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Abstract

Powder bed fusion is a recently developed additive manufacturing (AM) technique 

for alloys, which builds parts by selectively melting metallic powders with a high-

energy laser or electron beam. Nevertheless, there is still a lack of fundamental 

understanding of the rapid solidification process for better quality control. To simulate 

the microstructure evolution of alloys during the rapid solidification, in this research, a 

mesoscale multi-physics model is developed to simultaneously consider solute 

transport, phase transition, heat transfer, latent heat, and melt flow. In this model, the 

phase-field method simulates the dendrite growth of alloys, whereas the thermal lattice 

Boltzmann method models heat transfer and fluid flow. The phase-field method and the 

thermal lattice Boltzmann method are tightly coupled. The simulation results of Ti-

6Al-4V show that the consideration of latent heat is necessary because it reveals the 

details of the formation of secondary arms and provides more realistic kinetics of 

dendrite growth. The proposed multi-physics simulation model provides new insights 

into the complex solidification process in AM. 

Keywords: selective laser melting; Ti-6Al-4V; dendrite growth; phase-field method; thermal lattice 

Boltzmann method 
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1. Introduction

Understanding solidification is critical to control the quality of parts built with metallic 

additive manufacturing (AM) processes, which include selective laser melting (SLM), electron 

beam melting (EBM), direct energy deposition (DED), and others. Different alloys have been 

used in metal-based AM processes. Particularly, titanium alloy Ti–6Al–4V has a wide range 

of applications from aerospace to biomedical devices. As a high strength ( ) titanium alloy, 𝛼 + 𝛽

Ti–6Al–4V’s microstructure mainly depends on its chemical composition, processing 

condition, and heat treatment history. During the complex process of solidification,  

interactions between solute diffusion, heat transfer, and fluid dynamics have significant effects 

on the formation of the final solid microstructure. Fundamental understanding of the process 

allows us to predict the solidified microstructure and the physical properties of the solids for 

process design and optimization. To understand the solidification of Ti–6Al–4V, simulations 

at the mesoscale are cost-effective alternatives to expensive experiments for in-situ observation.

Compared to atomistic scale simulations, mesoscale models such as phase-field method 

(PFM) [1–7] and cellular automaton (CA) simulate solidification more efficiently. PFM 

simulates a much longer time scale than what molecular dynamics is able to, and provides more 

physical details of material phases than what Monte Carlo simulation can. Although PFM is 

computationally more expensive than CA, it provides fine-grained details. It has been shown 

that the steady state dendrite tip velocities predicted by PFM agree with the Lipton-Glicksman-

Kurz model more closely than CA results do [8]. 

To distinguish between liquid and solid phases, a continuous variable, namely order 

parameter or phase field , is used in PFM. The evolution of the microstructure in 

solidification is modeled by partial differential equations of the phase field . PFM has been 

used to simulate complex phase transitions of multicomponent multiphase alloys [9–14]. 
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Recently PFM was adopted to simulate the grain growth of Ti-6Al-4V alloy in the EBM 

process [15,16]. It has been revealed that increases in temperature gradient and beam scanning 

speed reduce the primary arm spacing of columnar dendrites. However, the above work did not 

account for the effects of melt flow and latent heat, which are critical for the formation of the 

solid microstructure. 

Compared to traditional finite volume methods to simulate fluid flow, the lattice 

Boltzmann method (LBM) has computational advantages for systems with complex boundaries 

[17–19]. LBM is capable of simulating single-phase and multiphase flow with complex 

boundary conditions and multiphase interfaces. To incorporate thermal effects into fluid 

dynamics, the thermal lattice Boltzmann method (TLBM) [20–26] has been developed. Unlike 

LBM, which uses a single particle distribution function for fluids, TLBM uses two distinct 

particle distribution functions for fluid dynamics and heat transfer. TLBM has been recently 

adopted to simulate the evolution of temperature and velocity fields in the EBM process [27]. 

However, the simulation using TLBM alone lacks fine-grained phase information, because it 

cannot simulate the evolution of dendrite structure.

