K)(∀p2 ∈ J0.3,0.5K)(∃p3 ∈ J0.2,0.5K)
(p1 + p2 + p3 = 1)

With different quantifier assignments, we differentiate non-
focal events from focal events based on the respective logic inter-
pretation. An event E is called focal if the associated semantics
for p(E) is universal. Otherwise, it is called non-focal if the

associated semantics is existential. While the epistemic uncer-
tainty associated with focal events is critical to the analyst, the
one associated with non-focal events is not. In the above exam-
ple, “down” and “idle” are focal events while “working” is non-
focal. If the analyst is more interested in “working” and “down”,
he/she may assign a different set of interval probability values,
for instance, p(working) = [0.2,0.5], p(down) = [0.2,0.3], and
p(idle) = [0.6,0.2].

3.2 Conditional probability and independence
The concepts of conditional probability and independence

are critical for the classical probability theory. With indepen-
dence, we can decompose a complex problem into simpler and
manageable components. Similarly, they are essential for impre-
cise probabilities.

Different from all other forms of imprecise probabilities,
which are based on convex probability sets, the conditional prob-
ability in the generalized interval probability theory is defined
directly from marginal probability.

The conditional interval probability p(E|C) for all E,C ∈A
is defined as

p(E|C) :=
p(E ∩C)

dualp(C)
=

[
p(E ∩C)

p(C)
,

p(E ∩C)

p(C)

]
(5)

when p(C)> 0.
Thanks to the unique algebraic properties of generalized in-

tervals, this definition can greatly simplify computation in appli-
cations. Only algebraic computation is necessary.

For A,B,C ∈ A , A is said to be conditionally independent
with B on C if and only if

p(A∩B|C) = p(A|C)p(B|C) (6)

For A,B ∈ A , A is said to be independent with B if and only if

p(A∩B) = p(A)p(B) (7)

4 MODELING JUMP PROCESSES UNDER UNCER-
TAINTIES
The jump process in a stochastic system is typically mod-

eled as a continuous-time Markov chain. The system dynamics
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is modeled as a special case of the Chapman-Kolmogorov equa-
tion where the state space is discontinuous, also known as the
master equation. When epistemic uncertainty is incorporated in
the model, generalized interval probability can be used to con-
struct a compact form of the interval master equation, as [45]

∂
∂t

p(x, t|y, t ′) =
∫

dzw(x|z, t)p(z, t|y, t ′)

−dual
∫

dzw(z|x, t)p(x, t|y, t ′)
(8)

where w(y|x, t) := limδt→0 p(y, t + δt|x, t)/δt is the interval-
valued rate of transition from state x to state y at time t.

Solving Eq.(8) depends the formalism of imprecise Markov
chain. With the conditional probability and independence de-
fined, a Markov chain model with generalized interval proba-
bility is proposed to describe the system as transitions of states
which we do not have perfect knowledge about, as described
next.

4.1 Imprecise Markov chain with generalized interval
probability

Different from the ones in Section 2.3, the imprecise Markov
chain defined here is based on generalized interval probability,
which can be intuitively kept track of with its resemblance to
the classical Markov chain. Given n possible states of a sys-
tem, a stationary discrete-time imprecise Markov chain is de-
fined by a state transition matrix P∈KRn×n with interval-valued
transition probabilities pi j = p(X = i|X = j) with i = 1, . . . ,n
and j = 1, . . . ,n. Given the probabilistic estimates of the states
Q(k) ∈ KRn at time k with elements q(k)

i with i = 1, . . . ,n, the
probabilistic estimates of states at time k+1 is Q(k+1) = PQ(k).

Notice that Q(k+1) = PQ(k) holds because the multiplication
distributivity of three probability intervals p1, p2, and p3 (0 ≤
p1,p2,p3 ≤ 1) exists [46–48]. That is, (p1 + p2)p3 = p1p3 +
p2p3.

