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ABSTRACT
Stochastic differential equation (SDE) and Fokker-Planck

equation (FPE) are two general approaches to describe the
stochastic drift-diffusion processes. Solving SDEs relies on the
Monte Carlo samplings of individual system trajectory, whereas
FPEs describe the time evolution of overall distributions via path
integral alike methods. The large state space and required small
step size are the major challenges of computational efficiency
in solving FPE numerically. In this paper, a generic continuous-
time quantum walk formulation is developed to simulate stochas-
tic diffusion processes. Stochastic diffusion in one-dimensional
state space is modeled as the dynamics of an imaginary-time
quantum system. The proposed quantum computational ap-
proach also drastically accelerates the path integrals with large
step sizes. The new approach is compared with the traditional
path integral method and the Monte Carlo trajectory sampling.

1 INTRODUCTION
Stochastic diffusion processes are universal and appear in

various physical, chemical, biological and economical systems.
In engineering applications, we usually need to simulate and de-
sign system dynamics, such as in modeling suspension of ve-
hicles on rough pavement [1], analyzing vibration of structures
under stochastic load [2–4], and designing systems and device
under resonance excitation subject to random fluctuation [5].

Stochastic differential equation (SDE) and Fokker-Planck
equation (FPE) are two general approaches to describe the drift-
diffusion processes in a stochastic system. SDEs model the sys-
tem under uncertainty with samples of individual trajectory as

a result of the Wiener process, whereas FPEs capture the time
evolution of probability distributions directly. Solving SDEs re-
lies on the Monte Carlo sampling of system trajectories to de-
scribe the stochastic processes. A large number of samples need
to be generated to draw statistical conclusions. In contrast, a FPE
captures the dynamics of the probability density for all possible
states at a time and models the evolution process of the overall
distribution.

As an illustration of the equivalency between SDEs and
FPEs, the vehicle suspension model in Figure 1 is described here.
The dynamics of the vehicle is modeled by m1ÿ1 +c2(ẏ1 − ẏ2)+
k2(y1 − y2)+ k1y1 − ξ(t) = 0 and m2ÿ2 + c2(ẏ2 − ẏ1)+ k2(y2 −
y1) = 0, where y1 and y2 are the respective one-dimensional dis-
placements for the tire (with mass m1) and suspension (with mass
m2), k1 and k2 are the respective stiffness coefficients, c2 is the
damping coefficient, and ξ is the random profile of the road mod-
eled as a Gaussian white noise. Let x1 = y1, x2 = y2, x3 = ẏ1,
x4 = ẏ2, and x = [x1,x2,x3,x4]

T . The above two equations are
equivalent to the SDE

dx/dt = Cx+Dξ (1)

where C =


0 0 1 0
0 0 0 1

−(k1 + k2)/m1 k2/m1 −c2/m1 c2/m1
k2/m2 −k2/m2 c2/m2 −c2/m2

 and

D = [0,0,1,0]T . Eq.(1) is equivalent to the FPE

∂
∂t

p(x, t) =−
4

∑
i=1

∂
∂xi

(Ai p(x, t))+
1
2

4

∑
i=1

4

∑
j=1

∂2

∂xi∂x j
(Bi j p(x, t))

where p(x, t) is the probability that the system is at state x at time
t, Ai’s are elements of the drift vector A = Cx, Bi j’s are elements
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of the diffusion coefficient matrix B defined by the correlation
E[ξ(t),ξ(t ′)] = 2Bδ(t − t ′) with the Dirac delta function δ.

Figure 1. A vehicle suspension model

A second example of drift-diffusion models in engineering
design is a magnetically enhanced bistable piezoelectric energy
harvesting device [5]. The dynamics of displacement y is mod-
eled by ÿ+(c/m)ẏ+(k1/m)y+(k3/m)y3 + acosωt + ξ(t) = 0
where m is the mass, c is the damping, k1 and k3 are the stiffness
coefficients, acosωt is a sinusoidal excitation, and ξ is the noise.

The main research challenge of solving SDEs and FPEs
is to develop efficient and robust numerical methods to obtain
the complete information about probability distributions for the
whole time period of evolution. In SDEs, since one sample only
provides one out of the many possible trajectories, a complete
range estimation for variation requires a very large number of
samples. FPEs provide the global picture of distributions and are
solved typically by the path integral alike methods. Yet, all pos-
sible states need to be known during the solving process. The
memory requirement to store transition matrix that captures the
dynamics in a fine-grained state space can become prohibitive.
Additionally, the time step is required to be small enough for ac-
curate estimation of short-time transition probabilities in the path
integral methods.

