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ABSTRACT 
 

A new tolerance modeling scheme, semantic tolerance modeling, was recently developed to enable 
interpretable tolerance analysis. In this paper, a new dimensioning and tolerancing practice, 
semantic tolerancing, is proposed with the theoretical support of semantic tolerance models. 
Following principles of interpretability, this new tolerancing approach captures more design intent, 
including flexible material selection, component sorting in selective assembly, rigidity of constraints, 
and assembly sequence. 
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1. INTRODUCTION 
Tolerance modeling forms an important link between design and manufacturing. A significant amount of research has 
been done to explore the mathematical basis for dimensional and geometric tolerance representation, analysis, and 
synthesis. Relationships among tolerances in components and assemblies are formulated in different ways and solved 
numerically. The typical analysis methods include variational estimation, kinematic formulation, statistical 
approximation, and Monte Carlo simulation. However, current tolerance modeling methods do not represent the 
semantics of tolerance specifications well. 
 
First, the traditional tolerance analysis methods assume objects all have rigid geometry. Variance is increasingly 
stacked up as components are assembled. Geometric variation of assembly is always assumed to be larger than those 
of its subassemblies and components. This rigid body tolerance analysis overestimates the variations of flexible 
materials, such as assemblies containing sheet metal and plastic parts.  
 
Second, current modeling and analysis methods do not maintain the semantics of tolerance specifications during 
model formulation and numerical computing. These specifications, along with the relations among them, imply certain 
manufacturing and assembly methods, especially the sequence of fabrication as an important component of design 
intent.  Tolerance analysis is usually simplified to computation of numerical intervals. However, the logical 
dependency and algebraic relations among variations are left out in existing approaches. This leads to the problem 
that numerical solutions are not interpretable. Instead of focusing only on mathematical and numerical convenience, a 
good model of tolerance should convey the full semantics of size and geometric tolerances and support analysis and 
synthesis with a simple yet comprehensive structure. 
 
A semantic tolerance modeling scheme [1, 2] was recently proposed in order to better capture tolerancing intent. It is 
to embed logical relationships and engineering implications into mathematical representation based on modal interval 
analysis [3]. Numerical results are interpretable based on several interpretability principles. In this paper, we introduce 
a new dimensioning and tolerancing practice, semantic tolerancing, based on the semantic tolerance models. It allows 
us to capture more design intent, such as flexible material selection, component sorting in selective assembly, and 
assembly sequence. In the remainder of the paper, Section 2 gives a brief overview of existing tolerance models, 
modal interval analysis, and semantic tolerance modeling. Section 3 describes the basic principles of interpretability in 
semantic tolerance modeling. Section 4 presents the new semantic tolerancing approach for design specification. 
 
2. BACKGROUND 
2.1 Tolerance Modeling 
There is plenty of literature on tolerance modeling [4, 5]. In the variational approaches, tolerance zones are established 
in either 3D Euclidean space or configuration space, such as offsetting tolerance zone [6, 7], plane boundary 
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representation [8, 9] and volume-based representation [10]. In the statistical approaches [11, 12], geometric and size 
tolerances are not modeled separately. Linear tolerance stack-up can be estimated using a root-sum-square method 
whereas non-linear stack-up is approximated using Taylor series. While the root-sum-square method gives optimistic 
estimation, alternatives were proposed to do adjustment and correction for shifts and drifts [13]. Tolerance zone can be 
represented in a mean-variance (μ-σ2) space [14, 15]. In the kinematic approaches, geometrical variation and 
displacement are modeled by unified vectors and matrices [16, 17], small displacement torsor [18, 19], homogenous 
matrices [20, 21], kinematic links and adjustment in Euclidean space [22, 23]) and configuration space [24]. In the 
Monte Carlo simulation approaches [25, 26], the assumption of variable independence is not needed. Based on 
tolerance response relations, large numbers of samples are randomly generated and evaluated statistically. The 
drawback is that the computational cost for the sampling process is very high if an accurate estimation is required. The 
process also depends on the pre-assumption of certain statistical distributions for input random variates. For tolerance 
analysis of flexible materials, a combination of finite element structural analysis and Monte Carlo simulation has been 
proposed [27, 28, 29]. These tolerance modeling and analysis methods have been widely accepted and used in 
commercial software such as Vis VSA, CE/Tol, and CATIA-TAA. However, one critical element is missing. The 
engineering semantics of the input and output variations during computational analysis is not maintained, and the 
relations among variations in components and assemblies are not interpretable. The new semantic tolerance modeling 
is to overcome the deficiency, which is based on generalized intervals. 
 