The logic coherence constraint of state probabilities is au-
tomatically satisfied during the transition process, stated as fol-
lows.
Theorem 1 (Markov logic coherence constraint): Given an in-
terval matrix P and an interval vector Q(k) with their respective
elements pi j (i = 1, . . . ,n, j = 1, . . . ,n) and q(k)

i (i = 1, . . . ,n) as
generalized interval probabilities, if ∑n

i=1 pi j (∀ j = 1, . . . ,n) and

∑n
i=1 q(k)

i , then the elements of Q(k+1) = PQ(k) denoted as q(k+1)
i

(i = 1, . . . ,n) also satisfy ∑n
i=1 q(k+1)

i = 1.
If the system is in the steady state, there is an equilibrium

distribution Π of the possible states satisfying the stationary tran-
sition

Π = PΠ (9)

The elements Πi (i = 1, . . . ,n) of Π and pi j (i = 1, . . . ,n; j =
1, . . . ,n) of P are divided into two categories, proper and im-

proper. Let P denote the set of indices for those proper inter-
val elements, i.e. Πi ∈ IR if i ∈ P and pi j ∈ IR if i j ∈ P . Let
I denote the set of indices for those improper interval elements,
i.e. Πi ∈ IR if i ∈ I and pi j ∈ IR if i j ∈ I . Eq.(9) can then be
re-arranged as [

ΠP

ΠI

]
=

[
P(1) P(2)

P(3) P(4)

]
·
[

ΠP

ΠI

]
(10)

Let P(i)
P and P(i)

I be the respective proper and improper com-
ponents of P(i) (i = 1,2,3,4). The first set of equations ΠP =
P(1) ·ΠP +P(2) ·ΠI in Eq.(10) can be interpreted as

∀P(1)
I ∈ P(1)△

I ,∀P(2)
I ∈ P(2)△

I ,∀πI ∈Π△I ,

∃P(1)
P ∈ P(1)△

P ,∃P(2)
P ∈ P(2)△

P ,∃πP ∈Π△P ,

P(1) ·πP +P(2) ·πI = πP

(11)

The second set of equations P(3) ·ΠP +P(4) ·ΠI = ΠI in Eq.(10)
can be interpreted as

∀P(3)
P ∈ P(3)△

P ,∀P(4)
P ∈ P(4)△

P ,∀πP ∈Π△P ,

∃P(3)
I ∈ P(3)△

I ,∃P(4)
I ∈ P(4)△

I ,∃πI ∈Π△I ,

P(3) ·πP +P(4) ·πI = πI

(12)

The combination of Eq.(11) and Eq.(12) leads to the interpreta-
tion of Eq.(9) or Eq.(10) as

∀P(1)
I ∈ P(1)△

I ,∀P(2)
I ∈ P(2)△

I ,∀P(3)
P ∈ P(3)△

P ,∀P(4)
P ∈ P(4)△

P ,

∃P(1)
P ∈ P(1)△

P ,∃P(2)
P ∈ P(2)△

P ,∃P(3)
I ∈ P(3)△

I ,

∃P(4)
I ∈ P(4)△

I ,∃π ∈Π△,
P ·π = π

(13)
The existential quantifiers associated with the elements of Π in
Eq.(13) indicate the controllable stability of the equilibrium dis-
tribution in the steady state. If there are uncontrollable deviations
associated with transition probabilities P(1)

I , P(2)
I , P(3)

P , and P(4)
P ,

we should be able to choose P(1)
P , P(2)

P , P(3)
I , and P(4)

I such that the
steady state is maintained. Therefore, Eq.(13) provides the logic
basis to maintain the stability of the system subject to incomplete
knowledge of states and state transitions, which can improve the
robustness of the dynamic control in stochastic systems.

4.2 Solving interval master equation
With the discrete state space of N possible states, Eq.(8) be-

comes
∂
∂t

qi(t) = ∑
j ̸=i

wi j(t)q j(t)−dual ∑
j ̸=i

w ji(t)qi(t) (i = 1, . . . ,N)

(14)
where wi j(t) is the interval rate of transition from state x j to state
xi at time t, and q j(t) is the interval probability that the system is
in state x j at time t. Eq.(14) can be represented in a matrix form
as

∂
∂t

Q(t) = H(t)Q(t) (15)
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where the elements of matrix H(t) are

hii(t) =−dual∑
j

w ji(t) (16)

and

hi j(t) = wi j(t) ( j ̸= i) (17)

Note that ∑i hi j(t) = 0 for any j. The interval matrix H is re-
garded an infinitesimal generator of a generalized Markovian
process.

