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Abstract

In this work, we present a constrained batch-parallel Bayesian optimization (BO) framework, ter-

med pBO-2GP-3B, to accelerate the optimization process for high-dimensional and computationally

expensive problems, with known and unknown constraints. Two Gaussian processes (GPs) are simul-

taneously constructed: one models the objective function, whereas the other models the unknown

constraints. The known constraint is penalized directly into the acquisition function. For every

iteration, three batches are built in sequential order: the first two are the acquisition hallucination

and the exploration batches for the objective GP, respectively, and the third one is the exploration

batch for the classification GP. The pBO-2GP-3B optimization framework is demonstrated with

three synthetic examples (2D and 6D), as well as a 33D multi-phase solid-liquid computational fluid

dynamics (CFD) model for the design optimization of a centrifugal slurry pump impeller.

Keywords: Bayesian optimization, batch parallelization, known constraint, unknown constraint,

feasibility classification, computational fluid dynamics

1. Introduction

Bayesian optimization (BO) is a surrogate-based black-box optimization technique that models

and updates the response surfaces sequentially as the optimization process advances. It has proven to

be successful in many different applications including machine learning [1] and design optimization

[2] [3]. Several notable advantages of BO, compared to other optimization techniques, include5

derivative-free, active learning, uncertainty quantification, and mathematical robustness in high-

dimensional continuous design space. Yet, the application of classical BO in engineering simulation-

based optimization problems is often limited by several factors. First, the computational cost of the
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traditional BO is expensive, where each functional evaluation is a single simulation, which can take

hours to finish. Combined with the sequential sampling approach in the classical BO, the turnaround10

time significantly increases. Second, the successful rate of simulations can be well estimated, but

occasionally the simulation will crash due to some unforeseeable factors, e.g. mesh problems, solver

issues, or an ill-conditioned matrix. This is a common behavior in the development of complex

simulations. Therefore, improving these two aspects of simulation-based optimization problems is

critical to the optimization problem of complex engineering simulations.15

In order to solve optimization problems with complex engineering simulations, in concert with the

growth of high-performance computing (HPC) infrastructure, the classical BO has been extended to-

ward different possible directions: batch parallelization, constrained, multi-objective, multi-fidelity,

scalable, and mixed-integer optimization [4]. Batch parallelization for BO is the implementation of

selecting a batch, where several concurrent functional evaluations can be performed simultaneously20

in order to obtain the optimal solution in the shortest wall-clock time. Constrained BO includes

constraints in the classical BO formulation. The constraints can be conceptually divided into two

main categories: known constraints, where the constraints are imposed beforehand and can be eva-

luated without running the functional evaluator, and unknown constraints, where the constraints

are unknown a priori, and only known once the functional evaluator is revoked. For example, in25

engineering applications, the known constraints can be thought of as a collection of inequality con-

straints, where physics-based knowledge is injected to form a set of inequalities upon the design

variables. The unknown constraints, on the other hand, can be established once the functional

evaluator or the modeling simulation fails to obtain a convergent solution. Progress on improving

BO is elaborated in Section 2.30

With the introduction of the known and unknown constraints, the design space is naturally

divided into two regions: feasible and infeasible. The feasible region includes inputs which do not

violate any constraints, whereas the infeasible region includes inputs which violate any of these

constraints. In order to search for a feasible and optimal input, one needs to predict whether the

input is feasible, before attempting to evaluate the functional value. As a result, the binary clas-35

sification for feasibility is needed to make such a prediction. Here we propose a novel algorithm

pBO-2GP-3B to batch parallelize the classical BO for the general constrained BO problem and

demonstrate its applications to complex modeling and simulation methods, such as multi-phase

computational fluid dynamics (CFD). The known constraint is penalized directly in the acquisition

function of the classical BO, whereas the unknown constraints are learned through a classification40

Gaussian process (GP). A novel acquisition function formulation is devised and generalized to in-

2



corporate the known and unknown constraints, as well as the trade-off between exploitation and

exploration in the classical BO. It is noteworthy that the new acquisition function is applicable for

any choice of commonly used acquisition functions, such as probability of improvement, expected

improvement, upper-confidence bound. The novel methodology is demonstrated with three synt-45

hetic two-dimensional and six-dimensional examples (2D and 6D) and an engineering CFD (33D)

example.

2. Related work

The BO formulation can be briefly summarized as follows. Given the unknown objective

function y = f(x), we wish to find the optimal solution that maximizes the objective function50

xopt ∈ argmax f(x). Instead of directly optimizing this unknown black-box function, the GP model

is constructed as a response surface. For the classical BO method, the next sample is sequentially

chosen to maximize the acquisition function, which can be computed numerically based on the con-

structed GP response surface. The acquisition function dictates the location of the next sampling

design site by reconciling the trade-off between exploration (navigating to the most uncertain re-55

gion) and exploitation (driving the solution to the best-so-far) in the optimization process. While

recently there have been significant advances in devising other acquisition functions, the most po-

pular acquisition functions are probability of improvement (PI) [5], expected improvement (EI) [6]

[7] [8], and upper-confidence bound (UCB) [9, 10].

Brochu et al. [11], Shahriari et al. [4], Frazier [12], and Jones et al. [13] provide comprehensive60

and critical reviews of the classical sequential BO method, including a different acquisition function,

as well as its applications. Here we adopt the notation from Shahriari et al. [4], and briefly

summarize the GP formulation.

Assume that f is a function of x, where x ∈ X is the d-dimensional input. A GP (µ0, k) is

a nonparametric model over functions f , which is fully characterized by the prior mean functions65

µ0(x) : X 7→ R and the positive-definite kernel, or covariance function k : X × X 7→ R. In GP

regression, it is assumed that f = f1:N is jointly Gaussian, and the observation y is normally

distributed given f , leading to

f |X ∼ N (m,K), (1)

y|f , σ2 ∼ N (f , σ2I), (2)
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where mi := µ(xi), and Ki,j := k(xi,xj). Equation 1 describes the prior distribution induced by70

the GP.

The covariance kernel k is a choice of modeling covariance between inputs. One of the most

widely used kernel is the squared exponential kernel, which can be described as

Ki,j = k(xi,xj) = θ2
0 exp

(
−r

2

2

)
, (3)

where r2 = (x − x′)Γ(x − x′), and Γ is a diagonal matrix of d squared length scale θi. The

exponential kernel is also commonly used, which can be described as75

Ki,j = k(xi,xj) = θ2
0 exp (−r) . (4)

Let the dataset D = (xi, yi)
N
i=1 denote a collection of N noisy observations and x denote an

arbitrary input of dimension d. Under the formulation of GP, given the dataset Dn, the prediction

for an unknown arbitrary point is characterized by the posterior Gaussian distribution, which can

be described by the posterior mean and posterior variance functions, respectively as

µn(x) = µ0(x) + k(x)T (K + σ2I)−1(y −m), (5)

and80

σ2
n = k(x, x)− k(x)T (K + σ2I)−1k(x), (6)

where k(x) is the covariance vector between the query point x and x1:N .

Estimating hyper-parameters θ of the objective GP involves optimization of the likelihood and

computation of the determinant and the inverse of the covariance matrix, resulting in O(N3) al-

gorithmic complexity. One of the significant drawbacks for the classical BO is the computational

bottleneck in optimizing the maximum likelihood function as the number of observations N incre-85

ases. In section 2.1, several common acquisition functions in BO are reviewed. In section 2.2, the

relevant work on constrained BO and its incorporation to classical BO is presented. In section 2.3,

the related work on batch parallel BO is summarized and discussed.

2.1. Acquisition function

In the classical BO, a GP model is constructed and updated sequentially as the optimization90

process advances. Consider a dataset {xi, yi}Ni=1, where N is the number of observations, xi is the

input, and yi is the actual observation in the classical BO settings. Denote µ(x), σ2(x), and θ(x) as

the posterior mean, the posterior variance, and the hyper-parameters of the GP model, respectively.

In practice, the hyper-parameters θ are found by maximizing the log likelihood estimation (MLE) at
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every iteration over a plausible range between lower and upper bounds of θ. Let xbest ∈ argmax
xi

f(xi)95

be the best sample achieved so far during sequential sampling for a maximization problem, and φ(·)

and Φ(·) be the probability density function and cumulative distribution function of the standard

normal distribution respectively.