In this paper, we present a new approach to accelerate com-
putation in simulating stochastic dynamics under a new com-
putational paradigm, quantum computing. Quantum computer
takes advantage of quantum mechanical systems to solve com-
plex problems that require much more memory space and time
in the classical computer. The basic computation unit is called
qubit, which is mathematically regarded as a vector in a two-
dimensional (2-D) complex vector space with inner product (i.e.
Hilbert space). An N-qubit system can represent the state space
of 2N dimensions efficiently, where the associated complex-
valued coefficients or amplitudes under the normalization condi-
tion correspond to the probabilities that the system is at a particu-
lar state. With the new approach to represent states in a quantum
computer, the computational efficiency of algorithms that require
large state spaces such as solving FPEs can be dramatically im-

proved.
Here we propose a generic quantum mechanical formula-

tion to model stochastic drift-diffusion processes. It is based on
continuous-time quantum walks. By solving an imaginary-time
quantum system, the evolution of probability distributions in ran-
dom diffusions can be captured. The numerical results show that
the proposed formulation provides an effective approach to sim-
ulate stochastic drift-diffusion processes. More importantly, with
the new formulation that combines quantum and random diffu-
sions, drastic acceleration can be achieved by the use of non-local
correlation in quantum systems. 1-D numerical examples show
that the simulation can be hundreds of times faster than the tra-
ditional path integral method.

In the remainder of the paper, Section 2 provides the back-
ground of numerical methods of solving FPEs and quantum
walks. Section 3 presents the quantum walk formulation of ran-
dom diffusion processes. Section 4 describes the quantum walk
formulation of quantum diffusion and the combined algorithm
to accelerate the stochastic drift-diffusion processes. Section 5
gives numerical examples to demonstrate the effectiveness and
efficiency of the proposed approach.

2 BACKGROUND
2.1 Solving Fokker-Planck Equations for Stochastic

Diffusions
Stochastic drift-diffusion processes can be generally mod-

eled by FPEs, which describe the time evolution of probability
density functions in the state space. Various numerical methods
to solve FPEs have been developed, including Monte Carlo [6],
finite difference [7], spectral approximation [3, 8], and path inte-
gral [9].

In particular, the path integral method has been shown as
a simple yet accurate approach. Wehner and Wolfer [10] used
a short-time transition probability density matrix to approxi-
mate the evolution of drift-diffusion processes. Boundary condi-
tion [11] and time-dependent parameters [12] were also demon-
strated. To improve numerical efficiency and accuracy, Naess
et al. [2, 13] developed a B-spline interpolation approach where
continuous probability density functions are approximated based
upon limited discrete evaluations such that the error reduction
speed is increased to O(τ) with time step size τ. Spencer and
Bergman [4] solved the equation by direct polynomial interpola-
tions in the state space. Di Paola and Santoro [14] extended the
path integral approach for systems under Gaussian white noise
perturbation as in the classical Fokker-Planck equation to the
Kolmogorov-Feller equation under Poisson white noise. Kou-
gioumtzoglou and Spanos [15] developed an analytical approach
to calculate distributions based on a variational formulation for
nonlinear oscillation problems, instead of using short time steps
as in path integrals, to improve the computational efficiency.
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2.2 Quantum Walks
In this paper, we propose a new formulation to simulate

stochastic diffusions based on quantum walks. Quantum walk
can be considered as a quantum version of the classical random
walk, where a stochastic system is modeled in terms of proba-
bility amplitudes instead of probabilities. In the random walk,
the system’s state x at time t is described by a probability dis-
tribution p(x, t). The system evolves by transitions. The state
distribution after a time period of τ is p(x, t + τ) = T (τ)p(x, t)
where T (τ) is the transition operator. In the quantum walk,
the system’s state is described by the complex-valued amplitude
ψ(x, t). Its relationship with the probability is ψ∗ψ = |ψ|2 = p.
The system evolution then is modeled by the quantum walk
ψ(x, t + τ) = U(τ)ψ(x, t) with U being a unitary and reversible
operator. In quantum walks, probability is replaced by amplitude
and Markovian dynamics is replaced by unitary dynamics.

