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In molecular dynamics (MD) simulation, atomic interaction is characterized by the interatomic potential
as the input of simulation models. The interatomic potentials are derived experimentally or from first
principles calculations. Therefore they are inherently imprecise because of the measurement error or
model-form error. In this work, a Reliable Molecular Dynamics (R-MD) mechanism is developed to
extend the predictive capability of MD given the input uncertainty. In R-MD, the locations and velocities
of particles are not assumed to be precisely known as in traditional MD. Instead, they are represented as
intervals in order to capture the input uncertainty associated with the atomistic model. The advantage of
the new mechanism is the significant reduction of computational cost from traditional sensitivity anal-
ysis when assessing the effects of input uncertainty. A formalism of generalized interval is incorporated
in R-MD, as an intrusive uncertainty quantification method, to model the propagation of uncertainty dur-
ing the simulation. Error generating functions associated with embedded atomic method (EAM) inter-
atomic potentials are developed to capture the bounds of input variations to demonstrate interval
interatomic potentials. Four different uncertainty propagation schemes are proposed to capture the
uncertainty of the output. An example of uniaxial tensile loading of single-crystal aluminum is used to
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demonstrate the R-MD mechanism.
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1. Introduction

Modeling and simulation tools are crucial for engineers to
design and develop new materials efficiently. Uncertainty is
always involved in model selection, calibration, and validation pro-
cesses. Reliable simulation predictions require us to quantify input
uncertainty of models. There are two elements of uncertainty in
modeling and simulation: aleatory uncertainty and epistemic
uncertainty. Aleatory uncertainty is the inherent randomness in
the phenomenon being observed, and the impossibility of exhaust-
ing all descriptions deterministically. Epistemic uncertainty can be
generally related to the lack of perfect knowledge about the
involved physical processes [1].

Molecular dynamics (MD) is one of the most widely used ato-
mistic simulation tools. In MD simulation, the aleatory uncertainty
corresponds to any fluctuation of the simulated system, e.g. the
natural thermal fluctuation that can be described by Boltzmann
distribution at an equilibrium microscopic state. The epistemic
uncertainty includes, but is not limited to, the imprecise
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interatomic potentials, the finite size effect, the boundary condi-
tion imposed on the simulation cell, and the cutoff radius of the
interatomic potentials. The aleatory uncertainty associated with
the thermal fluctuation is generally inseparable from MD simula-
tion, and sometimes is induced by the ensemble integrator. For
example, in Langevin thermostat, this thermal fluctuation is
accounted by the friction-noise in the stochastic differential equa-
tions [2]. The epistemic uncertainty in MD simulations is mostly
caused by the imperfection of the interatomic potential. These
interatomic potentials are typically derived from first principles
calculations or approximated based on experimental data. These
results are contaminated by both systematic and random errors.
The systematic errors of first principles calculations come from dif-
ferent approximations and assumptions in the models, such as
Born-Oppenheimer approximation, Hartree-Fock approximation,
and the assumed finite linear combination of the variational solu-
tion based on the set of basis functions [3]. On the other hand, the
systematic errors of experimental results involve measurement
bias and calibration errors. Based on the results, an interatomic
potential model is formulated with a set of parameters to minimize
a measurable error, which usually in turn is converted to a least-
square error problem. Because of the non-negative residual in
curve fitting and approximation error techniques used in deriving
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the interatomic potentials, MD simulations include both model-
form uncertainty and parameter uncertainty. Furthermore, the
epistemic uncertainty from interatomic potential in MD simula-
tions is amplified because the number of interacting pairs, which
scales at least as N?, where N is the number of atoms. Therefore,
quantifying uncertainty in MD simulations is a critical problem,
in both assessing the accuracy and reliability of the simulation
prediction.

Uncertainty quantification (UQ) problems are divided into two
main paradigms, intrusive and non-intrusive methods on proba-
bilistic and non-probabilistic frameworks. In non-intrusive UQ
techniques, the simulation is viewed as a black box, and the simu-
lator is modeled as a one-to-one non-linear function that maps
from the input domains to the output or quantities of interests.
Popular techniques, including stochastic collocation, Monte Carlo,
and global sensitivity analysis, rely on statistical techniques to
build comprehensive output distributions based on the assumed
input distributions. Generalized polynomial chaos expansion is a
widely used technique, and can be utilized either intrusively or
non-intrusively. As an intrusive technique, it has been applied to
solve stochastic differential equations and partial differential equa-
tions with random inputs. As a non-intrusive technique, it is typi-
cally used together with Smolyak sparse grid and nested sets in
stochastic collocation methods.

Other intrusive UQ techniques, such as local sensitivity analysis
and interval-based approaches, aim to provide the output proba-
bility density function or its bounded support for expensive simu-
lation by incorporating and propagating the uncertainty internally
using minimal number of runs. In interval-based approaches, the
uncertainty is coupled into the input and represented by intervals.
The simulator is thus extended to handle the interval inputs and
propagate the uncertainty throughout the simulation. The output
uncertainty, which is also represented as intervals, is computed
at every time step at a relatively cheap computational cost.

Various UQ methods have been applied to multi-scale simula-
tion for materials. Comprehensive literature reviews are available
in [4,5]. Frederiksen and Jacobsen [6] applied Bayesian update to
train the interatomic potentials parameters with experimental
data sets by minimizing the square error between experimental
data and simulation results. Jacobson et al. [7] constructed
response surfaces with Lagrange interpolation to study the sensi-
tivity of macroscopic properties with respect to interatomic poten-
tial parameters. Cailliez and Pernot [8] calibrated Lennard-Jones
potential for Argon based on Bayesian calibration/prediction
framework. Rizzi et al. [9,10] assumed uniform distribution for
the four-site, TIP4P, water model parameters and constructed the
generalized polynomial chaos representation by non-intrusive
spectral projection and Bayesian inference approaches, then later
on, calibrated these force-field parameters based on Bayesian
inference. Angelikopoulos et al. [11] applied the Bayesian calibra-
tion to calibrate the water-carbon interactions based on water con-
tact angles in water wetting of graphene, the aggregation of
fullerenes in aqueous solution, and the water transport across car-
bon nanotubes. Rizzi et al. [9] applied polynomial chaos expansion
to study the effect of input uncertainty in MD. Cailliezf et al. [12]
applied the efficient global optimization algorithms in parameter
space to calibrate the potential parameters for TIP4P model, based
on probabilistic kriging metamodels. Wen et al. [13] studied the
effect of different spline interpolations on the potential predictions
by calculating the quasi-harmonic thermal expansion and finite-
temperature elastic constant of a one-dimensional chain in tabu-
lated interatomic potentials. Hunt et al. [14] developed a software
package for non-intrusive propagation of uncertainties in input
parameters, using surrogate models and adaptive sampling meth-
ods, such as Monte Carlo, Latin Hypercube, and Smolyak sparse

grids, based on generalized polynomial chaos expansion. Li et al.
[15] discussed the cut- and random sample-high dimensional
model representation to quantify the uncertainty induced by
potential surfaces.

As an intrusive approach on non-probabilistic framework, we
recently proposed an interval-based reliable MD (R-MD) mecha-
nism [16,17] that incorporates Kaucher interval arithmetic [18]
into classical MD to quantify output uncertainty. Classical interval
arithmetic provides a complete solution by capturing all possibili-
ties for simple algebraic operations, such as addition, subtraction,
multiplication, and division. Kaucher interval arithmetic general-
izes and extends [19] classical interval arithmetic with better
topology and algebraic properties. Compared to classic interval
arithmetic, Kaucher interval arithmetic is preferred for three rea-
sons. Firstly, the over-estimation problem is significantly reduced.
Secondly, the self-dependency problem, which also results in an
over-estimation of a function, where dependent variables are
repeated more than once, is mitigated. Thirdly, the negation and
reciprocal operations with respect to addition and multiplication
exist. In contrast to the Kaucher interval space, the classical inter-
val space only forms a semi-group algebraic structure because of
the lack of invertibility. In R-MD, the input uncertainty associated
with interatomic potentials is captured in interval forms, either as
intervals or as interval functions. Consequently, the atomistic posi-
tions, velocities, and forces are also interval-valued. Fig. 1 plots a
schematic sketch of simple 2D R-MD simulation cell, where the
atomistic positions are interval-valued. The exact atomistic posi-
tions and velocities are unknown, but bounded by intervals. In this
paper, the details of how Kaucher interval arithmetic is applied in
simulation including interval potential, interval force computation,
and interval statistical ensemble are described. In Section 2, we
review the algebraic operations of Kaucher interval arithmetic. In
Section 3, the formulation of interval potential and interval force
are discussed, and four R-MD uncertainty propagation schemes
are implemented in the framework of Large-scale Atomic/Molecu-
lar Massively Parallel Simulator, also known as LAMMPS [20]. An
application to tensile uniaxial deformation of aluminum single
crystal is demonstrated in Section 4, including UQ results, compar-
isons between different schemes, finite-size effects, and compar-
ison with sensitivity analysis results as a part of verification
process. Following are the discussion in Section 5 and conclusion
in Section 6.