Given the initial probabilities of states Q(t0), numerically
the time is divided into small steps t0, t0 + τ, t0 + 2τ, . . . and Hk
remains constant between time t0 + kτ and t0 + (k + 1)τ. The
corresponding numerical solution of Eq.(15) is

Q(t + kτ) = exp(τHk−1) · · ·exp(τH0))Q(t0) (18)

which is an imprecise Markov chain with k steps of transitions.

4.3 Computing interval matrix exponential
The computation of interval matrix exponential exp(τHk) in

Eq.(18) is the major task in solving the interval master equa-
tion. Several approaches have been proposed to calculate the
interval matrix exponential. Oppenheimer and Michel [49] used
the centered form of interval and Taylor series approximation in
the range estimation. Goldsztejn [50] reduced the interval over-
estimation by a scaling and squaring process. Škulj [51] took a
partitioning approach to reduce step sizes to avoid interval over-
estimation. Different from these approaches, here we use gener-
alized interval. The complete enclosure of the possible variation
ranges by the lower and upper bounds is not the only purpose in
solving Eq.(15), since the LCC is enforced by the generalized in-
terval probability. In addition, the state space of interval master
equation has very high dimensions. The infinitesimal generator
H is a very large but sparse matrix. Therefore, a Krylov subspace
projection approach is developed here.

Our approach can be regarded as an extension of the Krylov-
based matrix exponential computation [52] from real numbers
to generalized intervals. The new algorithm to compute in-
terval matrix exponential is listed in Table 2. The core part
of the algorithm is an Arnoldi process to search the interval-
valued orthonormal basis {V1, . . . ,Vm+1} forming a matrix V =
[V1, . . . ,Vm+1] and the upper Hessenberg matrix G = [gi j] such
that eτHQ can be estimated as

U(τ) = βV eτG e1 (19)

where e1 is the first unit basis. Here, the lower and upper bound
matrices of eτG are calculated as eτG and eτG respectively, with
real-valued matrices G = [gi j] and G = [gi j].

For each orthogonal projection in R = R− dualgi jVi in the
algorithm, if zero is included in any element of residual R, this
element will be assigned to be 0. In a real-valued orthogonal

Table 2. A Krylov subspace projection algorithm to compute interval ma-
trix exponentials

Compute U = eτHQ
Input: H ∈KRn×n and Q ∈KRn

Output: U
t = 0;
choose an m≪ n;
β←∥Q∥2;
U←Q;
WHILE t < τ DO

V1← U/dual(β);
FOR j = 1 to m

R←H ·V j where R = [r1, . . . ,rn]
T ;

FOR i = 1 to j
gi j← VT

i ·R;
R← R−dualgi jVi;
FOR k = 1 to n

IF 0 ∈ r△k ;
rk← 0;

END IF
END FOR

END FOR
g j+1, j←∥R∥2;
IF ∥g j+1, j∥2 < ε;

BREAK;
END IF
V j+1← R/dualg j+1, j;

END FOR
gm+2,m+1 = 1;
G ← [g1:m+2,1:m+1];
V ← [V1, . . . ,Vm+1];
∆t = τ− t;
DO

F ← e∆tG ;
U← βV (1 : n,1 : m+1)F (1 : m+1,1);
err = min(|βF (m+1,1)|, |βF (m+2,1)| · ∥HVm+1∥2);
∆t← α∆t where 0 < α < 1;

WHILE (err > ε)
t← t +∆t;

END WHILE

projection, if the residual R−gi jVi becomes very small and close
to 0, it indicates an orthogonal basis vector is found. However,
for interval-valued vectors, the residual may not be zero. Here
generalized intervals are applied. E = R−dualgi jVi can always
be interpreted as

(∀E ∈E△)(QRR∈R△)(Qgi j gi j ∈ g△i j )(QViVi ∈V△i )(R−gi jVi =E)

where QR, Qgi j , and QVi can be either ∀ or ∃. If 0 ∈ E△, then the
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interpretation is

(QRR ∈ R△)(Qgi j gi j ∈ g△i j )(QViVi ∈ V△i )(R−gi jVi = 0)

That is, with the zero residual, an orthogonal basis can be found
with the given intervals R, gi j, and Vi. In other words, two gener-
alized interval vectors E1 are E2 called orthogonal to each other
if 0 ∈ (ET

1 ·E2)
△.