Similar to random walks, there are discrete-time quan-
tum walks and continuous-time quantum walks. The study of
discrete-time quantum walks started from 1990s [16, 17] in the
context of quantum algorithm and computation [18–20]. Al-
though the term, continuous-time quantum walk, was introduced
more recently [21], the research of the topic can be traced back
much earlier in studying the dynamics of quantum systems, par-
ticularly in the path integral formulation of quantum mechanics
generalized by Feynman [22] in 1940’s. The relationship be-
tween the discrete- and continuous-time quantum walks was also
studied. The two models have similar speed performance and in-
trinsic relationships. The convergence of discrete-time quantum
walks toward continuous-time quantum walks has been demon-
strated [23, 24].

3 QUANTUM WALK FORMULATION OF STOCHASTIC
DIFFUSION
In this paper, the dynamics of probability distribution in

drift-diffusion processes is formulated as continuous-time quan-
tum walks. In the new formulation, a stochastic drift-diffusion
process is modeled as an imaginary-time quantum system.

Consider an imaginary-time quantum system that obeys

− d
dt

ψ(x, t) = Ĥ(t)ψ(x, t) (2)

where Ĥ(t) is a generic Hamiltonian, and ψ(x, t) is the probabil-
ity amplitude for the system that is found to be at state x at time
t. A transition rate from state xk to state x j is defined as

ρ jkeiθ jk :=−⟨x j|Ĥ|xk⟩ (3)

where i =
√
−1, ρ jk (ρ jk ≥ 0) is the magnitude of transition, and

θ jk is the phase shift associated with the transition. Then the
probability magnitude of leaving state xk is

ρk := ∑
k ̸= j

ρ jk (4)

and the overall transition rate for state xk is determined by

Wk :=−⟨xk|Ĥ|xk⟩+ρk (5)

A path x(t) is defined as a function of time t. For instance,
x(t0) = i and x(t0 + τ) = j represent the transitional path from
state xi to state x j during a time period of τ. A general functional
integral for the transition from state xi to state x j is given by [25]

Fji :=
∫

dq jie
−i

∫ t0+τ
t0

Wx(s)ds ∏
l→k

eiθkl (6)

where dq ji is the probabilistic measure on the path from xi to x j,∫ t0+τ
t0 Wx(s)ds gives the overall probability of all possible paths

from xi at time t0 to x j at time t0 + τ. At time s, Wx(s) takes

the value given by Eq.(5). e−i
∫ t0+τ

t0
Wx(s)ds can be regarded as the

weight of transition from xi to x j. ∏l→k eiθkl is the total phase
shift factor for all jumps in transition from xi to x j, where each
of eiθkl corresponds to the phase shift for one of the jumps during
the transition.

With the functional integral in Eq.(6), the evolution of prob-
ability amplitude is computed by

ψ j(t + τ) =
1

N0(t + τ) ∑
i

Fjiψi(t) (7)

where ψi(t) is the amplitude of state xi at time t and

N0(t + τ) =
√

∑
j

ψ∗
j(t + τ)ψ j(t + τ)

is the normalization factor.

3.1 Random Diffusion Process
The random diffusion process is described by

− ∂
∂t

ψ(x, t) =−b
2

∂2

∂x2 ψ(x, t) (8)

where b is the diffusion coefficient. Consider a discretized 1-D
lattice space that has a spacing ∆, where the states are simply
denoted by integers as x = . . . ,−2,−1,0,1,2, . . .. Based on the
finite difference approximation, the elements of the Hamiltonian
matrix are given by

⟨ j|Ĥ|k⟩=− b
2∆2 [δ j,k−1 −2δ j,k +δ j,k+1] (9)

where δ j,k is the Dirac delta function defined as δ j,k = 0 if j ̸= k
and δk,k = 1. That is, ⟨k − 1|Ĥ|k⟩ = −b/(2∆2) for left jump,
⟨k+1|Ĥ|k⟩=−b/(2∆2) for right jump, and ⟨k|Ĥ|k⟩= b/∆2. As
a result of Eq.(3), for any transition with k ̸= j,

ρ jk =
b

2∆2 [δ j,k−1 +δ j,k+1]

eiθ jk = 1
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From Eq.(4)