2.2 Modal Interval Analysis vs. Interval Analysis 
Interval mathematics [30] is a generalization in which interval numbers replace real numbers, interval arithmetic 
replaces real arithmetic, and interval analysis replaces real analysis. The set of real intervals is  
 },|],{[ RRIR ∈∈= baba  (1) 

Let ],[][ aaa = , ],[][ bbb =  be real intervals and D  be one of the four basic arithmetic operations for real numbers, 

{ }/,,, ⋅−+∈D . The corresponding operations for interval ][a  and ][b  are defined by 

 { }][],[][][ byaxyxba ∈∈= DD  (2) 

Not only intervals solve the problem of representation for real numbers on a digital scale, but they are the most suitable 
way to represent uncertainties and errors in technical constructions, measuring, computations, and ranges of 
fluctuation and variation. Interval analysis has been extensively used in reliable computing in computer science. In 
engineering fields, methods of interval analysis have been used in robust geometry construction and evaluation [31, 
32], set-based modeling [33], imprecise structural analysis [34], design optimization [35], finite-element formulation 
and analysis [36, 37], soft constraint solving [38, 39], and worst-case tolerance analysis and synthesis [40]. 
 
Modal interval analysis (MIA) [3, 41, 42, 43, 44] is a logical and semantic extension of the classical interval analysis 
(IA). Unlike classical IA which identifies an interval by a set of real numbers as in Eqn. (1), MIA identifies an interval by 
a set of predicates which is fulfilled by the real numbers. The modal quantifier associates to every real predicate. A real 
function )(xf  where nx R∈  can be extended to )(xf  where nKR∈x , which is called KR -extension or AE-

extension. In special cases of the real arithmetic operations, i.e., yxyxf D=),(  with { }÷×−+∈ ,,,D , the KR -extensions 

lead to the so-called Kaucher arithmetic [45].  
 
Given a set of closed intervals of real numbers in R , the set of logical existential ( ∃ ) and universal (∀ ) quantifiers, 
each modal interval or generalized interval KR∈= ],[: xxx  has an associated quantifier. x  is called proper interval 

when xx ≤  and called improper interval when xx ≥ . The set of proper intervals is denoted by { }xxxx ≤= |],[IR , 

and the set of improper interval is { }xxxx ≥= |],[IR . 

 
Three special operators, pro, imp, and dual, are defined in Kaucher arithmetic. Given a generalized interval 

KR∈= ],[ xxx , )],max(),,[min(:pro xxxx=x  and )],min(),,[max(:imp xxxx=x  return the proper and improper 

interval values of x  respectively. ],[:],dual[ xxxx =  builds a relation between proper and improper intervals. Related 

to arithmetic operations, ( ) ( ) ( )yxyx DD dualdualdual = . The inclusion relation between modal intervals is defined as 
yxxyyyxx ≤∧≤⇔⊆ ],[],[ . The less or equal relation is defined as yxyxyyxx ≤∧≤⇔≤ ],[],[ . Tab. 1 lists the 

major differences between MIA and IA. 
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 Classical Interval Analysis Modal Interval Analysis 
Validity ]2,3[  is an invalid or empty interval Both ]3,2[  and ]2,3[  are valid intervals 

Semantics 
richness 

]7,4[]4,2[]3,2[ =+  is the only valid relation for 

+, and it only means “stack-up” and “worst-
case”. /,,×−  are similar. 