If the error of Krylov subspace approximation is large, the
algorithm iterative reduces the step size ∆t such that for each
small step the approximation is within a preset threshold ε. That
is, a jump for a time period of τ is subdivided into several jumps
with smaller step sizes.

U computed from the algorithm is a vector of probabilities.
A normalization procedure

U′i(t) = Ui(t)/dual
N

∑
l=1

Ul(t) (20)

is required to satisfy the LCC. The normalization at each step
of the iterative process for time evolution avoids the problem of
overly pessimistic estimation of interval ranges, yet at the cost of
enclosure completeness.

5 NUMERICAL EXAMPLES
Here we use two numerical examples to illustrate the devel-

oped algorithm for solving the interval master equation. The first
example is the well-known Lotka-Volterra predatory-prey model,
and the second one is the Michaelis-Menten enzyme kinetics.

5.1 Predatory-prey model
The first example is the Lotka-Volterra predatory-prey

model with two species, predator and prey. The dynamics of the
system is described by three kinetic equations, as shown in Table
3. The first equation is the growth of prey, the second one is the
growth of predatory, and the third one is the death of predator.
Npredator and Nprey are the numbers of species.

Table 3. An example of Lotka-Volterra predatory-prey model

Reaction Propensity Rate constant
Prey

c1−→ 2Prey α1 = c1NPrey c1 = [0.09,0.11]
Predator+Prey

c2−→ Predator α2 = c2NPredatorNPrey c2 = [0.009,0.011]
Predator

c3−→ /0 α3 = c3NPredator c3 = [0.09,0.11]

With the propensities given in Table 3, the elements of the
infinitesimal generator H are calculated as follows. If the total
numbers of species for predator and prey under consideration are

na and nb respectively, the total number of states in simulation
is n = na× nb. Let the state of the system at a particular time
be represented by a vector x ∈ Zn×2 where x(i,1) and x(i,2) the
respective number of predator and prey at state i. The three reac-
tions that correspond to the transitions from state x( j, ·) to x(i, ·)
are [x( j,1)→ x(i,1), x( j,2)→ x(i,2)+1], [x( j,1)→ x(i,1)+1,
x( j,2)→ x(i,2)−1], and [x( j,1)→ x(i,1)−1, x( j,2)→ x(i,2)]
respectively. The two-dimensional vector x needs to be mapped
to a one-dimensional state space so that Eq.18 can be applied
for simulation. The value of the non-diagonal element hi j
(i ̸= j) in H corresponding to the transition from state j to
state i is assigned to be hi j = c1x( j,2) for the first reaction,
hi j = c2x( j,1)x( j,2) for the second reaction, hi j = c3x( j,1) for
the third reaction, as in Eq.17, by going through each column
of H. Any other elements that are not involved in reactions are
assigned to be zero. Once the non-diagonal elements hi j’s are
assigned, the diagonal elements are calculated by Eq.16.

With the initial distributions p(Npredator = 5) = 1.0 and
p(Nprey = 5) = 1.0 and the time step τ = 0.1, the simulation re-
sults are shown in Figure 1 where the distributions for the num-
bers of predator and prey evolve along time. The lower and up-
per bounds of probability density is compared with the result of a
real-valued traditional simulation, where the rate constants take
the values of c1 = 0.1, c2 = 0.01, and c3 = 0.1.

To demonstrate the effectiveness of the proposed interval-
based approach in incorporating uncertainty, the results are com-
pared with the ones from the traditional Monte Carlo sampling
method for sensitivity analysis, as shown in Figure 2. As samples
of parameters c1, c2, and c3 within the given intervals are taken
randomly from uniform distributions, 40 runs of simulations pro-
vide a collection of probability densities at time t = 2.0, shown
as the ‘band’ in the figure. For a large portion, they are enclosed
by the interval lower and upper bounds generated by the pro-
posed method. Because LCC is enforced, the over-estimation at
the portion with higher probability leads to the under-estimation
at the portion with lower probability.