2. Kaucher interval arithmetic

The classical interval space, denoted as IR, is a collection of clas-
sical interval, where the upper bound is strictly greater than or
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Fig. 1. Schematic illustration of R-MD in 2D.
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equal to the lower bound, that is, X > x. The Kaucher interval space
is a collection of Kaucher intervals, denoted as KR, is an extension
of classical interval space IR, where the aforementioned constraint
of upper and lower bounds is removed. The dual operator simply
swaps the lower and the upper bounds of an arbitrary interval
simultaneously, as dual [x,X] := [, x]. In order to distinguish arith-
metic operation on KR to IR, the addition, subtraction, multiplica-
tion, and division operator are denoted with a circumscribed

operator, and defined as follows. [x,X]® [XJ’] = [x+¥,?+ﬂ.
[x,X]o € [5 —X,?—y]. XX ® [X,y] is defined in Table 1.
x, ?}ﬂ{z,y] =XX® [1/?, UX]- In Table 1, the generalized interval

space KR is decomposed into four  subspaces:
P:={xcKR | x>0, x>0} contains positive intervals,
Z:={xc KR | x<0<Zx} contains proper interval that include

zero, —P:={xc KR |
anddual 2 := {x e KR |
that include zero.

Let x* =max{x,0}, x~ =max{-x,0}, xVvy=max{x,y}, the
multiplication table can be further simplified by Lakeyev’s formula
[21] as

—Xxc P} contains negative intervals,
dual ¥ € Z}contains improper intervals

(x,%] [x&] = [(&T)
-(xy)

x|

®Y)-®yIVEF),®Y)VEY)
®y")] (1)

The Kaucher interval space KR is equipped with a norm defined as

V
V

%] := max{|x|, [X| } (2)
with the following properties:

||x|| = 0 if and only if ¥ = O (separates points),
l*+y| < %] + ly|| (subadditivity or triangle inequality),
|lox|| = |ot|||®]| with o € R (absolute homogeneity).

A induced distance metric on KR is then can be defined as an exten-
sion of norm between x and y as

dx.y) := max {}x -yl X -1}, 3)

which is related with the norm by d(x,0)=|x|| and
d(x,y) = |®x ©y|. As shown in [18], KR is a complete metric space
under the defined metrics d(-, -).

Definition 1. An interval x is proper if the upper bound is greater
than or equal to the lower bound, that is, x < X. An interval and
called improper if that lower bound is greater than or equal to the
upper bound, that is, x > X. If two bounds equal each other, x =X,
then x is a degenerated, pointwise or singleton interval, and has a
real value.

Definition 2. An interval is called sound if it does not include inad-
missible solutions; an interval solution is called complete if it
includes all possible solutions. In general, a sound interval is a sub-
set of the true solution set, whereas a complete interval is a
superset.

3. Reliable Molecular Dynamics (R-MD)

Using Kaucher intervals, R-MD incorporates the input uncer-
tainties in the interatomic potential with the interval forms. The
sensitivity of the interested quantities with respect to inputs is
assessed on-the-fly at every time step. Compared to the non-
intrusive solutions, the intrusive UQ techniques significantly
reduce the computational time to estimate the uncertainty of the
output.

3.1. Representations of atoms’ position, velocity and forces intervals

There are mainly two ways to represent an interval x = [x,X],
either as upper bound X and lower bound x, or midpoint
mid(x) =1 (X +x) and radius rad(x) =1(x — x). The advantage of
the lower-upper bounds representation is that the computational
time is optimized, because most of the interval calculations are
performed under this representation. However, it would require
heavy modifications to incorporate the intervals into MD simula-
tion. On the other hand, the midpoint-radius representation can
be built as a simple extension based on the classical MD packages.
The midpoint values of atoms’ interval positions, velocities, and
forces intervals can be assigned as the values in classical MD at
every time step, and the radii can be computed based on the lower
or upper bounds accordingly. With the radii of the interval posi-
tions, velocities, and forces, the uncertainty of the quantities of
interest can be quantified accordingly. The drawback of this tech-
nique is that it is not computationally optimal because of the
repetitive converting processes to lower-upper bounds
representation.

A caveat for midpoint-radius representation is the over-
constraint problem of choosing radius values for atoms’ interval
positions, velocities, and forces. This problem is described in
Fig. 2a. Because the values from classical MD are not necessarily
the exact midpoint, two radii are differentiated. One is inner
radius, the other is outer radius. The inner radius is the smaller dis-
tance from midpoint to one of the interval bounds, whereas the
outer radius is the larger distance. If the inner radius is chosen,
the interval is sound and the solution underestimates the true
uncertainties. If the outer radius is chosen, the interval is complete
and the solution over-estimates the true uncertainties. In the inner
radius case, the soundness is chosen over the completeness. In the
outer radius case, the completeness is chosen over the soundness.
Based on the introduction of radius variable, Fig. 2b presents the
possibility of decoupling radius variables from the interval vari-
ables for the atomistic positions, velocities, and forces. This is an
advantage of the midpoint-radius representation because instead
of building interval objects to handle, the decoupling allows the
direct calculation of the radius variable, which in turns can be used
to quantify the uncertainty of the output.

3.2. Interval interatomic potential
The interatomic potentials are approximated based on physical

models and therefore they are inherently imprecise due to approx-
imation errors. Typically, the model and its parameters are chosen

Table 1
Definition of Kaucher multiplication.
yeP yez ye-P yedual 2
xer . 9] %] %.9] . 9]
Xecz (xy,xy] {min {g,@ ,max {&XWH {xﬁ,g} 0
e’ [9.%] [7.2] 9.9] %]
x € dualz [’Q QX} 0 Xy, 9] [max {&XW} min {)Q_/XX}]
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(a) The over-constraint problem by the choice of inner
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midpoint-radius representation.

Fig. 2. Illustration of (a) the relationship between inner-outer radius with sound-complete solution and (b) decoupling of radius values in R-MD.

to fit for a particular purpose using curve fitting techniques, or
multi-linear regression analysis to minimize the residue, or maxi-
mum likelihood estimator, associated with the interested output
quantities. In MD, these quantities are usually lattice constant,
phonon-dispersion curve, stacking fault energy, melting point tem-
perature, thermoelastic properties, as well as other mechanical and
thermal properties of a material.

In R-MD, interval-valued interatomic potentials are applied to
model the input uncertainty. For example, for Lennard-Jones
potential, the well depth ¢ and the location at which the inter-
atomic potential between two atoms is zero ¢ can be generalized
as [¢,¢] and [g,d]. For tabulated potentials such as embedded
atomic model (EAM), some analytical error generating functions
can be devised to represent the error bounds of potentials and
the interpolation error of the potentials. With interval-valued
interatomic potentials, the forces are also intervals. The update of
positions and velocities is based on Kaucher interval arithmetic,
which is described in Section 2.

3.3. Interval force calculations

The force computation plays a pivotal role in R-MD. Theoreti-
cally, it is a simplification of a NP-problem. Consider a 2D R-MD
simulation, where an arbitrary atom has N neighboring atoms, as
sketched in Fig. 3a. Mathematically, the interval force can be com-
puted rigorously by considering the interaction between vertices of
each individual rectangles, as illustrated in Fig. 3b. For 2D, in one
neighboring list, this approach leads to 4" possibilities to compute
a total resulting force for one atom at every time step, and thus
very exhaustive. The problem is worse in R-MD 3D, because the

number of possibilities increases to 8". Without approximations
and simplifications, this problem leads to an exhaustive search to
find a good estimation of interval forces. To simplify, the inter-
atomic forces are computed based on the centroids of the prisms
with weak-strong variation assumptions. This statement will be
explained in further details for EAM potential in the next section.

3.3.1. An example of interval-valued potential: Interval EAM potential

In this section, our previous work in [16] to introduce
uncertainty in EAM potentials is summarized. The EAM is a
semi-empirical, many-atom potential and well suited for metallic
systems. Instead of solving the many-electron Schrodinger equa-
tion, the total energy of a solid at any atomic arrangements can
be calculated based on the local-density approximation. This
approximation views the energy of the metal as the energy
obtained by embedding an atom into the local electron density
provided by the remaining atoms of the system. In addition, there
is an electrostatic interaction, which is the two-body term. Each
atom can be viewed as an impurity in the host of other atoms,
and when an impurity is introduced, the total potential is a sum
of host and impurity potentials. Daw and Baskes [22,23], following
Stott-Zaremba corollary, proposed an approximation to the total
potential as

Eoi = Y F(py) + 3 (1) @)

¢(ry) is the short-range pairwise potential describing the electro-
static contribution. p; is the density of the host at the position r;
but without atom i. The host density can be further approximated
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Fig. 3. 2D R-MD force simplification problem.

by a sum of the atomic density f of the constituents as
pi = > j..fi(ry), where f;, the local density function, is a simple func-
tion of the position of other atoms positions. F is the embedding
energy function, which is the energy to place an atom in the electron
environment at the local electron density p;.