ρk = ρk−1,k +ρk+1,k =
b

∆2

From Eq.(5),

Wk =− b
∆2 +

b
∆2 = 0

Consider that the 1-D transitions are memoryless and the
transition rate is b/(2∆2) per unit time. The numbers of transi-
tions to the left or right direction within a time period follows
a Poisson distribution. That is, the probability that there are l
transitions to the left for time τ is e−bτ/(2∆2)(bτ/(2∆2))l/l!. Sim-
ilarly it is e−bτ/(2∆2)(bτ/(2∆2))r/r! for r transitions to the right.
Assuming the final state is at n steps away and on the right to the
initial state, r − l = n. The probabilistic measure in Eq.(6) for
one path from state 0 to n∆ that has l left jumps is

dq(l)n,0 =
e−bτ/(2∆2)(bτ/(2∆2))l

l!
e−bτ/(2∆2)(bτ/(2∆2))n+l

(n+ l)!
(10)

With zero weight and no phase shift, the complete functional
integral in Eq.(6) for random diffusion processes is the summa-
tion of Eq.(10) over all possible paths with l = 0, ...,∞ as

Fn,0 =
∞

∑
l=0

dq(l)ji = e−bτ/∆2
∞

∑
l=0

( bτ
2∆2 )

2l+n

l!(n+ l)!

= e−bτ/∆2
In(

bτ
∆2 )

(11)

where In(y) is the modified Bessel function of first kind with in-
teger order n and input y (y ≥ 0). Additionally, I−n(y) = In(y).

3.2 Random Drift-Diffusion Process
The random drift-diffusion process is described by

− ∂
∂t

ψ(x, t) =−b
2

∂2

∂x2 ψ(x, t)− iV (x, t)ψ(x, t) (12)

where V (x, t) is the potential function. The elements of the
Hamiltonian matrix are given by

⟨ j|Ĥ|k⟩=− b
2∆2 δ j,k−1 +(

b
∆2 − iVk)δ j,k −

b
2∆2 δ j,k+1 (13)

Similar to Section 3.1, we have

ρ jk =
b

2∆2 [δ j,k−1 +δ j,k+1] (k ̸= j)

eiθ jk = 1

ρk = b/∆2

Wk =−iVk

Here, the weight in Eq.(6) becomes e−i∑l Wlτl where τl is the
duration that the system stays at state l during the transition. If
the total duration of transition τ = ∑l τl is small, then the weight

can be numerically approximated as e−iWnτ where Wn is the tran-
sition rate corresponding to the final state at time t0 + τ.

With the same probabilistic measure as in Eq.(10), the final
functional integral for random drift-diffusion processes is

Fn,0 =
∞

∑
l=0

e−bτVndq(l)ji = e−(Vn+b/∆2)τIn(
bτ
∆2 ) (14)

where Vn is the potential corresponding to the final state at time
t0 + τ.

3.3 Correspondence to FPEs and SDEs
For 1-D state space where x ∈ R, the FPE is

∂
∂t

p(x, t) =− ∂
∂x

[a(x, t)p(x, t)]+
1
2

∂2

∂x2 [b(x, t)p(x, t)] (15)

where a(x, t) and b(x, t) (b ≥ 0) are the drift and diffusion coef-
ficients respectively. The equivalent quantum walk based drift-
diffusion equation, as a generalization of Eq.(12), is

∂
∂t

ψ(x, t) =
1
2

∂2

∂x2 [b(x, t)ψ(x, t)]+ iV (x, t)ψ(x, t) (16)

where ψ∗ψ = p, and the potential V is related to the drift coeffi-
cient a as

∂V (x, t)
∂t

=−a(x, t)

or

V (x, t) =−a(x, t)x+A0

where A0 is a constant that represents a potential shift. Notice
that the value of A0 is not important because the normalization
procedure in Eq.(7).