Some efforts have been made to combine PFM and LBM to simulate the dendritic growth 

in solidification of pure metals and alloys [28–32], allowing for interplay between grain growth 

and melt flow. A combination of three-dimensional (3D) PFM and LBM has been adopted to 

simulate the grain growth of Al-Cu alloy in a melt flow [33]. However, in these PFM and LBM 

combinations, either the isothermal condition or a one-dimensional temperature field was 

assumed [34], which oversimplifies the physical processes. The temperature field during rapid 

solidification can be much more complex than that of solidification under the equilibrium 

thermal condition because melt flow and the release of latent heat will constantly change the 

temperature distribution. Therefore, the effects of latent heat and fluid flow on phase transition 

should be simultaneously considered in the multi-physics modeling of solidification for 

accurate prediction.
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Here, a new integrated phase-field and thermal lattice Boltzmann method (PF-TLBM) is 

proposed to simulate rapid solidification of Ti-6Al-4V alloy by concurrently coupling solute 

transport, heat transfer, latent heat, and fluid dynamics. In the most similar work by Sakane 

et al. [33], PF and LBM were combined without considering heat transfer. To the best of our 

knowledge, this is the first time that PF and TLBM have been combined to predict the 

complex process of rapid solidification, with multi-physics considerations of phase transition, 

fluid dynamics, heat transfer, and latent heat effects. The simulation results show that the 

consideration of latent heat is important because it reveals the details of the formation of 

secondary arms and provides more realistic kinetics of dendrite growth. In addition, the effect 

of melt flow is subdued by high cooling rate because dendrites grow very quickly in rapid 

solidification. 

In the remainder of this paper, the formulation of the proposed PF-TLBM model is 

described in Section 2. The simulation results and effects of latent heat and melt flow on the 

dendrite growth are shown in Section 3, which also contains experimental comparison, 

sensitivity analysis of mesh sizes, as well as quantitative analyses of the temperature gradient, 

growth velocity, and their combinations. 

2. Methodology

In the PF-TLBM model, phase formation is described with partial differential equations 

of phase field and composition variables, whereas fluid flow and thermal effects are modeled 

with convection-diffusion equations of velocity and temperature fields, respectively. 

Information exchange between the phase, temperature, and velocity fields are achieved by 



6

updating the variables in each iteration of simulation. The latent heat effect is also 

incorporated in the simulation of heat transfer. The PF-TLBM model proposed here is an 

extension of our recent work [35]. In the extension, a local non-equilibrium partition 

coefficient is considered for rapid solidification, and a variable grid computational scheme is 

developed to simulate the phase field and the temperature field. A coarser grid is used in 

TLBM to improve simulation efficiency and accuracy because the thermal diffusivity and 

solute diffusivity differ by three orders of magnitude.

2.1 Phase-field method

The multi-phase multi-component phase-field method is a generic formulation for phase 

transitions of alloys. In this work, the multi-phase field method described in Ref. [30] is 

adopted. The essential component of PFM is a free energy functional that describes the kinetics 

of phase transition. The free energy functional 

 (1)( )GB CHF f f dV


 

is defined with an interfacial free energy density  and a chemical free energy density 𝑓𝐺𝐵

 in a domain . 𝑓𝐶𝐻 Ω

A continuous variable called phased field, , indicates the fraction of the solid phase in 

the simulation domain during the solidification process, and the fraction of the liquid phase is 

. The interfacial free energy density is defined as1l  

, (2)
* 2

2
2

4 ( ) (1 )GBf    
 

 
    

 

n

where  is the anisotropic interfacial energy stiffness,  is the interfacial width, and *( ) n 

 is the local normal direction of the interface. The anisotropic interfacial energy /   n

stiffness is defined as



7

 (3) 
2
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
        

where  is the interfacial energy,  indicates the orientation,  is the   arctan /y xn n  *
0

prefactor of interfacial energy stiffness, and  is the anisotropy strength of interfacial energy *

stiffness, which models the difference between the primary and secondary growth directions 

of dendrites. 