In the R-MD mechanism, the interatomic potential uncertainty
is modeled by two forms of error generating functions, e; (r;) and
e2(p), which are associated with p(ry) or ¢(r;), and F(p), respec-
tively, depending on whether the function’s domain is the electron
density p or the interatomic distance r. The interval electron den-

sity function is [B, ﬁ] (rij) = p(ry) ie(f)(r,»j), the interval pairwise
potential is {Q,ﬂ (ry) = ¢(ry) £ e? (ry), and the interval embed-

ding energy function is [F,F](p) = F(p) + €’ (p). We refer to e;(r)
as type I error generating function which associates with r domain,
and e, (p) as type Il error generating function which associates with
p domain. As the interatomic distance between two atom i and j
rij — oo, their interaction becomes weaker and approach to 0
asymptotically. On the other hand, the electron density function
p(rij) and the pairwise potential ¢(r;) of r; must remain bounded
as rj — 0. In addition, the inclusion properties of interval must
be kept for both the original functions and their first derivatives.
Consequently, the type I error generating function e, (r) is required
to satisfy the following six conditions. The error function and its
first derivative must be bounded in the vicinity of zero, i.e., (1)
lim,_oe; (r) < oo and (2) lim,_o %" < oc. The function and its first
derivative must decay asymptotlcally, i.e, (3) lim,_.e;(r) =0 and

(4) lim,_,, =} "e' = 0. The value of the function and its derivative
must be included in the interval, ie., (5)
Vr e [0,00) elf(n e (r) and (6) L0 e [W] where

f denotes the function elther p(rij) or ¢(ryz). Based on the six
required conditions, two analytical and admissible forms are
found. They are a rational function where the denominator is one
degree higher than the numerator as

amr+dap

0 = by bir o+ by

(3)
and an exponential function as

ei(r) = ae™™ where b > 0. (6)

Similarly, the analytical choice of type II error generating func-
tion associated with F(p) is limited by five conditions. (1) The error
function must have a negative finite slope at p = 0 for F(p) £ e,(p),
i.e. —oo < M < 0. (2) The function must have a positive slope

at large electron density for F(p) £+ ez(p). (3) The function must
decay asymptotically when two atoms are far away, i.e.
lim,_.e;(p) = 0. (4) The function must be non-negative function,
i.e, ex(p) = 0,VYp € [0,00). (5) The local extrema (in this case, max-
ima) at p = p, because F(p) + e,(p) attains its minimum p, as well,

thus M = 0 means that *3”)| _ — 0. The condition (5)
corresponds to the so-called effective pair scheme, which requires
the embedding function to attain its minimum at the density of
equilibrium crystal [24]. One analytical choice of the error generat-

ing function of type II that satisfies all of these conditions is

‘p: Po

p bpy 1
extp) —a( L) Ve bs g ¢ (0.1} @)
Po Po

For EAM potential, the classical force for atom ith based on its
neighborhood (jth atoms) is calculated as

- . 0p:(r . .
Fizz{aféw) 20l e 26
J#i P P=Pi r r=rjj P P=p; r r=rjj
G s
Coor r=rj Tij

where F is the vector force, F(p) is the embedding energy, p(r) is the
local electron density function, ¢(r;) is the pairwise potential. For
interval EAM potential, the upper and lower bounds of the interval
force are extended based on the classical force calculation and cal-

culated separately as
Fo 5 OFi(p)| 789(;)@) . 0;3,-<r) el ()]

ap |P:Px 9p p=p; or I=Tjj or |r:r,»J
L(Ew|  _oe’p) ) (opn)| o€l
ap |, " ap - ar -

=i
or
)} (7-7) ; ") )

r=r

ae(r)
ar
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Fo_ S| (R L0 eé” (2
J# 9 - "' p=pi
. (8pj(r){ a el ( o el (p)
ar |,:,I,j - -, op -
_(ap,-<r> L2 e1 Loedm
or rr; s r ,U ar ry
w (10)

If the error generating functions are zeros almost everywhere, the
interval force converges to the classical force, which is a singleton
interval. Fig. 4a illustrates the computation of atomistic interval
radius at each time step. The atomic interactions between atom i
and its neighbors are assumed to vary within some ranges and
become slightly stronger or weaker based on the prescribed interval
potential functions. Therefore, the total force acting on atom i at one
time step can be captured by an upper bound and a lower bound, or
an interval force vector. The upper bound and lower bound of the
force interval can have different magnitudes, as well as different
directions, as illustrated Fig. 4b. Compared to our previous work
[16,17], here the signum function is not included to allow more
variations in the interval interatomic forces.

3.4. Uncertainty propagation schemes

Four schemes are developed to quantify and propagate the
uncertainty. They are termed midpoint-radius, lower-upper
bounds, total uncertainty principle, and interval statistical ensem-
ble schemes.

3.4.1. Midpoint-radius scheme

At each time step, the lower and upper bounds of the pairwise
interval force can be separately computed according to the
interval-valued potentials. Based on the midpoint-radius represen-
tation of an arbitrary interval in Kaucher interval space KR, the inner
and outer radii of force intervals can be computed respectively as

min{f—f*,f* —[}, if [j:,f] is proper

inner [jjﬂ ) max {f —ff 7f} if [[f] is improper »
TR e N
outer L‘ ] - n{f_f i f} if [ij] is improper

\
cutoff |
radius

i
\
- force lower bound ;
= force upper bound
(a) pairwise force between atom 1
and its neighbors:

bounds calculation

upper and lower

where f* denotes the nominal force from traditional MD calculation,
f and f denote the lower and upper bounds of the interval forces,
respectively. This formula is consistent with the fact that a proper
interval has positive interval radius, and an improper interval has
negative interval radius. The radius of pairwise interval force is then
computed based on the choice of inner or outer radius. The radius of
each pairwise interval force associated with atom i can be summed
together within its neighborhood to produce the radius of the total
interval force for atom i at one time step. The corresponding radii
for atomistic interval velocities and interval positions can then be
updated accordingly. At each time step, the midpoint value of pair-
wise interval force is reassigned as the usual nominal pairwise force
value f* in classical MD simulation, as shown in Fig. 2a. With the
radius and midpoint of the atomistic interval forces, velocities,
and positions, one can reconstruct the according intervals of atom
i at that time step. The advantage of this scheme is that the number
of operations can be reduced based on the fact that the midpoint of
interval positions and interval velocities are equal to the classical
MD values and the calculations of radii and midpoints can be
decoupled, as described in Section 3.1. The decoupling process
allows for shortening computational time by computing the radii
of the atomistic intervals directly. The computational procedure is
summarized in Algorithm 1.

One technical issue of the midpoint-radius uncertainty propa-
gation scheme is that the inner radii tend to underestimate the
uncertainty of the forces, positions, and velocities, whereas the
outer radii tend to over-estimate the uncertainty. Therefore, two
runs of simulation, one with inner radii option, the other with
outer radii option, are recommended. Although the actual interval
bounds are unknown, the results from these two simulation runs
can give a good estimate of error bounds. The choice of inner radii
is associated with higher soundness, whereas the choice of outer
radii is associated with higher completeness, because the solution
set is broader in the later case.

A caveat for this implementation scheme is that for
isothermal ensemble, such as isothermal-isobaric (NPT)
statistical ensemble, the uncertainty associated with temperature
is pessimistically large even though the epistemic uncertainty
associated with temperature should be small, because it
mostly fluctuates around a constant. The temperature is computed
by

N o2
Kinetic Energy = Zﬂ =

%deBT (12)

|

(b) total force acting on atom 7 at one
time step

Fig. 4. The computational process of the interval force acting one atom at every time step.
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where N is the number of atoms, k; is the Boltzmann constant, T is
the temperature, and d is the dimensionality of the simulation.
Because of the over-estimation issue, the uncertainty associated
with temperature is set as 0 in this scheme to preserve the isother-
mal properties of the statistical isothermal-isobaric ensemble, and
hence only the uncertainties in atoms’ positions and forces con-
tribute to the pressure uncertainty. The output of this scheme is
the radii values of the interval output.