The acquisition function for probability of improvement (PI) [5] is defined as

aPI(x; {xi, yi}Ni=1, θ) = Φ(γ(x)), (7)

where100

γ(x) =
µ(x; {xi, yi}Ni=1, θ)− f(xbest)

σ(x; {xi, yi}Ni=1, θ)
, (8)

indicates the deviation away from the best sample. The acquisition function for expected impro-

vement (EI) scheme [6] [7] [8] [14] is defined as

aEI(x; {xi, yi}Ni=1, θ) = σ(x; {xi, yi}Ni=1, θ) · (γ(x)Φ(γ(x)) + φ(γ(x)) (9)

The acquisition function for the upper-confidence bounds (UCB) scheme [9, 10] is defined as

aUCB(x; {xi, yi}Ni=1, θ) = µ(x; {xi, yi}Ni=1, θ) + κσ(x; {xi, yi}Ni=1, θ), (10)

where κ is a hyper-parameter describing the acquisition exploitation-exploration balance.

Other forms of acquisition functions include predictive entropy search GP-PES [15] that has105

been extended to constraint BO [16] and multi-objective BO [17], entropy-search GP-ES [18], and

estimation strategy GP-EST [19].

2.2. Constrained BO

Constrained BO is a important and natural extension of classical BO. Digabel and Wild [20] sum-

marized and provided a systematic classification taxonomy, QRAK, for derivative-free simulation-110

based black-box optimization problems. For known constraints, the constraints can be realized by

either multi-fidelity approach, where the constraint evaluator is considered as a low-fidelity functio-

nal evaluator [21], or is penalized directly within the acquisition function [22] inside the sequential

sampling search loop for the next query point. Schonlau et al. [23] introduced a generalized EI

acquisition function that balances global-local search by incorporating an exponential power with a115

known constraint penalization scheme. Parr et al. [24] reviewed and compared different constraint

handling schemes using synthetic and real-world engineering applications. Picheny et al. [25] pro-

posed an augmented Lagrangian scheme to convert a constrained problem to an unconstrained

optimization problem, handling both equality and inequality constraints.
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However, the problem is more challenging if the constraints are unknown. Several methods have120

been proposed to incorporate the probability of constraint violation into the acquisition function.

Basudhar et al. [26] utilized support vector machines to calculate the feasible probability which

is later incorporated in the EI acquisition function. Sacher et al. [27] extended the method of

Basudhar et al. [26] by combining classification probability from the least squares support vector

machine with the EI acquisition function and proposed another sampling strategy to locate the next125

sampling point in a sequential manner. Gelbart et al. [28] proposed an entropy search criterion and

used the expected improvement acquisition to search for the next sampling location. Hernández-

Lobato et al. [16] suggested an alternative mathematical form of acquisition function, to maximize

the expected reduction in the differential entropy of the posterior. Gramacy and Lee [29] introduced

an integrated expected conditional improvement and increased the number of hyper-parameters to130

accommodate the class labels. Lee et al. [30] proposed to couple the random forest classifier and

maximize the expected constrained improvement, where the new acquisition function is the product

of old acquisition function and the predicted probability of the random forest classifier. The main

difference between our work and other works such as Basudhar et al. [26], Sacher et al. [27], and

Lee et al. [30], is two-fold. First, our proposed method is batch parallel, whereas other methods are135

sequential. Second, our proposed acquisition function in Equation 13 is generalized and applicable

for any probabilistic binary classifier, for example, kNN [31], AdaBoost [32], RandomForest [33],

support vector machine [34] (SVM), least squares support vector machine (LSSVM) [35], and GP.

2.3. Batch parallel BO

Typically, to accelerate the optimization process, there are mainly two approaches: accelerating140

using multiple processor parallel implementation for one simulation, or batch parallelization where

each core handles one simulation. One essential observation is that according to Amdahl’s law,

the former approach is prone to diminishing returns, where the modeling simulation cannot be

accelerated after a certain threshold. Thus the later approach, batch parallel BO is more cost-

effective and appealing toward computationally expensive engineering models and simulations.145

The core idea of batch parallel BO is simply based on the concept of active learning, in which

the optimization history is used to reconstruct the response surface and approximate the objective

function statistically. Therefore, it is possible to perform multiple functional evaluations at the same

time for a single batch, and update the history once the batch is finished. To search for the new

points with unknown objective functions, one can rely on the Gaussian probability prediction of the150

outputs and condition the acquisition function on this Gaussian distribution. For example, Snoek
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et al. [14] proposed an integrated acquisition function based on Monte Carlo sampling, called GP-

EI-MCMC, to construct a parallel batch, which is conditioned on the Gaussian probability of the

observation. Ginsbourger et al. [36] [37] [38], Roustant et al. [39] suggested a multi-points expected

improvement q-EI, in which the EI function is conditioned on the Gaussian observation. Marmin155

et al. [40] [41] provided analytical formula for gradient-based q-EI extension. Letham et al. [42]

extended the q-EI framework toward noisy and constrained problems and performed the experiments

at Facebook. Wang et al. [43] and Wu and Frazier [44] (q-KG) both suggested a more numerically

efficient approach, based on infinitesimal perturbation analysis, to compute the acquisition function

of the gradient-based q-EI extension. Shah and Ghahramani [45] extended the predictive entropy160

search GP-PES [15] toward parallel batch selection policy GP-PPES. Azimi et al. [46] [47] proposed

a simulation matching scheme GP-SM [46] and coordinated matching scheme GP-BCM [47] to select

input batches that closely match their expected behavior (GP-SM) or the sequential distribution

after a certain amount of step (GP-BCM). Azimi et al. [48] also proposed an alternative switching

between sequential and parallel mode for BO and analyzed the theoretical bound for the hybrid165

batch BO method. Desautels et al. [49] introduced a hallucination scheme for batch selection policy

GP-BCUB and its adaptive variant GP-AUCB, where the main acquisition is GP-UCB [9] [10], and

showed the theoretical bound of the proposed method. The hallucination scheme for a single GP is

based on the assumptions of the posterior mean as the prediction during the current batch parallel

iteration, and the posterior variance as zero at the particular input location of the batch. The170

hallucination scheme is essentially the same with the kriging believer heuristic in Ginsbourger et al

[37]. Contal et al. [50] proposed a modified version of GP-BUCB, termed GP-UCB-PE, where only

one location is selected via GP-UCB acquisition function, and the rest of the batch is configured to

locations where the updated posterior variance is maximized. Both GP-BUCB and GP-UCB-PE

are constructed based on a crucial observation that the posterior variance only depends on the input175

locations, but not the actual output. The theoretical bound of GP-UCB-PE is proven to be better

than that of GP-BUCB by an factor of
√
Bbatch, where Bbatch is the size of the batch. González et al.

[51] proposed GP-BBO-LP method, which assumes the objective function is Lipschitz continuous,

infers the Lipschitz constant directly from the GP, and modifies the acquisition function with a local

penalizer and a differentiable transformation functions. Kathuria et al. [52] and Wang et al. [53]180

offered a batch selection policy via determinantal point process GP-DPP, and proved the expected

regret bound of DPP-SAMPLE is less than the regret bound of GP-UCB-PE [50]. Kathuria et al.

[52] showed that GP-UCB-PE is a special case as DPP-MAX, where the maximization rule is done

via a greedy selection rule, and suggested that GP-PPES [45] performs better than GP-BUCB [49]

7



and GP-UCB-PE [50] approach, and that GP-UCB-PE [50] performs better than GP-SM approach185

[46]. There are also concerns that GP-UCB-PE and GP-BUCB are too greedy in the batch selection

process, and thus prone to be non-optimal with respect to the ”immediate overconfidence” measure

[52]. Rontsis et al. [54] proposed an alternative acquisition function GP-OEI, where the lower and

upper bounds are computationally tractable in high-dimensional space and showed its numerical

robustness over q-EI. Nguyen et al. [55] proposed budgeted batch BO, termed GP-B3O, which190

utilizes the infinite Gaussian mixture model to automatically identify the number of peaks in the

underlying acquisition function, and adapts the batch size accordingly based on the approximated

acquisition function. Daxberger and Low proposed a novel distributed batch GP-UCB, dubbed DP-

GP-UCB [56], to jointly optimize a batch of inputs, as opposed to selecting the inputs of a batch

one at a time, and still preserve the scalability in the batch size.195

3. Methodology

In this paper, we propose a two-GP batch-parallelization approach to solve the problem, in

which one GP models the objective functions, which is referred to as the objective GP, whereas the

other models the binary output of the classification, which is referred to as the classification GP.