The chemical free energy is the combination of bulk free energies of individual phases

, (4)         1CH
s s l l s s l lf h f C h f C C C C           

where Cs and Cl are the weight percentages (wt%) of solute in the solid or liquid phase, 

respectively.  is the overall composition of a solution in the simulation domain.  C  s sf C

and  are the chemical bulk free energy densities of solid and liquid phases, respectively.  l lf C

 is the generalized chemical potential of solute introduced as a Lagrange multiplier to 

conserve the solute mass balance . The weight function s s l lC C C  

 (5)       1 1[ 2 1 1 arcsin 2 1 ]
4 2

h         

provides the coefficients associated with solid and liquid bulk energies. 

The evolution of the phase field is described by

 (6)   
2

* 2
2

1 1 ,
2

M G
      
 

                 
n

where  is the coefficient of interface mobility, and the driving force is given by M

, (7) m l lG S T T m C    

where  is the entropy difference between solid and liquid phases,  is 6 11 10  J KS      mT

the melting temperature of a pure substance, T is the temperature field, and  is the slope of lm

liquidus. Existing studies of interface mobility are restricted to pure metal or one-component 

systems. For the complex ternary alloy Ti-6Al-4V, there is a lack of information to reveal the 

dependency of interface mobility on temperature. For simplification, the interface mobility is 
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assumed to be constant in this work.

The evolution of the composition is modeled by

, (8)   1 1l l l l atC C D C               u j   

where  is the velocity of the liquid phase, and  is the local partition coefficient. lu /s lk C C

During rapid solidification, the assumption of local composition equilibrium is not 

reasonable. Therefore, the local non-equilibrium partition coefficient  is computed based k

on Aziz’s model [36,37]

, (9)
/

1 /
e l

l

k V Dk
V D









where  is the equilibrium partition coefficient,  is the actual 0.206ek  93 10  m  

interface width in atomic dimensions, and  is the local velocity of the interface./V   

 is the diffusion coefficient of liquid, which is assumed to follow an Arrhenius form with lD

an activation energy of 250  based on [38]-1kJ mol

, (10)8 250000 25000010 expl
l

D
RT RT

  
   

 

where  is the liquidus temperature and  is gas constant. Furthermore, jat is the anti-lT R

trapping current and defined as

, (11)   1at l sC C   
 


  


j 

which is used to eliminate the unphysical solute trapping during the interface diffusion 

process. It removes the anomalous chemical potential jump [6,39] so that simulations can be 

done more efficiently with the simulated interface width exceeding that of the physical one. 

Eqs.(6) and (8) are the main equations to solve during the phase field simulation. The anti-

trapping current was originally introduced for the quasi-equilibrium condition. For 
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simplification, it is still used here under the non-equilibrium condition for rapid solidification, 

since here the simulated domain size 90 μm is small and the simulated time period 1.4 ms is 

short. The upwind scheme of the finite difference method is applied to solve Eqs.(6) and (8).

2.2 Thermal lattice Boltzmann method

The conservation equations of mass, momentum, and energy are given by

, (12)( ) 0l l u

, (13)     [ ]l
l l l l l l l dP

t
   



        


u u u u F 

, (14)   l l
T T T q
t

 
     


u 

respectively, where  is the velocity of liquid with density ,  is the pressure,  is lu  P 

the coefficient of kinematic viscosity,  is the thermal diffusivity, and

 (15) 
2

*
21d lh  


  F u

is the dissipative force caused by the interaction between solid and liquid phases, where 

 is a coefficient fitted from the calculation of Poiseille flow in a channel with diffuse * 147h 

walls [30]. Furthermore,

 (16)H

p

Lq
c t






is the released latent heat during solidification, where  is the latent heat of fusion, and  HL pc

is the specific heat capacity. 