]7,4[]4,2[]3,2[ =+ , ]5,6[]2,4[]3,2[ =+ , 

]6,5[]4,2[]2,3[ =+ , ]4,7[]2,4[]2,3[ =+  

are all valid, and each has a different 
meaning. /,,×−  have similar semantic 

properties. 
Completeness 
of arithmetic 

bxa =+ , but abx −≠  
]7,4[]4,2[]3,2[ =+ , ]3,2[]7,4[]4,2[ −≠  

bxa =× , but abx ≠  

]12,6[]4,3[]3,2[ =× , ]3,2/[]12,6[]4,3[ ≠  

0≠− xx  
0]1,1[]3,2[]3,2[ ≠−=−  

bxa =+ , and abx dual−=  
]7,4[]4,2[]3,2[ =+ , ]2,3[]7,4[]4,2[ −=  

bxa =× , and abx dual=  

]12,6[]4,3[]3,2[ =× , ]2,3/[]12,6[]4,3[ =  

0dual =− xx  
 0]2,3[]3,2[ =−  

 
Tab. 1: The major differences between MIA and traditional IA. 

 
2.3 Semantic Tolerance Modeling 
MIA is able to model problems on a logic basis and to obtain the interval functional evaluations for the mathematical 
model involved. Based on generalized intervals, we proposed a new semantic tolerance modeling scheme, in which the 
implications of tolerance stacking can be embedded in tolerance models.  
 
The purpose of semantic tolerance modeling is to embed engineering implications into mathematical relations, which is 
to build a bridge between mathematical theory and engineering practice. Semantic tolerance modeling has two 
important characteristics: (1) Interpretability: being able to interpret tolerance intervals during the analysis and synthesis 
processes and to provide the basic understanding of tolerancing semantics; and (2) Optimality: being able to analyze 
tolerance propagation and accumulation so that tolerances can be specified without losing the basic requirements of 
completeness and soundness. Interpretability allows tolerance semantics to be embedded in interval results. Optimality 
assures the tightness of variation estimation.   
 
3. INTERPRETABILITY 
The uniqueness of generalized intervals is the semantic extension of intervals with logic quantifiers. As a set of 
predicates, semantics of an interval KR∈x  is denoted by ( )xx proQ ∈x  where },{Q ∀∃∈x . An interval KR∈x  is 

called existential if ∃=xQ . Otherwise, it is called universal if ∀=xQ . If a real relation ),,( 1 nxxfz "=  is extended to 

the interval relation ),,( 1 nxxfz "= , the interval relation z  is interpretable if there is a semantic relation 

 ( ) ( )( )( )),,(QproQproQ 1111 nnnn xxfzzxx "… =∈∈∈ zxx z  (3) 

Two interval extensions of a real function RR →nxf :)( , so-called semantic interval functions, are defined in a min-

max form as the basis of interpretation. They are 
 )],(minmax),,(maxmin[:)(

propropropro

*
ip

xxip
xx

xxfxxff
iippiipp xxxx

x
∈∈∈∈

=  (4) 

 )],(maxmin),,(minmax[:)(
propropropro

**
ip

xxip
xx

xxfxxff
ppiippii xxxx

x
∈∈∈∈

=  (5) 

where ),( ip xx  is the component splitting corresponding to an interval vector ),( ip xxx = , with the sub-vectors px and 

ix  containing the proper and improper components respectively. Important properties of interpretability are available 

and proved based on these two semantic interval functions. 
 
Theorem 3.1 [3] Given a continuous function RR →nf :)(x  and a generalized interval vector nKR∈x , if there 

exists an interval KR∈)(xf , then  



 

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 257-266 
 

260 

 ( )( )( )( )),(pro)(proQpro)()(* ipiipp xxfzxzxf =∈∃∈∈∀⇔⊆ xxfxxfx f  (6) 

Theorem 3.2 [3] Given a continuous function RR →nf :)(x  and a generalized interval vector nKR∈x , if there 

exists an interval KR∈)(xf , then 

 ( )( )( )( )),(pro)(proQpro)()(
dual

**
ipppii xxfzxzxf =∈∃∈∈∀⇔⊇ xxfxxfx f  (7) 

 
Let RR →nf :  be a rational continuous function. Its modal rational extension KRKR →n:f  replaces the real 
variables of f  with modal interval variables and real operators with interval operators, as originally defined in [45]. 
The semantics of a modal interval relation or function is embodied in the relation’s syntax. The syntax of a function 