The corresponding SDE is

dx = a(x, t)dt +b(x, t)dW (t) (17)

where W (t) denotes the Wiener process.
The algorithm to simulate stochastic drift-diffusion pro-

cesses by quantum walks is listed in Table 1. Compared to the
traditional path integral method, this algorithm takes the advan-
tage of the extra information about the long range correlation
between states in the form of Bessel functions. In the traditional
path integral method, such information is not available. There-
fore, the short-time transition probability is restricted to small τ.
In contrast, the numerical efficiency can be improved based on
the proposed quantum walk formulation with longer time steps.
The examples in Section 5 will demonstrate that the time step
can be 5 to 10 times longer than the one in the traditional path
integral. Yet, the most significant improvement on time step ef-
ficiency by the proposed quantum walk approach comes from a
second quantum walk formulation that simulates quantum diffu-
sion. The examples in Section 5 show that a second algorithm
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Table 1. The quantum walk algorithm to simulate stochastic diffusion
processes based on the formulation of random diffusion

Random Drift Diffusion()
Input: initial state ψ0(x), diffusion coefficient b(t),
potential function V (x, t), time step τ, simulation time T
Output: final state ψ(x)
ψ = ψ0(x);
t = 0;
WHILE t < T

update unitary operator U = F(τ,b,V,x, t) by Eq.(14);
|ψ⟩=U |ψ⟩;
t = t + τ;

END

with the combination of quantum and random diffusion simula-
tion can make the time step increment hundreds of times longer.
Therefore, the simulation can be hundreds of times faster than
the traditional path integral method. The quantum walk formu-
lation for quantum diffusion processes is described in the next
section.

4 QUANTUM WALK FORMULATION OF QUANTUM
DIFFUSION
The quantum diffusion obeys the Schrödinger equation

i
d
dt

ψ(x, t) = Ĥ(t)ψ(x, t) (18)

where Ĥ(t) is the Hamiltonian. A transition rate from state xk to
state x j is

ρ jkeiθ jk :=−i⟨x j|Ĥ|xk⟩ (19)

Notice the extra phase shift of i for a transition. Similarly, the
probability magnitude of leaving state xk is

ρk := ∑
k ̸= j

ρ jk (20)

and the overall transition rate for state xk is determined by

Wk := ⟨xk|Ĥ|xk⟩+ iρk (21)

Similar to Section 3, continuous-time quantum walks can be
formulated to model the quantum diffusion and drift-diffusion
processes.

4.1 Quantum Diffusion Process
The quantum diffusion process is described by

i
∂
∂t

ψ(x, t) =−b
2

∂2

∂x2 ψ(x, t) (22)

where b is the diffusion coefficient. The elements of the Hamil-
tonian matrix for 1-D lattice space are the same as Eq.(9). For
any transition with k ̸= j,

ρ jk =
b

2∆2 [δ j,k−1 +δ j,k+1]

eiθ jk = i

ρk = ρk−1,k +ρk+1,k =
b

∆2

Wk =
b

∆2 + i
b

∆2

The probabilistic measure in Eq.(10) still applies. The
weight in Eq.(6) now is

e−i
∫ t0+τ

t0
Wx(s)ds = e−iτ(1+i)b/∆2

For each small jump to the left or right, there is a phase shift
of i. Therefore there is a total phase shift of il in+l = i2l+n =
(−1)l in for l left jumps and n+ l right jumps. Then the complete
functional integral for quantum diffusion processes becomes

Fn,0 =
∞

∑
l=0

[dq(l)ji e−iτ(1+i)b/∆2
(−1)l in]

=
∞

∑
l=0

e−bτ/∆2 (
bτ

2∆2 )
2l+n

l!(n+ l)!
e−iτ(1+i)b/∆2

(−1)l in

= ine−ibτ/∆2
∞

∑
l=0

(−1)l( bτ
2∆2 )

2l+n

l!(n+ l)!

= ine−ibτ/∆2
Jn(

bτ
∆2 )

(23)

where Jn(y) is the Bessel function of first kind with integer order
n and input y (y ≥ 0). Additionally, J−n(y) = (−1)nJn(y).

4.2 Quantum Drift-Diffusion Process
The quantum drift-diffusion process is described by

i
∂
∂t

ψ(x, t) =−b
2

∂2

∂x2 ψ(x, t)− iV (x, t)ψ(x, t) (24)

where b is the diffusion coefficient and V is the potential func-
tion. The elements of the Hamiltonian matrix for 1-D lattice
space are the same as Eq.(13). For any transition with k ̸= j,