Algorithm 1. Implementation of midpoint-radius scheme.

for every time step do

compute the total upper bound force f

compute the total lower bound force f

compute the total nominal force f~

compute the pairwise force interval radius rad(f) based
on the choice of inner or outer radius

rad(v) « rad(v) + rad(f)/m
7: rad(x) — rad(x) + rad(v) - At

aR RNy

@

8: quantifying uncertainty by interval radius of atomistic
positions, velocities, and forces
9: end for

3.4.2. Lower-upper bounds scheme

The second approach to implement R-MD mechanism is to uti-
lize the lower and upper bounds representation of Kaucher inter-
vals to model the uncertainty of each atoms in the MD
simulation. Therefore this approach is referred to as lower-upper
bounds scheme throughout this work. In this approach, the upper
and lower bound values of the atomistic positions, velocities, and
forces, as well as their nominal values are retained at every time
step. The nominal value of the atomistic interval velocities are
updated based on the classical MD, whereas the lower and upper
bounds of the atomistic interval velocities are updated from the
nominal velocities and the lower and upper bounds of the total
interval force. In the same manner, the nominal value of the ato-
mistic interval positions are updated based on the nominal value
of the atomistic interval velocities, whereas the bounds of the ato-
mistic interval positions are updated according to both the nomi-
nal value of the atomistic interval positions and the bounds of
the atomistic interval velocities. This computational scheme is
described in Algorithm 2 for velocity-Verlet integrators. The output
of this scheme is interval outputs, with lower and upper bounds.

Algorithm 2. Implementation of lower-upper bounds scheme.

for every time step do
compute the total upper bound force f
compute the total lower bound force f
v—uv+f/m
T—v+f/m
ve—v+f/m
X—x+v-At
X—X+7v-At
X—X+uv-At
compute interval outputs
end for

So0RND UL WN

3.4.3. Total uncertainty principle scheme

In this computational implementation, besides using the error
generating function to quantify the uncertainty in the atomistic

total force, the radii of atoms’ interval velocities are assumed to
be a fixed percentage of the magnitude of velocities. The total
uncertainty principle scheme is conceptually equivalent to the
temperature scaling process in isothermal-isobaric ensemble by
coupling the simulation system to a thermostat. The scheme is
based on the so-called total uncertainty principle, which states that
the total uncertainty level of the system during two consecutive
observations remains the same. As a result, the uncertainty needs
to be scaled back from time to time during simulation. The physical
meaning of this process is that the temperature of the simulation
cell is measured at every time step, so that the total uncertainty
of the simulation is roughly at the same scale throughout the sys-
tem. The scaling process is mathematically expressed as

rad(v) = 0% - v*, for Kaucher interval subscheme (13)

rad(v) = o% - |v*|, for classical interval subscheme (14)

where v* denotes the classical MD values of the atoms’ velocities,
which is also the nominal values of the atomistic interval velocities.
Egs. (13) and (14) are associated with Kaucher intervals and classi-
cal intervals, respectively. The total uncertainty principle scheme is
implemented according to Algorithm 3. The total uncertainty
scheme with the strictly non-negative radius of interval velocities,
described by Eq. (14), as the total uncertainty scheme with classical
intervals. The other uncertainty scheme, described by Eq. (13), is
referred to as the total uncertainty scheme with Kaucher
intervals. The total principle uncertainty scheme can be thought as
an extension to the midpoint-radius scheme described in
Section 3.4.1.

Algorithm 3. Implementation of total uncertainty principle
scheme.

1: for every time step do

2: compute the total upper bound force f

3: compute the total lower bound force f

4: compute the total nominal forcef”

5: compute the pairwise force interval radius rad(f)
based on the choice of inner or outer radius

6: rad(v) — o% - v* or rad(v) — o% - |v*|

7: rad(v) « rad(v) + rad(f)/m

8: rad(x) «— rad(v) - At

9: quantifying uncertainty by interval radius of atomistic
positions, velocities, and forces

10: end for

3.4.4. Interval statistical ensemble scheme: interval isothermal-
isobaric (NPT) ensemble

As a result of incorporating the uncertainty into each atomistic
position, velocity and force, the system control variables also have
their own uncertainty and should be consequently modeled as
intervals. For example, in NPT ensemble, the pressure and temper-
ature of the system are the control variables and could be repre-
sented as Kaucher intervals. Furthermore, if the simulation cell is
coupled to a chain of thermostats and barostats, then the positions,
velocities, and forces of thermostats and barostats can also be
modeled as Kaucher intervals and updated via Kaucher interval
arithmetic. The advantage of this approach is that the scheme pre-
serves the dynamics of the statistical ensemble, and therefore the
uncertainty of the system can be quantified more rigorously. We
refer to this scheme as the interval statistical ensemble scheme.
The computational procedure of the interval statistical ensemble
scheme is summarized in Algorithm 4.
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In the NPT statistical ensemble, the simulation cell is coupled to
the Nosé-Hoover chain (NHC) of thermostats and barostat. The cor-
responding interval governing equations of motions [25] are
extended to Kaucher intervals space KR as

[, F] = [p;n‘l,'] @[pé\f] @ [r, 7,

1 Tr[&,p*g} [P@P_:

[ﬂﬁ]:[ﬁ,ﬂ}@&—i@[&,ﬁ]eﬁf W, @P;© _Q ]®[p,-,p,-]

[Be.Bs] = V([Puw. Puc] & 1Po) © [.11] © [£. 5] o [0, 1]

sl r]
® lf; m, g’él Lo [y, By,
[ékﬂ] = [kafk] fork=1,..., M

5] _i{&f} ot lpen]" e poni]

o 0+ e o ] o 22T

—
[eyBe | = Weknxt : (15)

where [r;, 7] and [&,E] are the interval positions and momentum
of atom i, respectively, {h, H] is the interval cell matrix, {pg,p*g] is
the interval modularly invariant form of the cell momenta, [@, ?k]

and {ptkpfk} are respectively the thermostat interval variable and

its conjugated interval momentum of the kth thermostat of the
Nosé-Hoover chain of length M. The constant m;, W,, and Q, are
the mass of atom i, barostat, and kth thermostat, respectively. The
mass of the barostat and thermostats are used to tune the frequency
where those variables fluctuate. The tensor I is the identity matrix.
The constant Ny = 3N is the system degrees of freedom. Tex and Pex;
denote the external temperature and external hydrostatic pressure,
respectively. The matrix X is defined by

L =h,' (t — IPe)h," (16)

The extended interval time integration schemes are also imple-
mented, following the time-reversible measure-preserving Verlet
integrators derived by Tuckerman et al. [26].

Algorithm 4. Implementation of interval statistical ensemble
scheme.

for every time step do

compute the total upper bound force f
compute the total lower bound force f

compute the total nominal forcef”

update interval velocities [z, 7] and nominal velocities
v* based on the interval statistical ensemble

update interval positions [x,X] and nominal positions x*
based on the interval statistical ensemble
7: compute interval outputs
8: end for

a b W N =

@

4. An example of R-MD: uniaxial tensile loading of an aluminum
single crystal oriented in (100) direction

The R-MD mechanism and four uncertainty propagating
schemes are implemented on LAMMPS [20]. For each atom, the
lower and upper bounds of positions, velocities, and forces, are
added and retained in the computer temporary memory for every
time step. Based on the interval positions, velocities, and forces, we
followed the virial formula to compute the interval or radius of the
microscopic symmetric pressure tensor. The implementation of the
interval statistical ensemble is based on the modified C-XSC
libraries [27] to include Kaucher interval arithmetic.

In the rest of this section, the simulation setting of a case study
of uniaxial tensile loading of an aluminum single crystal is intro-
duced in Section 4.1. Section 4.2 introduces the interval EAM
potential for aluminum based on the error generating functions
described in Section 3.3.1. Section 4.3 present the numerical
results of the study. Section 4.4 compares the results of different
uncertainty propagation schemes against each other. In Section 4.5,
different schemes and their effectiveness are verified according to
the soundness and completeness levels. In Section 4.6, the results
are further verified by studying the finite-size effects of four differ-
ent schemes.