For the objective GP model, the infeasible data points are also included by the interpolation that200

occurs at each iteration, where interpolation process is performed in two steps. In the first step,

only the feasible data points are used to construct the objective GP model. In the second step,

the constructed objective GP is used to predict the output at infeasible data points. Then the GP

model uses the predicted posterior mean µobjective(x) at those infeasible data points to update again

to reflect the true posterior variance in the objective GP, i.e. σ2
objective(x) = 0 at the infeasible205

locations x. This interpolation process occurs for every iteration.

Parallel in BO is performed through batch parallelization method, in which a batch of size Bbatch

in every iteration is decomposed into three batches: the first batch for the acquisition hallucination

batch of size Bacquisition for the objective GP, the second batch for the exploration of size Bexplore for

the objective GP, and the third batch for the binary classification size Bclassif of the classification210

GP, sequentially with respect to the batch order. All three batches are constructed by hallucinating

the GP models at each iteration, sequentially with respect to each sampling point in the batch,

where hallucination means that the observation is assumed to be exactly the posterior mean of the

objective GP µobjective(x) for one iteration, but later on will be corrected once the batch is finished.

Also, the feasible probability of the input location x is assumed to be 1, and the posterior variances215

for both GPs are updated on the chosen sampling location x, i.e. σ2
objective(x) = σ2

classification(x) = 0.
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The input locations in the exploration batch are selected where the updated posterior variance σ2

is maximal for both GPs. The infeasible data points are assigned as an interpolated value and

subjected to change after each iteration. To incorporate the feasibility classifier, the acquisition is

reformulated to condition on the probabilistic prediction, and thus become the expected acquisition220

function.

The technical contribution of this paper is three-fold. First, the advantage of batch BO is

extended to incorporate the constrained optimization problems, based on the premise of a HPC

infrastructure, using an expected acquisition function that is conditioned on the predicted feasibility

from the probabilistic feasibility classifier. Second, the feasibility classifier is continuously improved225

by the pure exploration batch, so that the feasibility classifier is forced to learn in the unknown

regions to improve its predictability performance. Third, a new acquisition is proposed to combine

two GPs models.

3.1. Constraints and Feasibility Classification

In this paper, we are concerned with both types of constraints: known inequality constraints,230

which are known in advance and usually physics-based modeled, and unknown constraints, which

are only known when the functional evaluation actually ocurrs. The infeasibility function of a

design can be represented as a set of inequalities λ(x) ≤ c, which in turn can be interpreted as a

constrained optimization problem. To penalize the infeasible design, the feasibility checking function

is embedded within the acquisition function, to assign zero improvement to all infeasible points if235

the sampling location x does not satisfy the known constraints λ(x) ≤ c. Mathematically, a(x) = 0

if there exists an index i such that one of the constraints is unsatisfied λi(x) > ci. In classical BO

at each optimization iteration, the next sampling point is chosen to maximize the acquisition

xnext ∈ argmax
λ(x)≤c

a(x; {xi, yi}Ni=1, θ), (11)

where N is the number of observations, and θ is the hyper-parameters of the metamodel.

We propose a variant acquisition function conditioned on the probabilistic prediction of binary240

GP classification. The acquisition function is updated according to the probabilistic classification

augmented in the classification model to obtain the EI function

E[a(x)] = 0 · Pr(clf(x) = 0) + a(x) · Pr(clf(x) = 1) = a(x) · Pr(clf(x) = 1), (12)

where clf(·) denotes the binary probabilistic classifier, and Pr(·) denotes the probability mass

function (pmf) of the design variables, Pr(clf(x) = 0) is the probability that the design variable x

is infeasible, and Pr(clf(x) = 1) is the probability that the design variable x is feasible.245
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3.2. Batch parallelization

A part of this high-throughput BO framework is built on the premise of a HPC. The idea is

to bring down the computational runtime of the optimization of expensive high-fidelity simulations

through increased parallelism in HPC. For better computational resource allocation in HPC usage, in

the extreme case, the diminishing return in the multi-core simulations can be avoided by parallelizing250

all the simulation in such a serial/sequential manner. That is, m processors can be used to perform

m different simulations, where each processor corresponds to a simulation with different input

parameters, yielding no diminishing return in Amdahl’s law [57]. The calculations of posterior

variances σ2’s do not depend on the observations for both GPs, therefore the exploration sampling

points are determined after the acquisition hallucination. Desautels et al. [49] hallucination scheme255

is adopted during the batch selection process.

The interpolation process can be considered as hallucinating the objective GP at infeasible

locations, by assigning the posterior means observations, after constructing the objective GP using

data only at feasible locations. The purpose of introducing the posterior means as observations

per iteration is to truly reflect the posterior variance σ2
objective(x) of the objective GP, particularly260

at infeasible locations. That is, the objective GP is aware of the locations where the functional

evaluator fails to obtain observations. In order to do so, the objective GP assumes the posterior mean

µobjective(x) as the observation per iteration at infeasible location, for the same hyper-parameters θ of

the objective GP. As the optimization advances in a batch sequential manner, the hyper-parameters

θ of the objective GP changes accordingly, and the interpolation process is repeated again. The265

mechanism does not interfere in locating the next sampling point, because Equation 13 is used to do

so, where the feasible probability is predicted using an alternative binary classifier. Otherwise, the

posterior variance σ2
objective(x) surface is considerably large at infeasible locations, thus σ2

objective(x)

is not truly reflected at those locations. The incorrect σ2
objective(x) would have an impact on the

second term of Equation 13, misleading the algorithm into infeasible regions, which we seek to avoid.270

3.2.1. Acquisition hallucination batch for objective GP

We describe the point selection process for the first acquisition hallucination batch in three

batches, denoted as Bacquisition. The ”hallucination” term is chosen to explain the effect of assuming

an observation in the current batch, which is actually unknown, but is assumed to be known, right

at the moment of the batch construction, and this observation will be further corrected at the end275

of the current batch iteration before moving to the next batch iteration. Technically, all PI, EI,

and UCB acquisition functions feature a trade-off between exploitation and exploration within their
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analytical formulations. In this process, the point is selected by maximizing the acquisition function,

which could be PI, EI, or UCB function. Then, the objective GP is hallucinated to temporarily

register the selected point x and its posterior mean µobjective(x) as the actual observation until the280

end of this iteration. The posterior variance of the objective GP is updated to reflect the posterior

variance σ2
objective(x) = 0 at the selected point x. Also, the classification GP is hallucinated to

realize the sampling point as feasible until the end of this iteration. This hallucination process

happens sequentially within the first acquisition hallucination batch, and stops when the number of

selected points reaches Bacquisition.285

3.2.2. Pure exploration batch for objective GP

After the acquisition hallucination batch is constructed, we shift our focus to the second batch,

which is the pure exploration batch for the objective GP. The second batch is referred to as Bexplore.

Using the same hallucination approach, the objective GP and the classification GP register the

sampling point and the posterior mean µ as the actual observation until the end of the iteration.290

The points are selected where the posterior variance σ2 of the objective GP are maximized. After

each point in the second batch is selected, both of the hallucinated GPs are updated to reflect the

new posterior variances σ2
objective and σ2

classification. The process repeats until the number of selected

points in the second batch reaches Bexplore.

3.2.3. Pure exploration batch for classification GP295

The last batch focuses on the convergence of the classification GP and is denoted as BexploreClassif.

Classification in high-dimensional space generally suffers from the curse of dimensionality, and thus,

this batch is devised to force the classification GP to learn in the most uncertain region. In this

batch, the sampling points are chosen where the posterior variance σ2
classification of the classification

GP are maximized. After each point in the third batch is selected, the classification GP is updated300

to reflect the new posterior variance σ2
classification. The process repeats until the number of selected

points in the third batch reaches BexploreClassif.

3.3. Acquisition function

The final form of the acquisition function is modified as

a∗(x) = E[a(x)] = I(λ(x) ≤ c) · a(x) · Pr(clf(x) = 1), (13)

conditioned on the classifier prediction probability and inequality constraint λ(x) ≤ c, where I(·) is305

the known constraint indicator function, which is embedded within the acquisition function, a(x)
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is the typical acquisition function, which can be PI, EI, UCB, or other types. Pr(clf(x) = 1) is the

predicted probability in which the input x is feasible. The novel acquisition function is composed as

the product of the classical acquisition function and two feasibility constraints: one is known, and

the other is unknown. It is noteworthy that Equation 13 is applicable to any probabilistic binary310

classifier, i.e. the classifier is not restricted to be GP. The proposed algorithm pBO-2GP-3B seeks

next sampling point by maximizing this acquisition function.

3.4. Algorithm outline

Algorithm 1 presents the overview of the pBO-2GP-3B formulation, in which a batch is selected

based on two criteria: acquisition hallucination batch and pure exploration batch. The later criteria315

applies for two GPs, respectively, thus form a three-batch approach.