RR →n
nxxf :),,( 1 …  can be represented by a syntax tree. For example, the syntax tree of ( )

321211 xxxxxf −+=  

is shown in Fig. 1. A component ix  is uni-incident in the function ),,( 1 nxxf …  if it occupies only one leaf of the syntax 

tree, such as 3x  in 1f . Otherwise, it is multi-incident, such as 1x  and 2x  in 1f . Leaves and branches of the syntax tree 

are connected with either one-variable operators such as  and , or two-variable operators such as /,,, ×−+ . 

x3 

x1 

x2 x2 x1 

×+

−

 
Fig. 1: The syntax tree of ( )

321211 xxxxxf −+= . 

 
3.1 Uni-Incident Interpretation 
Theorem 3.3 [3] For a modal rational function KRKR →n:)(xf , if all arguments of )(xf  are uni-incident, then 

)()()( *** xxfx ff ⊆⊆ . 

 
From Theorems 3.1, 3.2, and 3.3, we know modal rational functions of uni-incident variables are interpretable. For 
example, yxyxf +=),(  is considered for ]3,1[∈x  and ]5,2[∈y . 

]8,3[]5,2[]3,1[])5,2[],3,1([ =+=f , 

]5,6[]2,5[]3,1[])2,5[],3,1([ =+=f , 

]6,5[]5,2[]1,3[])5,2[],1,3([ =+=f , 

]3,8[]2,5[]1,3[])2,5[],1,3([ =+=f , 

have the meanings of  
( )( )( )( )yxzzyx +=∈∃∈∀∈∀ ]8,3[]5,2[]3,1[ , 

( )( )( )( )yxzyzx +=∈∃∈∀∈∀ ]5,2[]6,5[]3,1[ , 

( )( )( )( )yxzzxy +=∈∃∈∃∈∀ ]6,5[]3,1[]5,2[ , 

( )( )( )( )yxzyxz +=∈∃∈∃∈∀ ]5,2[]3,1[]8,3[ , 

respectively. 
 
Different semantics of linear tolerance stack-up in assembly enclosures needs to be differentiated in tolerance design. 
This includes the semantics associated with assembly sequence, accuracy of tolerance estimation, and controllability of 
variation.  
 
As tolerances are stacked up in a tolerance chain, the earlier a part is assembled in the sequential process, the less 
controllable the corresponding variations are in order to close the chain. In an assembly line, correction or adjustment 
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of individual components in a previously finished subassembly, especially those directly from suppliers, to meet 
functional requirement is more difficult than the adjustment of newly added ones. In this sense, the tolerances of the 
earlier assembled parts are out of control of the current worker. They are uncontrollable tolerances. In contrast, the 
most recently assembled ones have controllable tolerances. 
 
If a dimension is functionally critical and therefore explicitly specified in design and blueprint, it is called working 
dimension. On the other hand, a dimension is called balance or reference dimension if it is not explicitly specified and 
its nominal value and tolerance are calculated from working dimensions. Compared to working dimensions, which are 
hard requirements imposed a priori, balance dimensions are soft and derived a posteriori. In general, a priori 
tolerances are tolerances with predetermined variations, whereas a posteriori tolerances are tolerances with derived 
variations. Whenever defining a relation among tolerances, we have implicitly differentiated these two types of 
tolerances. 
 
Based on manufacturing and assembly sequences, tolerances may be specified in different ways to designate some 
desirable semantics. For example, in Fig. 2, dimensions a , b , and c  in three components have the relation cba =+ . 
If Part A and B are provided by suppliers and Part C is to be built in house (Fig. 2-a, Case I), or if a  and b  are 
working dimensions and c  is a balance dimension, the tolerance of c  is determined by the tolerances of a  and b , 
and the tolerance chain should be closed. In this case, the semantics of “given A and B, C needs to fit A and B” is 
expressed as ( )( )( )( )cbacba =+∈∃∈∀∈∀ cba propropro , which is different from the semantics of “given A, B and 
C need to fit A” when a  is a working dimension while b  and c  are balance dimensions (Fig. 2-b, Case II).  
 