ρ jk =
b

2∆2 [δ j,k−1 +δ j,k+1]

eiθ jk = i

ρk = ρk−1,k +ρk+1,k =
b

∆2

Wk =
b

∆2 − iVk + i
b

∆2

For a transition with n steps away from the initial state for a
total period τ, the weight in the functional integral can be calcu-
lated as

e−i∑l Wlτl = e−i∑l [
b

∆2 +i( b
∆2 −Vl)]τl ≈ e(1−i) b

∆2 τ−Vnτ
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Figure 2. Quantum diffusion propagates quadratically faster than ran-
dom diffusion

where Vn denotes the potential at the final state and ∑l τl = τ.
With the probabilistic measure as in Eq.(10) and similar to the
derivation of Eq.(23), the complete functional integral for quan-
tum drift-diffusion processes is

Fn,0 = ine−ibτ/∆2−VnτJn(
bτ
∆2 ) (25)

4.3 Quantum Acceleration
The unique property of non-local correlation in quantum

computation can be demonstrated by quantum diffusion. Fig-
ure 2 compares the diffusion speeds between quantum diffusion
and random diffusion. The figure shows the two diffusions for
one step with the same diffusion coefficient b = 10 but different
step sizes (1.0, 2.0, 3.0, and 4.0), given the same initial state at
x = 0. It is seen that the wave of quantum diffusion propagates
much faster than the random diffusion, which has been shown in
a quadratic order. The larger the step size is, the more significant
the difference becomes.

By taking advantage of the strong non-local correlation in
quantum diffusion, we combine the quantum walk for quantum
diffusion with the one for random diffusion, which significantly
accelerates the simulation of stochastic diffusion. Table 2 lists
the new algorithm with the combination of quantum walks for
quantum diffusion and random diffusion. Two different time
steps, τQ for quantum diffusion and τR for random diffusion, are
needed. The timing of simulation is based on τQ, since the two
respective systems for quantum and random diffusions are in two
orthogonal time domains. A large τQ can be chosen so that the
acceleration is achieved.

Table 2. The quantum walk algorithm to simulate stochastic diffusion
processes based on the formulation of quantum and random diffusions

Quantum Random Drift Diffusion()
Input: initial state ψ0(x), diffusion coefficient b(t),
potential function V (x, t), time step τQ, time step τR,
simulation time T
Output: final state ψ(x)
ψ′ = ψ0(x);
t = 0;
WHILE t < T

update operator UQ = F(τQ,b,V,x, t) by Eq.(14);
|ψ′⟩=UQ|ψ′⟩;
update operator UR = F(τR,b,V,x, t) by Eq.(25);
|ψ⟩=UR|ψ′⟩;
t = t + τQ;

END

5 NUMERICAL EXAMPLES
We developed a quantum computing emulator and the 1-D

quantum walk formulation was implemented and tested in this
environment. Here two examples are used to demonstrate. The
first example is a diffusion process with a linear drift and the sec-
ond one is a bi-stable stochastic resonance system. The effective-
ness of the proposed approach is first demonstrated by compar-
isons with the traditional FPE path integral and SDE Monte Carlo
sampling methods. Then the efficiency of the new approach com-
pared to the path integral method is demonstrated.

5.1 Linear Drift Diffusion Process
The SDE for the diffusion process with a linear drift coeffi-

cient is

dx = (c1x+ c2)dt +σdW

The corresponding potential function in the quantum walk for-
mulation is

V (x) =−c1x2 − c2x

The first set of parameters used in this example are c1 =
−0.1, c2 = 0.2, and σ = 0.3. With the initial distribution p(x =
5.0) = 1.0, the results calculated by the proposed quantum walk
formulation and the traditional path integral method based on
FPEs are shown in Figure 3. The time steps used for the two
methods are both τ = 0.2. A further comparison among the
quantum walk formulation, path integral, and Monte Carlo (MC)
sampling based on SDEs are shown in Figure 4 where the distri-
butions at times t = 6 and t = 70 are compared. The number of
sample trajectories used in the SDE sampling is 50,000. The sec-
ond set of parameters used are c1 =−0.1, c2 = 0.2, and σ = 0.6.
With the same initial distribution and time step, the results of the
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three methods are compared in Figure 5. With a larger diffusion
coefficient than the previous one, the distribution spreads wider.
It is seen that the quantum walk formulation gives the similar
results as the path integral and the SDE sampling methods.
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integral, and SDE MC sampling methods for the linear drift diffusion σ =
0.3
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Figure 5. comparison of distributions from the quantum walk, FPE path
integral, and SDE MC sampling methods for the linear drift diffusion σ =
0.6