Algorithm 1 pBO-2GP-3B algorithm.

Input: dataset Dn consisting of input, observation, feasibility (x, yi, ci)
n
i=1

Input: objective GP (x, yi)
n
i=1, and classification GP (x, ci)

n
i=1

1: for n = 1, 2, . . . , do

2: construct the objective GP

3: collect feasible data subset (xi, yi, ci = feasible)}Ni=1

4: construct the objective GP, GPobjective(xi, yi|ci = feasible), for feasible points

5: hallucinate the objective GP, i.e. yi ← µi, at infeasible points ci = infeasible

6: reconstruct the objective GP using both feasible and infeasible points

7: construct the classification GP, GPclassif(xi, ci)

8: select a batch B of size Bbatch = Bacquisition +Bexploration +Bclassif points

9: acquisition hallucination: hallucinate 2GPs and select Bacquisition points

10: exploration: hallucinate 2GPs and select Bexplore points where σ2
objective is maximized

11: classification: hallucinate GPclassif and select Bclassif points where σ2
classification is maxi-

mized

12: query objective function for objective y
(B)
n+1 and feasibility c

(B)
n+1 for the current batch

13: augment dataset Dn+1 = {Dn, (x(B)
n+1, y

(B)
n+1, c

(B)
n+1)}

14: end for

4. Synthetic examples

Technically, handling the known constraints is much easier than handling the unknown con-

straints. In the pBO-2GP-3B formulation, both of them would yield zero value in the acquisition
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function, but the penalization scheme for the known constraints would make the optimization of320

the acquisition function more complex. Therefore, only unknown constraints are used in these three

synthetic examples. Covariance matrix adaptation evolution strategy (CMA-ES) [58] is used as an

auxiliary optimizer to find the location where the acquisition function is maximized.

4.1. 2D Three-hump camel function

In this example, the proposed algorithm is tested on a 2D three-hump camel function on the325

domain [−2, 2]× [−2, 2], where the function is

f(x) = 2x2
1 − 1.05x4

1 +
x6

1

6
+ x1x2 + x2

2. (14)

The global minimum of this function is f(x∗) = 0 at x∗ = (0, 0). There are four disjoint infeasible

regions, including two circles and two squares. The radius of the circle is
√

0.60 = 0.7746 for both

circles. The dimension of the squares are 1.20 for both squares. There is no known constraint in

this numerical problem. Figure 1a shows the contour plot of the unknown constrained three-hump330

camel function, where the infeasible regions, including two circles and two squares, are shaded. The

global minimum is also plotted denoted by a red dot on Figure 1a. Figure 1b presents a batch

selection during iteration 5. Readers are referred to color version online. Four sampling locations of

the first batch, Bacquisition, are plotted as (black) stars. Four sampling locations of the second batch,

Bexplore, are plotted as (green) diamonds. Four sampling locations of the third batch, BexploreClassif,335

are plotted as (magenta) squares in Figure 1b. As expected, the optimization convergence generally

advances due to the sampling locations of the first batch Bacquisition. In this case, the second sampling

location of the batch Bacquisition is very close with the global optimum of the function.

Figure 2a and Figure 2b show the posterior variance of the objective GP σ2
objective, before and af-

ter the interpolation process, respectively. The σ2
objective is significantly lower after the interpolation340

process, by hallucinating the objective GP at infeasible locations. Without the interpolation process,

the posterior variance σ2
objective is large at infeasible regions, promoting the acquisition function to

explore more at these regions. As a result, the algorithm would be misguided into infeasible regions.

Figure 3 shows the convergence of the binary classification problem using the GP classifier.

Figure 3a shows the probability of feasibility with 10 data points, whereas Figure 3b shows the345

probability of feasibility with 300 data points. In order to successfully solve the unknown constrained

optimization problem using the binary classifier, the binary classifier must converge to a certain

extent, so that the sampling locations can converge to the global optimum.

For the three-hump camel function, the Bacquisition, Bexplore, BexploreClassif are set to 4, 4, and

4, respectively. Figure 4 shows the convergence plot of pBO-2GP-3B method, where 12 iterations350

13



(a) Contour plot and filled infeasible regions

of the 2D unimodal three-hump camel function

domain. The infeasible regions include two cir-

cles and two squares, and are filled to distinguish

with the feasible regions. The global minimum is

plotted denoted by a red dot.

(b) Sampling locations during a batch selection

process at iteration 5 for the unknown constrai-

ned three-hump camel function, showing 4 sam-

pling locations in each batch.

Figure 1: Three-hump camel function and its infeasible-feasible domain to test pBO-2GP-3B algorithm.

(a) Posterior variance of the objective GP,

σ2
objective, before interpolation process for infea-

sible sampling locations.

(b) Posterior variance of the objective GP,

σ2
objective, after interpolation process for infeasi-

ble sampling locations.

Figure 2: Illustration of the interpolation process, which hallucinates the objective GP at infeasible sampling locations,

to truly reflect the posterior variance σ2
objective at the infeasible locations. Without the interpolation process, the

posterior variance σ2
objective is large at infeasible regions, thus promoting sampling in infeasible regions, which is

undesirable.
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(a) GP classification with 10 data points. (b) GP classification with 300 data points.

Figure 3: Convergence of GP classifier for binary classification problem: feasible or infeasible.

with batch parallelization are performed, in addition to 6 initial sampling points. The connecting

solid line denotes the best solution so far as the optimization advances. The UCB acquisition

function is used as the main acquisition a(x) in the Equation 13. For the objective GP, the initial

hyper-parameters θ are set as (1, 1), whereas the lower and upper bounds for θ are (10−2, 10−2) and

(1, 1), respectively. The Gaussian kernel is used to construct the objective GP. For the classification355

GP, the initial hyper-parameters θ is set as (1, 1), whereas the lower and upper bounds for θ are

(10−2, 10−2) and (2·101, 2·101), respectively. The hyper-parameters θ are obtained by the maximum

likelihood estimation method. The remaining learning parameters of the toolbox were left to the

default value. The exponential kernel is used to construct the classification GP. In iteration 73,

pBO-2GP-3B converges to the solution of f(0.00208764, 0.00180051) = 0.00001572, showing the360

fast convergence rate where both the GPs approximate the unknown function very well.

Figure 5 compares the proposed pBO-2GP-3B method with other sequential BO algorithms,

including GP-EI-LSSVM by Sacher et al. [27], GP-EI-SVM by Basudhar et al. [26], and GP-EI-

RandomForest by Lee et al [30]. Many other binary classifiers, including kNN [31], AdaBoost [32],

RandomForest [33], support vector machine [34] (SVM), and least squares support vector machine365

(LSSVM) [35], are implemented to compare the numerical performance to the proposed pBO-2GP-

BO method. Other parallel, unknown constrained BO algorithms are not readily available. Thus,

we limit the scope of comparison to other sequential BO methods, which are easy to implement.

It is shown that compared to other sequential BO methods, the proposed parallel pBO-2GP-3B

converges faster in terms of the computational runtime because of the increasing parallelism, which370

is controlled by the size of the batches. It is also shown that the UCB acquisition function performs
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Figure 4: Convergence plot of pBO-2GP-3B on the 2D unimodal three-hump camel function. The feasible data points

are denoted as solid circles, whereas infeasible data points are denoted as red crosses. The functional value of infeasible

data points are not available, but are evaluated in this plot to aid the visualization.

better, compared to EI acquisition function in the three-hump camel function.

Figure 5: Comparison of different BO algorithms using two acquisition functions and various binary classifiers: three-

hump camel function.

4.2. 2D Rastrigin function

In this example, the proposed algorithm pBO-2GP-3B is tested on a 2D highly multi-modal

Rastrigin function on the domain [−5.12, 5.12]×[−5.12, 5.12], where the objective function is defined375

as

f(x) = 20 +

2∑
i=1

[x2
1 − 10 cos(2πxi)]. (15)

The global minimum of the objective function is f((0, 0)) = 0. The feasible and infeasible regions are

defined similarly to the previous testing example. The dimensions of the squares are 1.50, whereas
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the diameters of the circles are
√

1.50 = 1.225. Figure 6a presents the contour plot with infeasible

regions shaded with the global minimum denoted by a red dot, whereas Figure 6b shows the 3D380

visualization of the highly multi-modal 2D Rastrigin function.

(a) Feasible and infeasible regions of the 2D Ra-

strigin function domain. The infeasible regions

include two circles and two squares, and are fil-

led to distinguish with the feasible regions. The

global minimum is plotted denoted by a red dot.