In semantic tolerance models, a priori and a posteriori tolerances are differentiated by the modalities of generalized 
intervals. A priori tolerances have the semantics of uncontrollable, unchangeable, critical, hard-constrained, specified, 
etc. For example, tolerances in working dimensions are categorized as a priori. A posteriori tolerances have the 
semantics of flexible, soft-constrained, adjustable, controllable, feedback, etc. A posteriori variations provide “buffers” 
in tolerance allocation to make algebraic relations valid and close the tolerance chain, such as balance dimensions. It 
should be noticed that the semantic categories of a priori and a posteriori tolerances depend on the context of 
discourse.  
 

Case I: given Part A and Part B, 
Part C needs to fit A and B. 

Case II: given Part A, Part B and 
Part C need to fit A. 

Case III: given Part C, Part A and 
Part B need to fit C. 

(a) (b) (c) 

c 

a b 
Part C 

Part A 
Part B 

c 

a b 
Part C

Part A
Part B

c 

a b 
Part C

Part A 
Part B

( )( )( )( )cbacba =+∈∃∈∀∈∀ cba propropro ( )( )( )( )cbacba =+∈∃∈∃∈∀ cba propropro ( )( )( )( )cbabac =+∈∃∈∃∈∀ bac propropro

 
Fig. 2: Different types of semantics need to be captured, which are not differentiated in traditional modeling methods. 

 
With the symbolic differentiation of a priori and a posteriori tolerances, different strategies of tolerance allocation could 
be applied in different scenarios. For example, in Fig. 2-a, given two uncontrollable dimensions a  and b , the 
controllable dimension ]8,3[]3,1[]5,2[ =+=+= bac . In Fig. 2-b, one extra controllable dimension b  allows a tighter 

tolerance of c . ]6,5[]1,3[]5,2[ =+=+= bac . The tolerance range of c  is reduced from 5 to 1, which is smaller than 

the tolerance range of a . This indicates that the principle of selective assembly may be applied to achieve assembly. 
Selective assembly is a widely used process of sorting and selecting mating components in pairs so that high-precision 
assemblies can be achieved even with the low-precision components. This method is valuable when individual 
components cannot be produced with their tolerances small enough to be fully interchangeable in an assembly, such as 
some specialized roller bearings with the micrometer level tolerances. However, selective assembly is a manual process, 
which means it may only be used in low-volume high-value products. In a cost-conscious mass production 
environment, choosing flexible materials is the alternative, as discussed in Section 3.3.  
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3.2 Multi-Incident Interpretation 
Theorem 3.4 [3] For a modal rational function KRKR →n:)(xf , if there are multi-incident improper arguments in 

)(xf , and )(* xt  is obtained from x  by transforming, for every multi-incident improper component, all incidences but 

one into its dual, then ))((t)( ** xfx ⊆f . 

Theorem 3.5 [3] For a modal rational function KRKR →n:)(xf , if there are multi-incident proper arguments in 

)(xf , and )(** xt is obtained from x  by transforming, for every multi-incident proper component, all incidences but 

one into its dual, then ))((t)( **** xfx ⊇f . 

 
From Theorems 3.1, 3.2, 3.4, and 3.5, modal rational functions of multi-incident variables are interpretable with some 
modifications. For example, )/(),( yxxyyxf +=  is extended to ]3,1[−=x  and ]7,15[=y . 

]5.1,5.0[])7,15[]3,1/([]7,15[]3,1[),( −=+−×−=yxf  

is not interpretable, whereas  
]5.3,16667.1[])15,7[]3,1/([]7,15[]3,1[)),(( * −=+−×−=yxtf , 

]21429.3,07143.1[])7,15[]3,1/([]15,7[]3,1[)),(( * −=+−×−=yxtf , 

]16667.1,388889.0[])7,15[]1,3/([]7,15[]3,1[)),(( ** −=+−×−=yxtf , 

]5.1,5.4[])7,15[]3,1/([]7,15[]1,3[)),(( ** −=+−×−=yxtf  

are interpretable. They are interpreted as 
( )( )( )( ))/(]5.3,16667.1[]15,7[]3,1[ yxxyzzyx +=−∈∃∈∃−∈∀ , 

( )( )( )( ))/(]21429.3,07143.1[]15,7[]3,1[ yxxyzzyx +=−∈∃∈∃−∈∀ , 

( )( )( )( ))/(]3,1[]16667.1,388889.0[]15,7[ yxxyzxzy +=−∈∃−∈∀∈∀ , 

( )( )( )( ))/(]5.4,5.1[]3,1[]15,7[ yxxyzzxy +=−∈∃−∈∃∈∀  

respectively.  
 