4.1. Simulation settings

A R-MD simulation of stress-strain relation for fcc aluminum
single crystal loaded in (100) direction [28-30] is adopted. The
simulation cell contains 10 lattice constants in x, y, and z direc-
tions, and 4000 atoms. The simulation time step is 1 fs, and peri-
odic boundary condition is imposed for all directions of the
simulation cell. The modified interval EAM aluminum interatomic
potential used here is developed based on Mishin et al. [24], which
was originally derived from both experiments and first principles
calculations. The simulation cell is equilibrated for 20 ps, and the
lattice is allowed to expand at each simulation cell boundary to a
temperature of 300 K and a pressure of 0 bar. After the equilibra-
tion, all the uncertainties associated with the system control vari-
ables are reset to 0, and all the atomistic intervals are degenerated
into singleton intervals. Next, the simulation cell is deformed in x
direction at a strain rate of & = 107'° s! under the NPT ensemble.
The symmetric microscopic pressure tensor is then computed as

p. — Y M U, Uy N lejzﬁk,f k;
v 1% 1%
where m is the mass of the atoms, r, #, and f are the atoms’ positions,
velocities, and interatomic forces, respectively. The pressure tensor
component P,, is taken as the stress ¢ and engineering strain values
¢ are output into a separate file, which later is post-processed in

(17)
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Variations of Aluminum potentials in MD
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Fig. 5. Uniaxial tensile deformation of aluminum simulation cell using various
interatomic potential.

MATLAB. As a self-consistency check, we also ran another simula-
tion with 40 x 40 x 40 lattice constants with 1fs time step, and
another 10 x 10 x 10 with 0.1 fs to compare with the simulation
results. Our interested quantity is the stress, which is also one the
outputs of the simulation, and is directly proportional to P,. Thus,
the goal of this case study is to quantify the uncertainty associated
with the element P,, in the microscopic pressure tensor.

Fig. 5 presents the results of stress ¢ = Py, versus strain ¢ using
aluminum EAM interatomic potentials from Winey et al. [31], Mis-
hin et al. [24], Voter and Chen [32], Zhou et al. [33], Liu et al. [34],
Mendelev et al. [35]. Fig. 5 shows that the choice in potentials in
MD simulation is indeed a major source of uncertainty, and
demonstrates the need for quantifying uncertainty in MD
potentials.

4.2. Interval EAM potential for aluminum based on Mishin’s potential

One example of type I error generating function associated with
p(r) is shown in Fig. 6a, where e;(r) = ae", along with the sensi-
tivity analysis results in Fig. 6b. Table 2 specifies the numerical
parameters and the associated functional form to generate the
uncertainty in the modified Mishin’s aluminum potential [24]. An
error generating function for p(r) in the exponential form is shown
in Fig. 7a, and the sensitivity analysis result is shown in Fig. 7b.

An example of type II error generating function is shown in
Fig. 8a, the sensitivity of stress-strain relation because of the error
is shown in Fig. 8b. The result shows that the curve is much less
sensitive with respect to type Il errors than to type I errors.

®(r) as a function of r

---original
- 15t derivative

r axis

(a) Enclosed ¢(r) and its first deriva-

tive by the error generating function
(@) (..

ey (rij)

Table 2
Error generating function parameters used in the simulation sensitivity analysis.
Function Error Functional form Parameters

type

Pairwise potential ¢(r;) Type 1 ey (r) = aebr a = 2.0000,
b=0.7675
Electron density p(r) Typel  e(r) =aebr a=0.0139,
b = 0.4993
Embedding function F(p) Type Il _ (p\PP by py @ =0.2700,
ex(p) fa(m) e b—1.5000

4.3. Numerical results

In this section, we concentrate on Mishin et al. [24] EAM poten-
tial, where the cutoff radius is 6.28721 A, and study three sets of
parameters for error generating functions, as tabulated in Table 3.
We also set p, = 1.0 for all the schemes and o = 0.001 for the total
uncertainty scheme.

We compare and analyze the error qualitatively with tables and
contrast the patterns of different schemes in Section 4.4. Fig. 9a
shows the lower and upper bounds of pressure P,, using the inter-
val statistical ensemble during the equilibration phase, with the
parameters described in Table 3. Fig. 9b presents the magnified
view of Fig. 9a in the window of 16-20 ps. The corresponding
terms for Py, and P, are similar to Fig. 9. As an illustration,
Fig. 10a shows the interval positions of atoms as prisms at the time
t = 12 ps within the simulation cell where the midpoints of atoms’
interval positions are computed from the Verlet integrals, where
the parameters from Table 2 have been used. The periodic bound-
ary is plotted as the box. In the implementation, the interaction
between particles is modeled by the extended Newton’s third
law as

Fy, Fy] + [F;i,Fi] =0 (18)
or equivalently
rad(Fj) = —rad(F;) (19)

in Kaucher interval form, where half of the interval radii should be
positive, and the other half are negative. To verify this, the radii his-
togram of the atom positions in x-direction at 12 ps is also plotted

as in Fig. 10b. It shows that the mean p = 2.45064-10°~0 as
expected. The distribution appears to be normal. The radii his-
tograms of the atom position in y- and z-directions are similar to
Fig. 10b.

Sensitivity Analysis of ¢(r)
12 [=Original EAM pot
+ Modified EAM pot +€§m(r)
10 |- Modified EAM pot —e{”) ()

Stress (GPa)
(o2}

0 0.05 0.1 0.15 0.2 0.25
Strain

(b) The sensitivity analysis results of
¢(r) with respect to the error gener-
ating function egd)) (riz)

Fig. 6. (a) Error generating function in ¢(r) and (b) sensitivity analysis results.



150

p(r) axis

F(p) axis

03

A.V. Tran, Y. Wang/Computational Materials Science 127 (2017) 141-160

p(r) as a function of r

---original

- 15t derivative

r axis

(a) Enclosed p(r) and its first deriva-

tive by the error generating function
P

ei (rij)

Stress (GPa)

Sensitivity Analysis of p(r)

[=-Original EAM pot
+ Modified EAM pot +e§p)(r)
Modified EAM pot —e”(r)

0.1 0.15

Strain

0.25

(b) The sensitivity analysis results of
p(r) with respect to the error gener-

ating function egp )(rij)

Fig. 7. (a) Error generating function in p(r) and (b) sensitivity analysis results.
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Fig. 8. (a) Error generating function in F(p) and (b) sensitivity analysis results.
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Table 3
Error generating function parameters used in numerical study.
F
ei’'(r) ' ¢’ ()
a b a b a b
1.2500- 102 9.2103-107" 1.3930-10* 1.2668 - 10° 1.0800- 103 1.5000 - 10°
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Fig. 9. Relationship between the lower bound Py, the upper bound P,y and the nominal Py, in the pressure tensor component of y-direction.

(a) Microscopic pressure Py, fluctua-
tion with nominal values, lower and
upper bounds during equilibration
phase.

(b) Magnified view for microscopic
pressure Py, in Figure 9a between
16ps and 20ps during equilibration
phase
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Atomistic box in Reliable-MD Simulation at step 12000

Z-axis(A

e //X;m
20 \\\ /(//// 20
Y-axis(A) 90 X-axis(A)
(a) Orthographic view of simulation cell in MATLAB where atoms are pre-
sented as prisms according to their interval centers and radii at time 12ps
during the deformation process in the interval statistical ensemble scheme.

Histogram of the atomistic interval position in z-direction
250 - ; ; s : -

Counts

0.1 0.15

-0.1 -0.05 0 0.05

Radius of the atomistic interval positions in z-direction(A)
(b) Histogram of the radii of atomistic interval positions in x-direction in
Figure 10a shows a mean very close to 0 in midpoint-radius representation
scheme, illustrating Newton’s third law in interval form.

Fig. 10. (a) Visualization of R-MD mechanism in MATLAB for interval statistical ensemble scheme and (b) the histogram of the radii of atomistic interval in x direction with a

normal distribution fit whose mean very close to 0.

4.4. Comparisons of numerical results for different schemes

To measure the deviation between the results from these four
implementation schemes and those of the classical MD simulations
and compare the errors between different schemes, the maximum
deviation from the nominal values to the interval bounds,

Ale) = { rad[a(¢),0(¢)]l, for midpoint-radius
| max{[a(e)—00(e)|,|a(e)—00(e)]}, forlower-upperbounds
(20)

is used to describe the absolute error, where ¢g(¢) is the lower bound
and @ is the upper bound of the stress, respectively, go(¢) is the
result of the classical MD simulations for the same simulation cell
size. The maximum deviation A(¢) is equivalent to the I..-norm of
[0,7] — 60 in R? for any ¢ of the simulation.