(b) 3D visualization of 2D Rastrigin function.

Figure 6: 2D Rastrigin function and its infeasible-feasible domain to test pBO-2GP-3B algorithm.

The Bacquisition, Bexplore, BexploreClassif are set to 5, 1, and 1, respectively. Figure 7 shows the

convergence plot, where 12 iterations with batch parallelization are performed, in addition to 6

intial sampling points. The connecting solid line denotes the best solution so far as the optimization

advances. The EI acquisition function is used as the acquisition function a(x) in the Equation385

13. For the objective GP, the initial hyper-parameters θ is set as (1, 1), whereas the lower and

upper bounds for θ are (10−2, 10−2) and (1, 1), respectively. The Gaussian kernel, mathematically

expressed as [59] kGaussian(x,x′) = exp (−θj(xj − x′j)
2), is used to construct the objective GP. For

the classification GP, the initial hyper-parameters θ is set as (1, 1), whereas the lower and upper

bounds for θ are (10−2, 10−2) and (2 · 101, 2 · 101), respectively. At the beginning phase of the390

optimization process, pBO-2GP-3B encounters a substantial number of functional evaluations in

infeasible regions, and gradually converges after that. At the iteration 53, pBO-2GP-3B converges

to f(−0.97776279, 0.98550945) = 2.06611835, showing an acceptable convergence rate for complex

functions, as in the case of 2D Rastrigin function.
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Figure 7: Convergence plot of pBO-2GP-3B on the 2D highly multi-modal Rastrigin function. The feasible data

points are denoted as solid circles, whereas infeasible data points are denoted as red crosses. The functional value of

infeasible data points are not available, but are evaluated in this plot to aid the visualization.

Figure 8 compares the proposed parallel pBO-2GP-3B, again with other BO methods. The395

used binary classifiers are kNN, AdaBoost, RandomForest, SVM, and LSSVM. Both acquisition

functions EI and UCB are utilized. The comparison shows that because of the parallelism, the

proposed pBO-2GP-3B method performs relatively well compared to other sequential BO methods.

Figure 8: Comparison of different BO algorithms using two acquisition functions and various binary classifiers: 2D

Rastrigin function.

4.3. 6D Rastrigin

In this example, the proposed algorithm is tested on 6D Rastrigin function on the domain400

xi ∈ [−5.12, 5.12] for all i = 1, 2, · · · , 6. The global minimum of this function is f(x∗) = 0, where

x∗ = (0, 0, 0, 0, 0, 0). No known constraint is imposed, whereas six unknown constraints with l2-norm
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are embedded blindly to the functional evaluators. Mathematically, they can be described as

gi(x) = ‖x− 2.56vi‖2 ≥ 5, i = 1, · · · , 6, (16)

where vi = [−1, · · · , 1 · · · ,−1] is a vector where i-index element is 1, and other elements are −1.

Figure 9 shows the convergence plot of pBO-2GP-3B for the 6D Rastrigin function. The con-405

necting solid line denotes the best solution so far as the optimization advances. EI acquisition

function is used to find the next sampling points in the hallucination batch. The Bacquisition, Bexplore,

BexploreClassif parameters in this example are set to 6, 6, and 6, respectively. In iteration 18 (functio-

nal evaluation 308), pBO-2GP-3B converges to f(−0.97884957, 1.97082269, 1.03444007, 1.88768059, 0.19720165, 2.07607401) =

24.56607326, again, showing an acceptable convergence rate for intermediate dimensionality and a410

highly complex function.

Figure 9: Convergence plot of pBO-2GP-3B on 6D Rastrigin function. The feasible data points are denoted as solid

circles, whereas infeasible data points are denoted as red crosses.

Figure 10 presents the comparison plot of different BO algorithms for the 6D Rastrigin function,

showing that the pBO-2GP-3B algorithm performs on a par with other sequential BO algorithms.

The same classification methods and acquisition functions are used in this comparison.

5. Design optimization of slurry pump impeller415

In this section, a case study of CFD simulation to assess the erosion wear rate of the impeller

in the slurry pump [60] is used to demonstrate the functionality of the proposed pBO-2GP-3B

method in design optimization. Here, a multi-phase solid-liquid CFD model is treated as a black-

box function mapping from the design space to the predicted wear performance at certain operating

conditions.420
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Figure 10: Comparison of different BO algorithms using two acquisition functions and various binary classifiers: 6D

Rastrigin function.

In the design space, the geometry of the impeller is modeled using two Bézier patches, where the

3D cylindrical z−, r−, and θ−coordinates of the Bézier control points are the inputs of the black-

box function. For each functional evaluation, a novel geometric model of the impeller is constructed

using Bézier patch formulation. Then the CFD erosion wear model is simulated as the functional

evaluator. Finally, in the post-process, an average wear quantity is computed on the impeller vanes425

(suction and pressure sides) to assess the average wear rate.

The CFD erosion wear model for slurry pump impeller is extended and further developed from

previous work [61] to capture the multi-size particulate flow. An Eulerian-Eulerian mixture model

is used, where volume and time averaged governing equations are derived for the continuity and

momentum of the mixture and the individual species in the particle size distribution.430

To that end, the goal of this engineering example is to search for the optimal design of slurry

pump impeller, which minimizes the predicted erosion wear rate, which is obtained by the post-

process of the predictive CFD erosion wear simulation.

5.1. Parameterization of design variables

The geometry of the impeller vane is discretized and modeled using two Bézier patches, one for435

the pressure face, and the other for the suction face,

~p(u, v) =

m∑
i=0

n∑
j=0

Bm
i (u)Bn

j (v)~bi,j , (17)

where Bm
i (u) is the Bernstein polynomial of degree m evaluated at 0 ≤ u ≤ 1, and ~bi,j is the

(i, j)-th control point’ coordinates of the Bézier patch. 3D cylindrical coordinate system is used

instead of Cartesian coordinate system due to the nature of angular rotation in impeller. Along
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the vane direction, m Bézier control points are used, whereas in the transverse direction, n Bézier440

control points are used. This approach results in 2(m + 1)(n + 1) control points for both pressure

and suction faces of the impeller vanes. Figure 11a and Figure 11b show the approximated Bézier

curves for r − θ of the pressure and suction vanes, respectively. Figure 12a and Figure 12b show

the approximated Bézier curves for z − r of the pressure and suction vanes, respectively. In Figure

11 and Figure 12, the parameters used are m = 4 and n = 2. Thus, the corresponding size of the445

Bézier patch is 5× 3.

(a) r − θ plot on pressure side. (b) r − θ plot on suction side

Figure 11: r − θ plot of impeller meridional plot and its fitted Bézier curve.

(a) z − r plot on pressure side. (b) z − r plot on suction side

Figure 12: z − r plot of impeller meridional plot and its fitted Bézier curve.

The Bézier control points of the pressure and suction vanes share the same z− and r−coordinates,
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in which some of them are held constant throughout the optimization process due to other phy-

sical constraints. The Bézier control points between the pressure and suction vanes vary most in

θ−coordinate, because the vane thickness is controlled through r−θ plot. The initial guess for Bézier450

control points is constructed from the original design of the impeller. In this study, the z−, r−, and

θ−coordinates of the Bézier control points are the design variables. For each functional evaluation,

a set of Bézier control points are sampled, and a novel geometry of impeller is constructed, and

evaluated using the predictive CFD impeller model.

5.2. 3D CFD model for slurry pump impellers455

In this section, we summarize the previous work of Pagalthivarthi et al. [60] in developing

a CFD wear rate prediction for an industrial centrifugal slurry pump impeller. Figure 13 shows

the 3D computational domain and boundary conditions of a centrifugal pump impeller in Cartesian

coordinate system. Due to the angular symmetry and rotational invariance, only the region between

pressure and suction sides of two vanes in the impeller are considered. The computational domain460

includes a region bounded by two vanes, two shrouds of the impeller, as well as the extensions

downstream and upstream of the vanes. A set of governing equations is then derived based on

3D cylindrical coordinates with respect to a reference frame rotating with the impeller. Spalart-

Allmaras model [62] is utilized to solve for the turbulent eddy viscosity. Comparison between

k − ε and Spalart-Allmaras turbulence models in 3D multi-size particulate flows is discussed in465

Pagalthivarthi et al [63]. The inlet velocity boundary condition is applied at the inlet surface B1.