In complex assemblies, parametric relations with multi-incident variables are common. Compared to the traditional 
tolerance modeling, semantic tolerance modeling allows us to explicitly interpret algebraic relations among variations. 
Different numerical values and modalities can also be selected in order to derive some specific semantics.  
 
3.3 Rigidity Interpretability 
In the material property domain, the variation ranges for rigid materials are corresponding to proper intervals, and the 
ranges for flexible materials are to improper intervals.  
 
In the one-way clutch example of Fig. 3, the distance vector b , the length of the spring s , and the radius of the ball r  
have the relation bsr =+ . If variation ranges ]7.5,2.5[  and ]0.8,8.7[  are given to r  and b  respectively, the range for 

spring length s  can be ]8.2,1.2[ , as in the relation 

bsr ==+=+ ]8.7,0.8[]1.2,8.2[]7.5,2.5[ . 

It is interpreted as 
( )( )( )( )bsrsbr =+∈∃∈∀∈∀ ]8.2,1.2[]0.8,8.7[]7.5,2.5[ . 

The spring provides a “cushion” to absorb variance. If a larger range ]5.8,8.7[  is allowed for b , no flexible material is 

absolutely required for s  to absorb the variance, since the relation 
bsr ==+=+ ]5.8,8.7[]8.2,6.2[]7.5,2.5[  

is interpreted as 
( )( )( )( )bsrbsr =+∈∃∈∀∈∀ ]5.8,8.7[]8.2,6.2[]7.5,2.5[ . 
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b

s
r

 
 

Fig. 3: Variations form a closed loop in assembly. 
 
As illustrated in Fig. 4, the semantic difference between rigid and flexible materials is differentiated by the interval 
modalities. If the width of the interval ],[ xx=x  is defined as xx −=:widx , the flexibility of materials is quantified by 

the width of improper intervals. The relative width of an improper interval indicates how flexible the material is. 
Compressibility may be indicated by the index ( ) xxx −=− )(I x  and stretchability by ( ) xxx /)(I −=+ x . For example, 

in Fig. 4-b, the material 1x  is more flexible than the material 2x , and 2x is more flexible than 3x . The selection of 

rigid or flexible materials thus can be integrated into algebraic relations. 

x

x

3widx

1widx

2widx

3x

2x
1x

Rigid 

Flexible
xx >  

(improper)

xx <  
(proper) 

x

x  xx =  
(pointwise)

(a) the improper interval domain 
corresponds to flexible materials 

(b) the width of an improper interval 
indicates how flexible the material is 

 
Fig. 4: An inf-sup diagram is also a rigidity diagram. 

 
4. SEMANTIC TOLERANCING 
In semantic tolerance models, the algebraic relations among tolerances should be compatible with the semantics of 
engineering specifications. Based on the interpretability foundation of semantic tolerance modeling, a new 
dimensioning and tolerancing practice, semantic tolerancing, is proposed. The main difference between the semantic 
tolerancing and the commonly used tolerancing practice is that a priori and a posteriori tolerances are differentiated in 
the former one.  
 