Fig. 11a presents the general comparison graph among four
implementation schemes, where the total uncertainty scheme is
further splitted into two subschemes, one with classical intervals,
and the other with Kaucher intervals. As indicated in Fig. 11a,
the total uncertainty scheme with classical intervals clearly covers
all the possibilities of the solutions, whereas other schemes follow
very closely with the classical MD simulation result. Fig. 11b pro-
vides a magnified view of Fig. 11a, where the ranges of strain
and stress are 0.0901 < ¢ < 0.0943 and 5.4486 < 0 < 5.6817. We

note that for all the schemes, the classical MD simulation result lies
between the lower and upper bounds. More interestingly, for the
total uncertainty scheme with Kaucher intervals, the lower and
upper bounds sometimes swap the positions, but still capture the
classical MD simulation solution in their ranges. This observation
is contrast with the total uncertainty scheme with classical inter-
vals, where an over-estimated solution is expected, as presented
in Fig. 11a. After the plastic deformation, the result in interval sta-
tistical ensemble schemes does not follow the classical MD simula-
tion result as closely as other non-propagating schemes, such as
the midpoint-radius scheme and the lower-upper bounds scheme,
but the absolute errors are comparable in the elastic portion during
the deformation process. Fig. 12a shows another set of stress-strain
results with larger error generating function parameters, where
e’ (r):a=12500-10", b=6.9078-10""; &Y (r):a=1.3930.
102, b=8.8305-10""; e’(p):a=1.0800-10"%; b =1.5000-
10°. Fig. 12b presents the magnified view of Fig. 12a, where the
ranges of strain and stress are 0.0901 < &< 0.0943 and
4.900 < 0 < 6.0000, similar to the window of Fig. 11b for compar-
ison purposes. The patterns of these stress-strain curves are analo-
gous to those of Fig. 11.

Fig. 13a compares the absolute value of outer radius A(¢) for the
range 0 < ¢ < 0.1. Fig. 13d presents the same plot, but the total
uncertainty with Kaucher intervals scheme is removed to further



152

Comparison of R-MD using various scheme

A.V. Tran, Y. Wang/Computational Materials Science 127 (2017) 141-160

-¢-Stat.Int. upper

12 T T

10

]

T = Stat.Int. lower

-¢-Up.Low. upper

= Up.Low. lower

-¢-Mid. Rad. upper

= Mid. Rad. lower
Tot.Unc.Classical upper
Tot.Unc.Classical lower

-¢-Tot.Unc.Kaucher upper

= Tot.Unc.Kaucher lower

Stress (GPa)
(=)

10x10x10 Original

=

2
0 1 1
0 0.05 0.1 0.15 0.2

Strain

(a) General comparison between the results of all schemes showing bands with
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(b) Magnified view of Figure 1la where 0.0901< & <0.0943 and 5.4486<
o <5.6817 showing the total uncertainty scheme with Kaucher intervals swap

bounds during the simulation.

Fig. 11. Comparisons of the stress outputs computed by four different schemes. The figures show that in all implementation schemes, the classical MD simulation result is

contained in the range of the implementation results.

contrast the error between the other three schemes. All of them
show that the uncertainty of the simulation slightly decreases dur-
ing the elastic deformation. The uncertainty in the interval statisti-
cal ensemble decreases with a slower rate, compared to the
midpoint-radius and lower-upper bounds scheme. There is a good
agreement between the midpoint-radius and the lower-upper
bounds scheme results, because in the midpoint-radius, the mid-
point of interval stress is assigned as the classical MD value, and
in the lower-upper bounds scheme, the upper and lower bounds
are also calculated based on the classical MD value as well. It is
then expected that the uncertainty estimated by these two meth-
ods are comparable. One common feature between the midpoint-
radius scheme and the interval statistical ensemble scheme is that
the uncertainty does not oscillate as heavily as in the total uncer-
tainty ensemble scheme with (Fig. 13a) and the lower-upper

bounds scheme (Fig. 13d). This observation is explained by the
hypothesis that compared to the non-propagating implementation
schemes, the schemes that propagates the uncertainty tend to pro-
duce smoother transition between time step. Last but not least, in
three schemes excluding the total uncertainty scheme, the uncer-
tainty of the stress is predicted to grow larger after the yield point,
especially in the interval statistical ensemble scheme (Fig. 13c).
However, the interval statistical ensemble scheme predicts much
fluctuation of the stress before the yield point (Fig. 13d), which
perhaps makes more physical intuition.

Table 4 compares the computational time and slow-down factor
between the different schemes to the classical MD simulation. The
computational time is obtained by running the simulation with dif-
ferent schemes on 4 processors with MPI support. The slow-down
factor is calculated the ratio of the computational time using R-MD
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Fig. 12. Comparisons of the stress outputs with larger variation, computed by four different schemes. The used parameters are e%‘“(r) :a=1.2500-10"", b =6.9078-107";

e’ (r):a=13930-10">,b=28.8305-10""; e}’ (p) : a = 1.0800-10"%; b = 1.5000 - 10°.

to the classical MD simulations, showing a factor of between 4 and
5 times slower compared to the classical MD simulations. This
result shows the advantage of the proposed intrusive UQ method.
Non-intrusive UQ techniques, such as generalized polynomial
chaos expansion, and stochastic collocation, could have much more
significant slow-down ratios. It demonstrates that the intrusive UQ
techniques are much more computationally affordable to high-
fidelity simulations, where the computational time can vary from
days to months.

4.5. Verification and validation

We repeat the sensitivity analysis as in Figs. 6-8 in Section 3.3.1
with the error generating function parameters as tabulated in
Table 3. Fig. 14a presents an overview of the four implementation
results along with the sensitivity analysis results. The total
uncertainty scheme with classical intervals provide a complete

but also over-estimated solution. However, it does capture the
variations around the yield point and after the plastic deformation.
The results of sensitivity analysis is compared with the results of
different schemes. We follow the soundness and completeness
concepts described in Section 2. Fig. 15 explains the relationship
between the estimated, the sensitive and the true range of uncer-
tainty in UQ problem. The sensitive range, which is the solution of
sensitivity analysis, is a subset of the true range. Theoretically, the
true range can be obtained by Monte Carlo sampling methods.
Practically, such methods are very computationally expensive
and thus are not applicable. To evaluate the effectiveness of differ-
ent schemes, the results obtained by R-MD are contrasted with the
sensitivity analysis results using classical MD simulation with
modified potentials by the error generating functions described
in Section 3.3.1. A solution set is sound if it does not include an
inadmissible or impossible solution; a solution set is called com-
plete if it covers all possible solutions [36]. In Fig. 15, if the esti-
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(d) leo-norm A(e) in three schemes (ex-
cluding the total uncertainty scheme)
between 0 < ¢ < 0.165 indicates a
considerable fluctuation of stress uncer-
tainty in the interval statistical ensem-
ble scheme before the yield point.

Fig. 13. Plots of A(¢) = max{|G — 0o|, |o — 0o} in different schemes.

Table 4
Comparison of computational time for various schemes in R-MD.

Classical MD Midpointradius

Lower-upper Tot. uncertainty Int. ensemble

1989.812
4.252

Computational time (s) 467.941
Slow-down factor 1

1911.058
4.086

1932.983
4.1308

2170.92
4.639

mated range X is a subset of the true range X7, that is X C Xy, then
X is sound. If X; C X, the solution set X; is complete. As intervals
can also be thought of as the sets of possible solutions, the term
solution set is hereby used interchangeably with the interval or
the range.

In measure theory, the Lesbegue measure p is a standard way of
assigning a measure to a subsets in R". For 1D, 2D and 3D, the
physical meaning of Lebesgue measure is the length, the area
and the volume of the set. The soundness is assigned as the ratio
of Lesbegue measure of the overlapped range X N X7 and the Les-
begue measure of the estimated range. Similarly, the completeness
is assigned as the ratio of Lesbegue measure of the overlapped
range Xg N X7 and the Lesbegue measure of the true range.

Soundness Index — “XeNX1)
H(XE)
_ AXenXo)
Completeness Index = e -

The soundness and completeness indices are mathematically
bounded between 0 and 1, as obviously Xg N Xy is the subset of X
and Xr. The soundness close to 1 means the estimated solution
set contains nearly all possible solutions, but also is likely to under-
estimate true solution set. Analogously, the completeness index
close to 1 indicates a complete but over-estimated solution sets.
In this case, the true solution set Xy is approximated by the sensitive
range Xs, which is defined as the smallest proper interval that con-
tains 7 classical MD simulation results. The equivalent mathemati-
cal expression is Xt ~ Xs. The sensitive range Xs includes 1 run with
original interatomic potential and 6 other runs with modified inter-
atomic potentials by the error generating functions, whose param-
eters are tabulated in Table 3. Consequently, the soundness and
completeness indices are approximated as

Xe N Xs)
WXg)
AXe N Xs)
H(Xs)

Soundness Index ~

Completeness Index =~ (22)
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(b) Zoom-in plots of estimated stress uncertainties and sensitive stress uncertain-
ties between 0.07 < & < 0.075 and 4.25 < ¢ < 4.70. The sensitive range is filled

as shaded area.

Fig. 14. The schematic plot and actual plot of output uncertainty. In this simulation, the sensitive range is the min and max of classical MD simulation results with the
original interatomic potential and the alternated potentials by adding or subtract error generating functions to one of its three functions.