The stress free boundary condition is applied at the outlet surface B2. The blade surfaces B3 and

B4, the hub surface B5, and the shroud surface B6 are treated as a wall, where Spalding wall

functions [64] are utilized. On the surfaces B7, B8, B9, and B10, periodic boundary conditions are

applied.470

The Streamwise Upwind Petrov Galerkin [65] is utilized to formulate the finite element problem.

The system of nonlinear equations for the mixture momentum, solids momentum, and solid concen-

tration are iteratively solved with Newton’s method where the under-relaxation factors are added to

support the numerical convergence of the solutions. In the implementation, the system of algebraic

equations are solved by Intel PARDISO solver [66], which is a shared memory parallel linear solver475

based on OpenMP. Only the solution of the linear system of equations is parallelized. All inner

and outer iterations are repeated until the infinity norms of the absolute error, i.e. the difference

between new solution and old solution, of all field variables reach values less than 10−5.

After the CFD solution is obtained, a constitutive material model is utilized to predict the
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Figure 13: Three-dimensional pump impeller with mesh and its boundary conditions [60].

erosion wear rate [67]. The constitutive wear model is constructed empirically based on experimental480

measurements and approximates the total wear rate as the sum of impact and sliding wear rates.

The impact wear rate is considered as a function of the particle size, impingement angle, local

concentration, solids density, and velocity magnitude of the solid particles. The sliding wear rate is

expressed as a function of the local concentration, solids shear stress, solids tangential velocity, and

friction velocity. The wear coefficients are determined experimentally by curve fitting with respect485

to experimental wear measurement for a specific wear-resistant alloy. The total wear rate normal

to the surface, calculated in the units of µm/hr, gives the local erosion wear rate.

5.3. Feasibility classification

The unknown constraints in this case study are mainly from two sources. Both unknown con-

straints can only be assessed using the CFD erosion impeller wear model. The first type of unknown490

constraints is associated with the non-convergent behavior of the CFD impeller wear model. It is

hypothesized that if the design is not plausible, then the CFD impeller wear model would not con-

verge. The second type of unknown constraints occurs when the numerical solution is beyond the

physical range. That means, given the design, the CFD numerical solver is ill-conditioned and has

converged to an unstable solution.495

Different from the unknown constraints, the known constraints can be fairly easy to assess once

the inputs, i.e. the coordinates of Bézier control points are given. The known constraints are prima-

rily physics-based validations of an impeller design, which are divided into two known constraints.

The first constraint is that the impeller vane must have positive thickness. The second constraint
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is that the r − θ plot must be monotonically decreasing with respect to r. In the implementa-500

tion, the second constraint is relaxed and not strictly enforced, as long as the deviation is within a

user-defined tolerance.

To implement the unknown constraints, each simulation is attached to a wall-clock timer. If

the predictive CFD wear model fails to converge to a solution, the design is considered infeasible

in the classification GP. The timing threshold is chosen in such a way that a typical impeller505

wear simulation should converge, assuming a plausible design. For the second type of unknown

constraints, a threshold wear rate is imposed. If the predicted wear rate is higher than this threshold,

then the design is classified as infeasible in the classification GP.

For the known constraints, the feasibility checking function is implemented based on the formu-

lation of Bézier patch, and is embedded within the acquisition as the known constraint indicator510

function I(λ(x) ≤ c) in Equation 13. Infeasible designs which fail the feasibility checking function

are assigned zero value in the acquisition function.

5.4. Simulations and Results

In this case study, the degrees of Bézier surface patch are m = 4 and n = 2, resulting in 5 × 3

Bézier patch for the impeller pressure and suction vanes, respectively. The CFD simulation assumes515

a constant particle size (or mono-size) and thus the number of species in the particle size distribution

is simplified to one. Considering all three z−, r−, and θ−coordinates, a 33-dimensional input x

is formed for each CFD simulation. The optimization procedure is carried out for pump assembly

Z0534, at the input operating conditions of Q = 89637.900 gpm, H = 50 m, N = 849.000 RPM,

η = 82.400, d50 = 300µm, d85 = 690µm, deff = 495µm, Cv = 20%, and %BEPQ = 99.6%, where Q520

is the volumetric flow rate, N is the impeller angular speed, η is the hydraulic efficiency. d50, d85 are

the 50th and 85th percentile of the particle size distribution. deff = 495µm is the effective particle

size, which is calculated as the average of the d50 and d85 and used as an input for mono-size species

in the CFD simulation. %BEPQ is the percentage of best efficiency point flow rate. The design

impeller diameter is 1.7018m, the shroud diameter is 1.7780m, the suction diameter is 0.6604m, and525

the discharge diameter is 0.6096m. The pump specific speed Ns in US units in 1425.6.

EI acquisition function is used to find the next sampling point in the acquisition hallucination

batch. Gaussian and exponential kernels are used for the objective and classification GPs, respecti-

vely. A careful lower and upper bounds are chosen for the hyper-parameter of two GPs. The

parameters Bacquisition, Bexplore, and Bclassif are set to 7, 5, 3, respectively. It indicates that at each530

optimization iteration, 15 CFD models are simulated concurrently in a parallel manner. Covariance
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matrix adaptation evolution strategy (CMA-ES) [58] is used as an auxiliary optimizer to find the

location where the acquisition function is maximized. A threshold wear rate of 1000µm/hr is im-

posed to classify the feasibility of the design. Also, a wall-clock timer of 7 hours is attached to each

simulation, by which if the CFD model fails to converge, then the design is classified as infeasible.535

A fine mesh settings is used during the optimization process, such that the same mesh is used for

all simulations.

For each simulation, a post-processing script is devised to extract the quantity of interest as the

objective functional value, which is the average wear of the suction and pressure vanes of the impeller

for a particular design. The implementation is performed on an Intel Xeon CPU E5-2637 v2 @3.50540

GHz with 8 cores, 16 logical processors, and 128 GB RAM on Linux Ubuntu 16.04 platform. Fortran

is used as a main language for CFD simulation, where parallelization within the CFD simulation

is enabled via PARDISO solver as described above. MATLAB is used as the main programming

language to implement the BO based on DACE toolbox [59] [68]. Python and Shell programming

languages are used to develop the interface between the pBO-2GP-3B optimizer and the simulation,545

whereas Fortran with OpenMP, parallelized by the open-source PARDISO [66], is used as the main

language for the CFD simulation. 480 initial random sampling points using Monte Carlo method

are simulated concurrently to construct the initial GPs in d = 33 dimensional design space, where

the original design and simulation is the first functional evaluation.

The optimization process is carried out for 89 optimization iterations, where each iteration550

corresponds to 15 parallel simulations. This results in a total of 1815 simulations of the 3D CFD

impeller wear model. The average computational time to construct a batch of size 15 for each

iteration is approximately 3-5 hours, depending on the settings of the auxiliary optimizer, which is

CMA-ES in this case.

Figure 14 presents the convergence plot of pBO-2GP-3B for the design optimization of the slurry555

pump impeller within the feasible range. The infeasible designs are classified and assigned zero

objective functional value to visualize. Technically, for infeasible designs, the objective functional

values either do not exist because the simulations have failed to converge, or lie outside the physically

plausible range, which is imposed beforehand. Non-convergent simulations are scattered throughout

the optimization process, as the optimizer explores unknown regions. All the best-so-far designs are560

found by the exploitation batch, as the goal of the exploitation batch is to improve previous designs.

The first functional evaluation denotes the original design, which is predicted at 0.7770µm/hr

for the wear performance. The first iteration starts counting at iteration 480, because there are

480 initial sampling points and the starting index is 0. The optimal design, which is evaluated
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Figure 14: The convergence plot of pBO-2GP-3B for the impeller design optimization problem. The infeasible designs

are assigned as zero for the objective GPs and are marked as crosses. The batch sizes are set as Bacquisition = 7,

Bexplore = 5, BexploreClassif = 3. 15 CFD simulations are ran concurrently for each iteration.

0.1527 µm/hr, is found at the iteration 536 in the first batch, at the fifth sampling point according565

to the hallucination scheme. The average suction side and pressure side wear on the vane, which

is the quantity of interest and the objective functional value, is assessed through the multiphase

CFD simulation. This value starts dropping from 0.7770 to the following values in the best-so-far

solution, sequentially: 0.6203, 0.5732, 0.5485, 0.5316, 0.5181, 0.50141 0.4991, 0.4898, 0.4844, 0.4503,

0.3937, 0.3792, 0.3718, 0.3683 µm/hr.570

Figure 15 presents two meshes, where Figure 15a depicts the original design, and Figure 15b

depicts the optimal design of the impellers. The pressure and suction vane designs are structurally

different because the Bézier control points are chosen as design inputs, which have been optimized

against the average wear rate. In the optimal design, the vane thickness increases in a non-uniform

manner, and achieves its maximum thickness near the trailing edge of the vane, before being tapered575

together at the trailing edge. It is found that the sweep angle in the optimal design is lower compared

to the original design. As a result, the length of the vane decreases substantially. The twist angle

increases and the outlet angle slightly increases in the optimal design, compared to the original

design.