The major step of the semantic tolerancing practice is to differentiate a posteriori tolerances from a priori tolerances in 
symbols. Tolerances with universal modalities are a priori tolerances, and those with existential modalities are a 
posteriori tolerances. We use a minus-plus notation Δ∓x  to represent an improper interval and the traditional plus-
minus notation Δ±x  for proper intervals. If a tolerance value is included by a parenthesis, it is a posteriori. Otherwise 
it is a priori. If there is a closed tolerance chain zd

i
i =∑  formed, dimensions on the left-hand side with the notation of 

iid Δ±  are a priori tolerances. Those with the notation of  ( )iid Δ∓  are a posteriori. On the right-hand side of the 

chain, notations ( )Δ±z  and Δ∓z  are considered to be a posteriori and a priori tolerances respectively.  If there is no 
closed tolerance chain in the drawing, Δ±x  denotes a priori tolerance and ( )Δ∓x  denotes a posteriori tolerance. For 
example, in the drawing of Fig. 5, the tolerance a  is a priori, and b  is a posteriori. There is a closed tolerance chain 

zyx =+ . Therefore, y  and z  are a priori, and x  is a posteriori. In this case, dimensions a , y  and z  are working 
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dimensions. b  and x  are balance dimensions. The closed-loop algebraic relations between working and reference 
dimensions can now be specified explicitly in drawings. 

( )2.014 ∓=b

( )2.017 ∓=x 1.015 ±=y

1.032 ∓=z

2.030 ±=a
 

Fig. 5: A priori and a posteriori tolerances in semantic tolerancing. 
 
Assembly sequences can also be inferred from the semantic tolerance chain stack-up. As illustrated in Fig. 6-a, four 
dimensions a , b , g , and z  are specified with a closed chain zbga =++ . Numerically, 

]2.17,8.16[]8.4,2.5[]2.3,8.2[]2.9,8.8[ =++ . 2.09 ±=a  and ( )2.05 ∓=b  imply that the subassembly B is assembled 

after the subassembly A. If the functional requirement of the working dimension g  is not met, B needs to be adjusted. 
However, if the specifications are ( )2.09 ∓=a  and 2.05 ±=b  as in Fig. 6-b, A needs to be adjusted to meet the 
requirement of g . In Fig. 6-c, ( )2.03 ∓=g  indicates that g  is no longer functionally critical while a  and b  are.  
 

  (c) 

( )2.03 ∓=g

2.05 ±=b

2.09 ±=a

A B 

( )2.017 ±=z

(b) 

2.03 ±=g

2.05 ±=b

( )2.09 ∓=a

A B

( )2.017 ±=z

(a) 

2.03 ±=g

( )2.05 ∓=b

2.09 ±=a

A B 

( )2.017 ±=z

 
Fig. 6: Semantic tolerancing implies assembly sequence. 

 
In the semantic tolerancing, the flexible and rigid material selection and assembly methods can be explicitly specified. 
Fig. 7 illustrates the flexible assembly and selective assembly examples of the Case III in Fig. 2-c. The size tolerances of 
Part A and Part B are a posteriori. Both are larger than the size tolerance of Part C. Yet, three parts need to be 
assembled. The semantic tolerance symbols in Fig. 7-a indicate that flexible materials with the compressibility index at 
the level of 06.00.10)3.03.0( =+  need to be chosen for Parts A and B. If the variation ranges of a  and b  are 

reduced to 03.0∓  and the selective assembly process is intended to be used, the a posteriori tolerance symbols capture 
the intent that A and B need to be sorted and paired, as in Fig. 7-b.  
 
With the differentiation of existential and universal modalities associated with ranges, design intent can be captured in 
semantic tolerancing, such as how flexible materials are, whether the requirement of a specification is hard or soft, or 
which sequence to take during the assembly process. 
 
5. CONCLUDING REMARKS 
In this paper, a dimensioning and tolerancing scheme, semantic tolerancing, with generalized or modal intervals is 
proposed. This new tolerancing practice supports the explicit differentiation between a priori and a posteriori 
tolerances. Based on several interpretability principles, tolerancing semantics can be embedded in algebraic relations in 
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order to support better design and manufacturing specifications. Symbolically, the new scheme captures more design 
intent such as physical property difference between rigid and flexible materials, rigidity of requirements, and sequence 
of assembly. 
 

 

Part A 

(a) flexible assembly

( )03.00.10 ∓ ( )03.00.12 ∓

Part B

01.00.22 ±

Part C 

Part A

(b) selective assembly

( )3.00.10 ∓ ( )3.00.12 ∓

Part B 

01.00.22 ±

Part C

 
Fig. 7: Semantic tolerancing captures intent of material selection and selective assembly. 
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