Fig. 16a and b plots the soundness and completeness of the four
schemes, respectively, with the total uncertainty scheme is further
divided into classical and Kaucher intervals. Fig. 16a and b also indi-
cates that the R-MD results overlap with the sensitivity analysis.
One of the differences with Section 3.3.1 sensitivity analysis is that
the original result no longer always lies in the middle of the
+el) (p), e (r), +el)(r) as in Section 3.3.1. Indeed, among 7 runs,
the result of the classical simulation run with the original inter-
atomic potential ends up with 10.40% getting the maximum value
and 14.40% getting the minimum value in 7 values accounting for
the sensitivity analysis results. The total uncertainty scheme with
classical intervals achieves the completeness of 1 thoroughly dur-

ing the simulation, implying that it always covers all of the true
solution set. The soundness of the interval statistical ensemble
scheme, along with midpoint-radius and lower-upper bounds
schemes, are more consistent compared to the total uncertainty
scheme. Their results represent mostly between 50% and 100% of
the sensitive range. The completeness is, however, less consistent
and fluctuates much, meaning they do not cover all the possibilities
in the sensitive ranges, and thus will not cover all the possibilities in
the true ranges as well. The total uncertainty scheme with Kaucher
intervals captures the uncertainty most effectively after the defor-
mation process, with high completeness (around 80-90% in
Fig. 16b) and reasonably high soundness (30-40% in Fig. 16a).



156

A.V. Tran, Y. Wang/Computational Materials Science 127 (2017) 141-160

Estimated range X
Overlapped range Xg N Xs
Sensitive range X

True range X 2 X

Fig. 15. Schematic plot of estimated, sensitive and true range of uncertainty. The
sensitive range Xs obtained by parametric study or sensitivity analysis is always a

subset of the true range Xr.

Mathematically, the sensit

ive range is a subset of the true range,

Xs C Xr, which also means p(Xs) < pu(Xr). Eqs. (21) and (22) can be
manipulated algebraically further to establish the relationship

HXenXs) _ uXenXr)
U(XE) S wXe) @3)
and
WXeNXs)  wXgnXr) — wXe N (X7 \ Xs)) (24)
uXs) H(Xr) — X1\ Xs)

Range Coverage (between 0 and 1)

T
e .

———

because of the additivity properties of Lesbegue measure on disjoint
sets Xr=XsU (XT \Xs) and XsN (XT \Xs) =7 = H(XT) = ,U(Xs)+
(X7 \ Xs). Consequently, the actual soundness is expected to be
higher than Fig. 16a if the true range Xr is known. However, there
is not enough numerical evidence to draw a conclusive comment
about the completeness in Fig. 16b. The completeness could either
increase or decrease depending on how £Xe0X1Xs) compares with

UERXs)
Mle21) Yet, one can be certain that if the output is not complete

compared to the sensitivity analysis result, the output is also not
complete compared to the true solution set.

4.6. Finite-size effect

We performed finite-size effect analysis for four implementa-
tion schemes with 10 x 10 x 10 (4000 atoms), 12 x 12 x 12
(6912 atoms), 14 x 14 x 14 (10,976 atoms) and 16 x 16 x 16
(16,384 atoms) lattice constants of the simulation cell with param-

Soundness between different schemes and sensitivity analysis
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(a) Soundness indices of different uncertainty schemes.
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of different uncertainty schemes.

Fig. 16. Comparison of soundness and completeness indices between different uncertainty schemes.
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Finite—size effect of R—MD using statistical interval ensemble
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Fig. 17. Finite-size effect of R-MD and MD, where solid lines denote the 10 x 10 x 10, dotted lines denote 12 x 12 x 12, dashdot lines denote 14 x 14 x 14, dashed lines

denote 16 x 16 x 16.

Finite-size effect analysis based on A*
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Fig. 18. Error analysis of A" for different schemes with respect to different sizes of
the simulation cell.

eters as in Table 3. The results of R-MD are then compared with the
results of the classical MD simulations with the corresponding size
of 10 x10x 10, 12 x12x 12, 14 x 14 x 14 and 16 x 16 x 16.
Fig. 17 presents magnified view of the finite-size effect of the inter-
val statistical ensemble between 0.07 <&<0.075 and
4.25 < 6 < 4.70. The solid lines denote the 10 x 10 x 10, the dot-
ted lines denote 12 x 12 x 12, dashdot lines denote 14 x 14 x 14,
dashed lines denote 16 x 16 x 16 simulation results. Also, on the
same graph, the diamond markers denote the upper bound, the
square makers denote the lower bound and the circles denote
the classical MD simulation results.

To measure the convergent of different uncertainty quantifica-
tion schemes, the strain-averaged absolute stress error between
0<&<0.1, denote as A",

0.1
A= 017 /0 A(e)de (25)

where A(¢) is the maximum deviation from the nominal to the
interval end bounds in Eq. (20) because of the input uncertainty
in the interatomic potential, is used to verify the finite-size effect
of different schemes. The reason that & = 0.1 is picked as the upper
bound of the integral is that after the simulation cell runs into plas-
tic deformation, it is hard to quantify and predict the error exactly,
and between the range [0, 0.1] the stress ¢ versus strain ¢ curves are
more consistent so that they can be compared qualitative against

*

each other. Mathematically, A" is proportional to the L;-norm of
A(e) because A(¢) measures how far the interval bounds is com-
pared to the nominal values. Concisely, A" is a compound L o[-
norms to qualitative describe the finite-size effect of the simulation
results. We expect other compound norms of the same kind, that is,
L, o l;-norms, to behave similarly, and thus, the quantity A* can be
justified as an arbitrary measure for the finite-size effects. The value
of A" is obtained by integrating the A(¢) numerically by trapezoidal
rule. Fig. 18 presents the integral strain-averaged absolute stress
error A" with respect to different sizes of the simulation cell,
showing a convergent error with respect to the size of simulation
cells for all the schemes. The total uncertainty scheme with Kaucher
intervals has one more parameter o to model the temperature mea-
surement at every time step, thus it is not expected to exactly fol-
low other schemes. However, the total uncertainty scheme with
Kaucher interval still shows a convergent pattern with respect to
the increase size in the simulation cell. We then conclude all four
implementation schemes yield reliable results.

5. Discussion

There are different advantages and disadvantages between
intrusive and non-intrusive techniques that one should consider
before applying any of these methods. Disadvantages in intrusive
UQ techniques are as follows. Simulator is required to be modifi-
able. Analysts need to have comprehensive understanding of how
to apply intrusive UQ techniques to that simulator. Extra time is
also needed to develop UQ solution. However, these drawbacks
can be mitigated by introducing an open framework or application
program interfaces in simulation packages by developers to assist
the analysts. The main advantages of intrusive UQ techniques are
their ability to estimate the variation ranges of outputs (via inter-
val analysis) or the probability density function itself (via intrusive
polynomial chaos expansion) without sampling inputs and repeat-
ing the simulation. The simulator developers and UQ analysts can
work together to have UQ embedded in simulator so that the
detailed knowledge of UQ is not required as the user of simulator.
On the other hand, disadvantages of non-intrusive UQ techniques
are as follows. First, simulation needs to be repeated throughout
the input parameter space, even though this problem can be alle-
viated by using sparse grids. Second, there are many cases where
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the input parameters of simulation are functions. Capturing uncer-
tainty associated with these functions is still a challenge to non-
intrusive UQ techniques. The advantages of non-intrusive UQ
include the possibility of building a computationally efficient sur-
rogate model or a meta-model of simulations so that the output
can be quickly evaluated. It also allows to capture the output prob-
ability density function in details. Non-intrusive UQ techniques can
be developed as independent packages to couple with any
simulations.

The interval UQ technique is an intrusive and non-probabilistic
that promptly provides the range estimation for the bounds of out-
put probability density function with only one or two runs. For the
algorithm with midpoint-radius representation, the output result
is an interval radius, of which midpoint is identical with classical
MD simulation. With the choice of inner or outer radius, the results
will be different, and therefore two runs are recommended. One
run is with the inner radius for all atomistic positions, velocities,
and forces, whereas another run is with outer radius. Between both
of them, the choice of inner radius provides higher soundness, but
lower completeness, compared to the choice of outer radius. For
the algorithm with lower-upper bounds representation, the output
result is an interval which contains the quantified uncertainty
information, and thus only one run is needed in this case. Between
two interval representations, the lower-upper bounds representa-
tion is superior to the midpoint-radius representation, because the
former only requires one run, based on the fact that two bounds
are computed simultaneously. Additionally, all of the interval Kau-
cher arithmetic computations are carried out based on the lower-
upper bounds representation as in Lakeyev’s formula and Kaucher
multiplication table, which are described in Section 2. Therefore,
the lower-upper bounds representation saves computational time
compared to midpoint-radius representation.