Figure 16 presents the comparison of wear performance between the original and optimal vane580
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(a) Original design. (b) Optimal design.

Figure 15: Comparison between the CFD meshes of the original and optimal impeller designs.

designs. Figure 16a and Figure 16b compare the total wear plot in z − r coordinates of the original

and optimal impeller designs on the pressure side of the vanes. Figure 16c and Figure 16d compare

the total wear plot in z − r coordinates of the original and optimal impeller designs on the suction

side of the vanes. The result indicates that in the original design, the suction side of the vane is

associated with higher wear rates. By optimizing and changing the flow pattern, the suction vane585

shows significant improvement in wear performance. While the average wear on the pressure vane is

essentially similar in terms of magnitude, the average wear on the suction vane is significantly lower

because the wear hot spot is localized. Furthermore, the magnitude of the wear hot spot is the same

with the wear hot spot in the original design. The average wear rate reduces from 0.7770µm/hr

to 0.3683µm/hr. The optimal design reduces 51.70% of the average total wear compared to the590

original design. There is a possibility of the BEPQ being shifted as a result of the change in the

design, which will be investigated in future studies.

The predicted hydraulic mixture efficiency of the optimal design is 92.49%, compared to 94.18%

that of the original design, indicating 2% drop in predicted efficiency. The predicted head on slurry

is 56.95 m for the optimal design, compared to 58.18 m for the original design. On the suction side595

of the vane in the original design, a highly localized maximum wear rate is predicted near the hub,

near rr = [0.8, 0.9] scaled region because of the local increase in the particle velocities, as shown

in Figure 16c. In the optimal design, the flow is altered so that the wear region is localized on the

suction vane with the same magnitude as shown in Figure 16d.

Figure 17 shows the comparison of the mixture velocity and concentration fields on the hub600

shroud and front shroud of the original and optimal design. In the original design (Figure 17a),
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(a) Vane pressure side

of original design

(b) Vane pressure side

of optimal design

(c) Suction side of

vane of original design

(d) Suction side of

vane of optimal de-

sign

Figure 16: Comparison of total wear between the original and the optimal designs on both sides of the impeller vanes.

(a) Original design. (b) Optimal design.

Figure 17: Comparison of mixture velocity and solids concentration between hub shroud and front shroud of the

original and optimal impeller designs indicates that in the original design, the particles’ maximum velocities occur

near the suction vane and produce significant wear on the suction side. On the other hand, in the optimal design, the

flow field pattern has been alternated such that the particles achieve its maximum velocities between the pressure and

vane. Therefore, the total wear on the suction vane is reduced significantly.
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the particles accelerate within the impeller flow field and achieve the maximum velocity near the

suction side of the vane, close to the trailing edge. In the optimal design (Figure 17b), the velocity

field indicates higher velocities midway between the vanes.

(a) Original design. (b) Optimal design.

Figure 18: Comparison of overall solids concentration between hub shroud and front shroud of the original and optimal

impeller designs indicates the overall concentration is not uniform near the outlet in the original design. In contrast,

in the optimal design, the overall concentration is more uniform near the outlet, although there are still some local

regions with high concentrations within the impeller.

Figure 18 shows the comparison of the overall concentration in a meridional surface of the original605

and optimal design in the cylindrical coordinate system, in Figure 18a and Figure 18b, respectively.

In the original design (Figure 18a), the overall concentration is less uniform near the outlet and

near the back shroud of the impeller, rr = [0.4− 0.8], z = [0.0− 0.1]. In the optimal design (Figure

18b), the overall concentration field indicates a more uniform behavior, although there is still a

small region with low concentration near the front shroud at rr = [0.45− 0.60], z = 0.2. Comparing610

the region with low concentration in the optimal design (Figure 18b) to that in the original design

(Figure 18a), it is obvious that the region is smaller and the concentration field is more uniform in

the optimal design.

Figure 19 presents a comparison between two different batch settings, batch-15 and batch-70,

after 5 iterations performance. The former one is associated with a total batch size of 15, where615

the first, second, and third batch sizes are 7, 5, 3, respectively. The later one is associated with a

total batch size of 70, where the first, second, and third batch sizes are 40, 15, 15, respectively.

The significant improvement of batch-70 over batch-15 in 5 iterations, as shown in Figure 19,

demonstrates the efficiency of the proposed pBO-2GP-3B method in HPC environment. It agrees
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Figure 19: Comparison between different batch settings on the convergence plot shows a significant advantage with

large batch size. The initial sampling process occurs up to 480 functional evaluation and is denoted by a solid vertical

line. pBO-2GP-3B with batch-15 (7,5,3) stagnates with a solid (blue) line in 5 iterations, whereas pBO-2GP-3B

batch-70 (40,15,15) make considerable improvement in 5 iterations.

with the intuition that larger batch is more effective in solving the parallel optimization problem,620

where the batch size limit depends on the size of the HPC.

However, the improvement is only with respect to time. After 830 functional evaluations, batch-

15 is better with respect to observations.

We also note that there is a computational bottleneck in the batch construction process, as the

sampling point is selected sequentially within a batch, which may reduce the actual efficiency of the625

proposed method in practical settings.

6. Discussion

Even though several advanced features have been included, pBO-2GP-3B also has some limitati-

ons. One of the drawbacks of the current approach pBO-2GP-3B is the scalability of the algorithms,

which suffers in both GPs, as the number of data increases more than 10,000. To cope with the sca-630

lability of GPs, a possible solution is to decompose a large dataset into smaller ones and formulate

as distributed GPs and weighted linear prediction as in our previous work [69]. Another drawback

is the lack of an asynchronous feature, which means that the batch of simulations must be finished,

before the optimization process can move on to the next batch. In the CFD engineering example,

this idea is implemented by enforcing a maximum time running for of the CFD simulation. The635

third drawback of the current approach is the sequential nature of the sampling points within a ba-

tch. This is particularly important for a HPC, for example, with hundreds to thousands processors

available, because the current approach would take more time to construct a batch than simulate it.
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This begs for further development for a method which searches the sampling points concurrently, as

proposed by Daxberger and Low [56], or an adaptive approach that does not wait until a batch is fi-640

nished, but rather simulates as the inputs are ready. We also note that too large batch would indeed

lead to low optimization efficiency because the limit scale of GPs would be reached in less wall-clock

time, yet both GPs do not have enough batch to sequentially control the location of next sampling

points. The last drawback of the proposed pBO-2GP-3B method is the simple exploring scheme

that maximizes the posterior variance of the objective GP in the second batch Bexplore, which tends645

to sample on the border of the domain. The issue is more profound in high-dimensional problem.

This can be corrected by more elaborate variance-based sampling scheme, such as Integrated Mean

Squared Error (IMSE) [70, 71, 72].

The development time is minimized and thus suitable for fast deployment in industrial applica-

tions. Particularly, the development of classification GP for blind constraints is user-friendly, and650

thus attractive for engineers and designers, who are typically the users of the optimization package

in engineering simulation-based problems. Known constraints which are ignored by some users can

conveniently become unknown constraints. Such actions reduce the development time for code de-

ployment, yet does not severely affect the functionality of the algorithm, and thus pBO-2GP-3B

can be considered as user-friendly. Implementing pBO-2GP-3B in HPC where a job scheduler is655

available is even easier, since once the design is readily available, one can simply submit the job,

and search for the next sampling point while the simulation is in the submission queue.

One remarkable feature of pBO-2GP-3B is the adaptive interpolation of the infeasible data in the

objective GP. After each iteration, the objective GP is first reconstructed using only the feasible data

points in the dataset, then updated later, assuming the posterior mean as actual observations. The660

main purpose of this interpolation process is to truly estimate the variance σ2
objective for uncertainty

quantification purposes. This is because the computation of the variance σ2
objective only depends

on all the locations x’s of the dataset and its covariance model, instead of the actual observation

y’s. Thus by hallucinating the infeasible data points, the variance σ2
objective is accurately quantified.

Thus the goal of two pure exploration batches in Algorithm 1 is assured. The interpolation scheme665

sometimes leads to false optimum in infeasible region. However, the acquisition function is modified

in such a way that the binary GP classifier would penalize more in the acquisition function, and

thus pBO-2GP-3B would move away from infeasible region.