The combinations of different numbers of species form the
state space. For a system of M species with the maximal num-
bers as N, the numbers of possible states is in the order of NM .
Yet the probabilities that most of the states are occupied are ze-
ros. Therefore both the infinitesimal generator H and probability
vector eτHQ are very sparse.

5.2 Enzyme kinetics
The second example is the Michaelis-Menten enzyme kinet-

ics [53]. The involved reactions and species are listed in Table 4,
where enzymes E catalyze the reaction of substrates S into prod-
ucts P by forming intermediate enzyme/substrate complexes ES.
There are three reactions with the respective interval-valued rate
constants specified. The propensities are functions of the number
of reactant species NS, NE , and NES.
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Figure 1. Evolution of probability densities in the Predator-Prey model

In this example, the initial numbers of species are NS = 5,
NE = 1, NES = 0, and NP = 0. The time step size is τ = 0.1.
Figure 3 shows the evolution of the lower and upper probabil-
ity densities for the four species, with the comparison with the
traditional real-valued ones.

6 CONCLUDING REMARKS
In this paper, a new approach to perform stochastic simula-

tion of finite state transitions under both aleatory and epistemic
uncertainties are presented. The underlying theoretical basis is
generalized interval probability, which integrates generalized in-
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Figure 2. Comparison of the results between the proposed interval-
based method and Monte Carlo sampling

terval and probability. The dynamics of stochastic systems with
imprecise model parameters can be simulated without the need
of the traditional sensitivity analysis to assess the robustness of
simulation results.

Different from other imprecise probability theories, general-
ized interval probability has an algebraic framework that resem-
bles the traditional precise probability so that probabilistic cal-
culus and reasoning can be greatly simplified. Its definitions of
conditioning, independence, and Markovian properties provide a
convenient calculation structure. Its unique semantics with logic
interpretations also allows us to assess the interval range estima-
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Figure 3. Time evolution of probability densities in the Michaelis-Menten enzyme kinetics example

Table 4. An example of Michaelis-Menten enzyme kinetics [53]

Reaction Propensity Rate constant
S+E

c1−→ ES α1 = c1NSNE c1 = [0.9,1.1]
ES

c2−→ E +S α2 = c2NES c2 = [0.9,1.1]
ES

c3−→ P+E α3 = c3NES c3 = [0.09,0.11]

tion for completeness and soundness.
The master equation extended with generalized interval

probability models the time evolution of both uncertainty com-
ponents simultaneously in jump processes. A Krylov subspace

projection method is proposed for solving the interval master
equation. Numerical examples demonstrated that the developed
approach provides insight on the effect of uncertainty associated
with models and parameters. Simulation reliability and robust-
ness can be assessed directly from the resulted lower and up-
per probabilities without introducing the overhead of sensitivity
analysis.
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[40] Gardeñes, E., Sainz, M. A., Jorba, L., Calm, R., Estela,
R., Mielgo, H., and Trepat, A., 2001. “Modal intervals”.
Reliable Computing, 7(2), pp. 77–111.

[41] Markov, S., 1979. “Calculus for interval functions of a real
variable”. Computing, 22(4), pp. 325–337.

[42] Dimitrova, N. S., Markov, S. M., and Popova, E. D., 1992.
“Extended interval arithmetics: new results and applica-
tions”. In Computer Arithmetic and Enclosure Methods,
L. Atanassova and J. Herzberger, eds. Elsevier, pp. 225–
232.

[43] Kaucher, E., 1980. “Interval analysis in the extended inter-
val space ir”. In Computing Supplementa, Vol. 2. Springer-
Verlag, pp. 33–49.

[44] Wang, Y., 2010. “Imprecise probabilities based on gener-
alised intervals for system reliability assessment”. Interna-
tional Journal of Reliability and Safety, 4(4), pp. 319–342.

[45] Wang, Y., 2013. “Generalized fokker–planck equation with
generalized interval probability”. Mechanical Systems and
Signal Processing(in press).
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