Beside the low number of runs needed to obtain a UQ solution,
the interval technique also allows to capture and incorporate the
uncertainty associated with the input potential functions into sim-
ulation, by modeling the error generating function. In this study,
two forms of analytical error generating function are proposed.
Other forms of error generating functions can also be similarly
implemented. Even though not considered in this study, the
interval technique can also be applied to capture aleatory uncer-
tainty associated with thermal fluctuation. For example, the alea-
tory uncertainty of Langevin thermostat can be quantified by
interval-valued atomistic force, velocity, and position to solve the
stochastic differential equations. By quantifying the uncertainty
internally, the intrusive UQ method offers an efficient way to
assess sensitivity without sampling. The interval approach can be
viewed as an efficient alternative technique to sampling-based
sensitivity analysis where variation ranges are estimated. How-
ever, if the complete information of probability density functions
is required, one should resort to the probabilistic approaches.

As the simulation schemes change, new intrusive UQ solutions
are required to be developed to adapt with the changes in simula-
tion. During this study, we have implemented and provided a basic
platform that can be extended to general intrusive UQ solutions in
LAMMPS package. Still, there is a bargaining trade-off between the
time invested to develop an intrusive UQ solution and the time
spent on repetitive simulations for non-intrusive UQ techniques.
Another limitation of the interval technique at the current stage
is its inability to quantify output probabilistically, such as joint
density, correlations, and moments. A more advanced concept that
fuses both interval and statistical method is probability bounds
analysis [37] that envelops the cumulative density function by
using interval methods. Based on the uncertain cumulative density
function, one can derive the uncertain probability density function,
and thus other statistical quantities. In addition, quantifications of
correlation between intervals [38] and between random sets [39]

have been studied to assess interdependency similarly to the prob-
abilistic approach. These issues remain as open questions for future
research.

The classical interval has been shown to be a conservative
choice, in the sense that it almost always produces a complete
but over-estimated range. Therefore, the Kaucher intervals are
used as a substitute an extension because of better algebraic prop-
erties. The Kaucher interval arithmetic yields a much smaller epis-
temic uncertainty compared to the classical interval arithmetic by
the introduction of improper intervals, and hence tends to reduce
much the impact of over-estimation and self-dependency problem
in classical intervals, and perhaps keep the epistemic uncertainty
within some acceptable bounds. For MD simulation with EAM
potential functions, the Kaucher interval technique is considerably
efficient in term of computational time, because this methodology
does not require the simulation to repeat numerous times. In our
study, the computational time is between 4.1 and 4.6 times more
than the classical MD simulations, which is an important improve-
ment in term of computational time.

One of the criteria to evaluate the effectiveness of a UQ solution
is to compare the estimated uncertainties with the true ones. If the
estimated uncertainty is considerably greater compared to the true
uncertainty, the solution does not hold much valuable, meaningful
or conclusive information. For output with probability density
function, such as polynomial chaos expansion, Monte Carlo, and
Latin hypercube sampling methods, one can, for example, measure
the distance between two distributions by any L[’ norm, or Kull-
back-Leibler divergence. For output with range or probability den-
sity function bounded support estimation, represented as intervals,
one can compare the estimate interval with the true interval
derived from any sampling methods. The effectiveness of interval
UQ method is then quantified by soundness and completeness
indices, which are bounded between 0 and 1. Physically, these
indices measure the ratios of the width of the “shared” interval
to the width of estimated and true intervals. Since the true interval
is not available, we approximate the true interval by finite sam-
pling runs with alternated potentials. The approximated soundness
and completeness indices are then compared to the true one by
algebraic relations. For the uniaxial tensile of aluminum single
crystal example with NPT ensemble in this study, the UQ solution
are shown to be more sound and complete during the elastic defor-
mation regime than the plastic deformation regime.

So far, we have considered the uncertainty of the force by com-
puting the total lower and upper bounds interval force separately.
Another way to compute the force uncertainty is to consider its
contribution from each individual pairs. This scheme has also been
attempted in the study, and the same issue for this implementation
scheme is that the temperature uncertainty is very large, even
compared to the total uncertainty scheme with classical intervals.
The same treatment for temperature is also applied, that is, the
uncertainty of pressure is only calculated by the interval force
and interval position term, but not the kinetic term. Still, the epis-
temic uncertainty are too large to declare a meaningful approach
for the UQ problem. In fact, the pressure UQ problem with con-
straint on the temperature uncertainty in this case study is a spe-
cial case of another more general problem, which is a UQ problem
with uncertainty constraint on related quantities.

Four different implementation schemes have been developed to
quantify the uncertainty in MD simulations. The total uncertainty
scheme with classical intervals produces the most conservative,
yet over-estimated results, as expected. The total uncertainty
scheme with Kaucher intervals is less conservative, and follows
more closely with the interval statistical ensemble and other
results. The o parameter is set to 0.001 through trials and errors.
Reducing this o parameters will also reduce the width of the
interval stress. Perhaps the most interesting findings in these sim-
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ulation runs is that the uncertainty does not always grow larger.
Indeed, it becomes smaller toward the yield point. However, only
in the interval statistical ensemble, the stress uncertainty heavily
fluctuates after the yield point. In our opinion, this behavior truly
reflects the simulation uncertainty because in the interval statisti-
cal ensemble, the system dynamics is preserved from the begin-
ning to the end of the simulation. Therefore, the interval
statistical ensemble is recommended for the propagating schemes.
Regarding the completeness and soundness of the interval statisti-
cal ensemble, the interval stress is fairly sound, based on the fact
that its estimated range provides at least 50% of the true solution
set (Fig. 16a). Yet, it is not complete, but also covers around 50%
of the true solutions on average (Fig. 16b). For non-propagating
schemes, the total uncertainty schemes with classical intervals is
recommended, because it demonstrates the worst-case scenario.
For most of the deformation process, this level of conservative
yields a very low soundness on the solution. However, right after
the yield point deformation process, it represents almost 60% of
the solution set (Fig. 16a). If one is concerned with the behavior
of the stress right after the peak, then the total uncertainty scheme
is suggested. The completeness of the total uncertainty scheme
with classical intervals is uniformly 1, implying that it always cov-
ers more than all possibilities.

6. Conclusions

In this paper, we introduce a novel concept of MD that uses
interval analysis to quantify the uncertainty in MD simulation.
The uncertainty in tabulated EAM potential is captured by analyt-
ical forms of error generating functions. Based on the uncertainty
of the inputs, four different implementation schemes are proposed
and developed to quantify the uncertainty of the simulation.
Among these four schemes, the total uncertainty and the lower-
upper bounds are non-propagating, and the midpoint-radius
scheme and the interval statistical ensemble are propagating
schemes. For non-propagating schemes, at every time step, the
uncertainty of the simulation system is estimated, but not carried
forward to quantify the uncertainty at the next time step. The
physical interpretation is that these non-propagating schemes
compute the uncertainty of the output due to the uncertainty of
the interatomic potentials at every time step. For propagating
schemes, the uncertainty of the simulation system is quantified
and propagated toward the end of the simulation. The midpoint-
radius scheme and total uncertainty scheme utilizes the
midpoint-radius representation of intervals, whereas the lower-
upper bound scheme and the interval statistical ensemble scheme
use the lower-upper bounds representation of intervals. In the
non-propagating schemes, such as lower-upper bounds and total
uncertainty schemes, the oscillations of uncertainty are expected.
At different time steps in these non-propagating schemes, the
uncertainty of the system is quantified by the interval force, which
originally comes from the interatomic potentials uncertainty.
Because the uncertainty does not propagate from the previous time
step to the current time step, it fluctuates more heavily compared
to that of propagating schemes. In propagating schemes, such as
interval statistical ensemble and midpoint-radius schemes, the
uncertainty propagates from the beginning of the simulation to
the end. Based on the findings in this work, the interval statistical
ensemble is recommended for investigating the uncertainty quali-
tatively and quantitatively, because it preserves the simulation
dynamics and only generalizes the real number to intervals. On
the other hand, the total uncertainty scheme with classical inter-
vals is also recommended due to their completeness. Even though
the estimated solution range are over-estimated most of the time,
this scheme can be very useful during critical events (the yield

point in this case). However, one should process with caution
respect to the o parameter. In this study, o was tuned to 0.001
mostly by trials and errors. The advantage of R-MD is that the
uncertainty can be quantified based on one or two runs of the sim-
ulations, compared to hundreds or thousands runs of other non-
intrusive UQ techniques. The experience, along with the results
found in this paper, shows that the interval statistical ensemble
is the most promising direction to quantify and propagate the
uncertainty. Further work will include the implementation of more
interval interatomic potential such as Lennard-Jones, Stillinger-
Weber, and others.
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