A critical point in using pBO-2GP-3B algorithm is that the wall-clock time is not simply just

the time to perform parallel simulations, but also include others, such as queue time on the HPC670

if the computational resource is shared, time to construct different batches within one iteration,
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time to download and upload data from different sources, etc. Particularly, larger batch size takes

longer time to prepare an input to evaluate. If that amount of time is somewhat comparable to

the simulation time, there is a combination of batch sizes which yields optimal wall-clock time

performance, but the exact answer depends on the computational time of a specific simulation.675

Therefore, in practice, one is only beneficial from increasing the batch size if the asynchronous

feature is enabled. This point, again, refers back to co-optimize and find the sample points within

a batch concurrently.

Because of the nature of binary classification problem in the classification GP, the algorithm

pBO-2GP-3B performs well if the initial sampling dataset contains at least one feasible and one680

infeasible data points. Otherwise, the classification GP is not well calibrated, and thus would not

yield a good prediction at the beginning phase of optimization process. However, as the optimization

advances, the classification GP should converge relatively fast because of the imposed exponential

covariance kernel, and thus the estimation of the acquisition function is more accurate once the

performance of the classification GP improves.685

There are two main differences between our acquisition function described in Equation 13 and

Equation (4.2) in Schonlau et al [23]. First, in Schonlau et al. [23], the constraints are unknown

and quantifiable, in the sense that the objective GP returns a real value for the model, from which

the probability of satisfying the constraints can be estimated. Schonlau et al. [23] method does

not handle the case where the functional evaluator crashes, or does not return any response, i.e.690

non-quantifiable constraints. For our test problems, if the response does not exist in the infeasible

domain, the Schonlau et al. [23] method is not applicable. Should an artificial value be used, as in the

constant liar heuristic in Ginsbourger et al. [37], the objective GP model would changes sequentially

to reflect the constant liar heuristic. As a result, the objective GP model would fail to predict the

boundary between infeasible and feasible region, because of the underlying smoothness assumption695

of the GP formulation. Indeed, it is one of the challenges in engineering domain, where the response

does not exist. Second, Equation 13 in our paper handles this problem by borrowing another binary

classifier, which classifies whether the domain is feasible or infeasible. Introducing a probabilistic

classifier allows the discontinuity between the feasible and infeasible regions, because the objective

GP model and the classifier model are independent from each other. A taxonomy of constrained700

optimization problems is discussed in Digabel and Wild [20] for classifying constrained optimization

problems. In this work, the GP is chosen to be the probabilistic classifier, with exponential kernel,

instead of Gaussian kernel. However, if the constraints are always quantifiable, then the regression

methods to quantify constraints, such as the method of Schonlau et al. [23], should be used to avoid
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information loss.705

Indeed, one of the most important aspects in solving simulation-based engineering optimization

problem is the imbalance dataset, because the classification GP is still functioning as a binary

classifier. Too many divergent cases would deteriorate the performance of the classification GP and

exhaust the optimization algorithm. Furthermore, since pBO-2GP-3B is a GP-based approach, it

also suffers from the scalability. Thus, design the support domain for input variables such that710

there would be more convergent simulations is recommended. This action can be achieved through

examining the results of the initial sampling cases.

There are two ways to obtain a better optimization results. The first one is to expand the support

intervals that defines the lower and upper bounds for the input. As the design space grows larger,

the global optimum result is guaranteed to be better. However, for simulations that are sensitive715

to input design variables, such as CFD, this would lead to more divergent cases and exhaust the

optimization algorithm, as discussed above. The second one is to increase the number of inputs or

degrees of freedom. For example, in the engineering CFD example above, one could also increase m

and n parameters, which control the size of the Bézier patch to obtain a better result. This direction

is impacted by the curse-of-dimensionality, and thus one should be cautious regarding the trade-off720

between the approximation error and the curse-of-dimensionality.

Since the method can be thought as a natural extension of GP-BUCB [49] and GP-UCB-PE

[50], assuming the batch size of the third batch, the pure exploration for the classification GP, is

zero, i.e. Bclassif = 0, the cumulative regrets is thus bounded by the maximum upper bound of these

methods, which is GP-BUCB because GP-UCB-PE has been proved to be better than GP-UCB by725

a ratio of
√
Bacquisition +Bexplore. Indeed, the pure exploration batch of the classification GP plays

an important role in preventing convergence to local minima when the infeasible space dominates

the high-dimensional input space. While the acquisition function is designed in such a way that

the algorithm only samples at feasible regions, the pure exploration batch of the classification GP

forces the algorithm to also explore other uncertain regions, with the hope to find some missing730

feasible regions that have not been found previously. The careful theoretical convergence analysis

study remains unsolved and open for future work.

A GP binary classifier is competitive in high-dimensional space binary classification problem with

relatively fast convergence rate. Many other binary classifiers, including kNN [31], AdaBoost [32],

RandomForest [33], support vector machine [34], and least squares support vector machine [35],735

are implemented to compare the numerical performance to the proposed pBO-2GP-BO method.

However, all of them are cursed by the high-dimensionality of the optimization problems. The GP
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classifier is an excellent choice of classifier for two reasons. First, the uncertainty of the GP classifier

is naturally quantified by the posterior variance σ2. Second, because of the uncertainty quantified,

the GP classifier is then forced to learn at the most unknown regions. We note that there is not740

so many binary or multi-class classifiers have uncertainty quantification feature in the context of

machine learning.

It is noted that the comparison study is rather limited, since the comparison study only con-

cerns with the convergence as a function of iterations, yet many other norms are also equivalently

important. One of the most realistic norms is the actual computational runtime, i.e. wall-clock745

time, which can be used to measure the efficiency of different optimization algorithms. There are

many factors which can alternate the comparison results, including computational platforms, opera-

ting systems, hardware, implementation, as well as objective functions, initial designs, constraints,

random number generators. To truly compare one optimization algorithm with others, a large scale

benchmark study is needed, and thus it is left to future work.750

The proposed pBO-2GP-3B method can be easily extended to solve for equality constraints

problem. For example, the objective function can be modified to incorporate the equality constraints

to a penalized objective function, in which the penalty is applied directly on the unsatisfied equality

constraints, as in Picheny et al [25]. GP formulation accounts for some intrinsic noise by assuming

that the observations are jointly Gaussian [4]. However, for complex noisy problems where the755

model response is stochastic, rather than deterministic, a more advanced approach is needed, such

as stochastic kriging [73]. The model responses could be the objective functional evaluator, as well

as the feasibility condition. This problem remains unsolved and is left to future work.

In the previous numerical and engineering examples, the batch sizes are held constant throughout

the optimization process. However, it can be adaptively tuned based on a fixed computational760

budget. For example, more computational efforts can be focused on reducing the variance σ2 in

the first phase until σ2 hits a critical number, then more computational efforts can be spent on

the acquisition hallucination batch in the second phase for exploitation purpose. This opens up

another research question for the dynamic computational resource allocation in the context of HPC,

which is a NP-hard problem and will be addressed in future work. Another possible extension is the765

asynchronous BO, where if a simulation is finished, then a new simulation is readily dispatched.

7. Conclusion

In this paper, we present a novel BO method pBO-2GP-3B, which is aimed at computationally

expensive and high-fidelity engineering optimization problems. Two GPs are utilized: the objective
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GP for the objective function, and the classification GP for the probabilistic classification. The770

proposed pBO-2GP-3B significantly brings down the computational cost, based on the premise of

available HPC resources. By massively parallelizing the simulation, i.e. each processor handles a

single simulation, the diminishing return described in Amdahl’s law is avoided, representing a better

use for computational resources, which in turn further reduces the wall-clock time.

Additionally, pBO-2GP-3B supports both known and unknown constraints in simulation-based775

engineering optimization problems, in which the known constraints are defined beforehand, and the

unknown constraints are only known once the simulations have been ran. The known constraints

are penalized directly into the acquisition using a constraint indicator function, which assigns zero

value if the known constraints are violated. On the other hand, the unknown constraints are learned

through the classification GP, and the predicted feasibility is then coupled to the acquisition function,780

using a simple product rule.

The proposed method is demonstrated using a 2D three-hump camel, 2D Rastrigin function,

and 6D Rastrigin functions, showing good convergence rate for both numerical problems. It is then

applied to a real-world engineering problem for the design optimization of a slurry pump impeller.

The predicted result indicates 52.60% reduction in average wear performance, and denotes the785

potential application of the proposed method in HPC systems.
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