5.2 Bi-stable Stochastic Resonance
The bi-stable stochastic resonance phenomenon is a nonlin-

ear response of a system with sinusoidal inputs simultaneously
subject to noises, where the system oscillates between two states
as transitions. The example system is modeled by the SDE

dx
dt

= c1x− c2x3 +a0 sin(2π f0t)+N(t)

where state x changes along time t, c1 and c2 are coefficients,
a0 and f0 are the amplitude and modulation frequency of the pe-
riodic input respectively, and the noise N(t) =

√
2Bξ(t) has the

intensity of B with E[N(t),N(t + s)] = 2Bδ(s), δ(·) is the Dirac
delta function, and ξ(t) is a zero-mean, unit variance Gaussian
white noise. The drift and diffusion coefficients of the corre-
sponding FPE are

A(x, t) = c1x− c2x3 +a0 sin(2π f0t)

and B respectively. In the quantum walk formulation of Eq.(12),
the potential function used here is

V (x, t) =−c1x2/2+ c2x4/4−a0 sin(2π f0t)x

In this example, the parameter values are c1 = 1, c2 = 1,
a0 = 1, f0 = 0.01, and B = 0.31. The range of x in the state
space is between −2 and 2. The chosen time step size is τ = 0.2.
The initial distribution is chosen as p(x = −1.0) = 1.0. Figure
6-(a) shows the comparison of results between the new quantum
walk formulation and the traditional path integral method for the
same problem. It is seen that both methods capture the dynamics
of the stochastic resonance system, where the transitions occur
between two stable states. A closer look is shown in Figure 6-(b).
Different from the previous example, it is seen that the variation
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range predicted by the quantum walk method is slightly larger
than that of the traditional path integral method.

A further comparison is done with the MC trajectories to
solve the corresponding SDE. Figure 7 shows the typical results
from the three methods, which are at time t = 80, where 50,000
trajectories are sampled in the MC simulation. Again, it is seen
that the new quantum walk formulation has the similar accuracy
as the path integral method.
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Figure 7. comparison of distributions from the quantum walk, FPE path
integral, and SDE MC sampling methods at time t = 80

The simulation acceleration of the quantum walk formula-
tion is also demonstrated by the bi-stable stochastic resonance
system. When time step size τ increases, the distributions cal-
culated by the tradition path integral method tend to spread out.
Figure 8 compares the results of the quantum walk based on ran-
dom diffusion only and FPE path integral methods with different
time step sizes. When the time step reaches τ = 0.6, the distri-
butions have become very different from the original solution.
The bistable resonance phenomenon has disappeared. However,
there is little change in the simulation by quantum walks. The
quantum walk simulation result with a large step size of τ = 2.0
as shown in as in Figure 8-(c) is still similar to the original one
from the path integral method with the step size τ= 0.2. To reach
the time t = 200, it takes 1000 iterations with τ = 0.2. However,
the similar result is obtained by only 100 iterations with τ = 2.0
by the quantum walk method.

The drastic acceleration is achieved by the combined
quantum-random diffusion simulation described in Section 4.3.
For each iteration of simulation, a very large step of quantum
diffusion is followed by a small step of random diffusion. Fig-
ure 9 shows four different choices of quantum diffusion step size

τQ. For each one of the four cases, the random diffusion step
size is τR = 0.2. It is seen that the choices of large step sizes can
accelerate the simulation significantly. For the case of τQ = 40,
the acceleration is 200 times faster than the path integral with
τ = 0.2.

6 CONCLUSIONS
In this paper, a new continuous-time quantum walk formula-

tion is developed to simulate stochastic diffusion processes. The
random drift-diffusion process is modeled as the dynamics of
imaginary-time quantum systems. The formulation is generic
and applicable to diffusions with specific potential functions
available. The advantages of the quantum computation approach
for diffusion simulation include the huge state space capacity and
drastic quantum acceleration. It is demonstrated that by combin-
ing quantum and random diffusions in a quantum system and
harvesting the effect of non-local correlation, the simulation can
have a quadratic speed-up. It shows the great potential of quan-
tum computation in simulation. Even if a quantum computer is
not used and its advantage of huge memory capacity is not taken,
the proposed formulation can still be applied on a classical com-
puter and simulate hundreds of times faster than the traditional
path integral method.
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Figure 9. Drastic acceleration achieved by the combination of quantum and random diffusions
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