Instead of solving Eqs.(12)-(14) directly, particle distribution functions for density 

 and temperature  are used to capture the dynamics of the system in TLBM.  ,if tx  ,ig tx

The macroscopic properties of velocity  and temperature  can be calculated based on lu T

the density and temperature distribution functions. In the TLBM model, the spatial domain is 

discretized as a lattice. Particles move dynamically between neighboring lattice nodes. In a 

two-dimensional D2Q9 model, each node has eight neighbors. The velocity vector
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 (17)
 
   
 

0,0 ,                  0

,0 , 0, ,   1, , 4

, ,             5, ,8
i

i

c c i

c c i




   
   

e 



represents the velocity along the i-th direction in the lattice with respect to a reference node, 

where  is the lattice velocity with spatial resolution  and time step , i=0 is /c x t   x t

the reference lattice node, and i=1 to 4 indicate the right, top, left, and down directions, whereas 

i=5 to 8 indicate the top-right, top-left, down-left, and down-right directions, respectively.

The evolution of particle distribution for density  is modeled byif

 (18)         1, , , , ,eq
i i i i i i

f

f t t t f t f t f t F t


         x e x x x x

where

 (19)2 0.5f
sc t
  


is a dimensionless relaxation time parameter with the speed of sound , 2 2 / 3sc c

 (20)   2 2

2 4 2, 1
2 2
i leq i l l

i i
s s s

f t
c c c

 
 

    
  

e ue u ux


is the equilibrium distribution, and 

 (21)2 4

11
2

i l i l
i i i d

f s s

F
c c




   
         

e u e u e F 

is the force source [25,40], where  represents the weight associated with direction i. In i

the two-dimensional D2Q9 model, they are

. (22)
4 / 9,      0
1/ 9,       1, , 4
1/ 36,     5, ,8

i

i
i
i




 
 




The evolution of particle distribution for temperature  is modeled in parallel byig

 (23)         1, , , , ,eq
i i i i i i

g

g t t t g t g t g t Q t


         x e x x x x
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where 

 (24)2 0.5g
sc t
  


is similarly a dimensionless relaxation time parameter, 

 (25)   2 2

2 4 2, 1
2 2
i leq i l l

i i
s s s

g t T
c c c


 

    
  

e ue u ux


is the equilibrium distribution, and 

 (26)11
2i i

g

Q q


 
   

 

is the heat source.

Eqs.(18) and (23) are the main equations to be solved in TLBM, based on which density 

and temperature distributions are updated at each time step. During a simulation, the 

macroscopic quantities of density, velocity, and temperature can be calculated from ’s and if

’s asig

, (27)i
i

f  

, (28)
2l i i i

i

tf 
 u e F

, (29)Q
2i i

i

tT g 
 

respectively. At each iteration, the properties are calculated, and Eqs.(18) and (23) are 

updated accordingly.

In rapid solidification, heat transfer is much faster than solute diffusion, where thermal 

diffusivity can be three orders of magnitude larger than solute diffusivity. In this work, to 

reduce the computational cost and improve accuracy, a fine grid spacing  is used for the dx

PFM simulation, whereas a coarse grid spacing  is used for the TLBM simulation. 30 x dx 

The same time step  is used for both simulations. The results of PFM are averaged and t
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transferred to the TLBM model, while the results of TLBM are linearly interpolated as the 

input for the PFM model. To satisfy the no-slip boundary condition, a bounce-back scheme is 

used at the solid-liquid interface. The density distribution function at the boundary node 

 with the direction  such that  is determined by ,bif t t x i ii  e e

 (30)        2

1, , , , 6eq i w
b i b i b i b i wi

f

f t t f t f t f t
c

 


       
e ux x x x 

where  is the velocity of the moving wall at the location  and  is the wu 1
2w b i t  x x e w

density at the wall. For the thermal boundary condition, an anti-bounceback scheme [41–43] is 

used. At the boundary, the temperature distribution function  is given by ,big t t x

 (31)

       

  22

2 2

1, , , ,

                        2 1.0 4.5 1.5

eq
b i i ii

g

wi w
i w

g t t g t g t g t

T
c c





       

 
   

  

x x x x

ue u

where

 (32)
2
H

w b
q xT T




 

is the temperature of the wall calculated based on the outward heat flux  at the boundary Hq

and the thermal conductivity of the material .

2.3 PF-TLBM algorithm implementation

In the multi-physics PF-TLBM simulation, different variables are tightly coupled, 

including liquid velocity , composition , temperature , and phase field  and its time lu C T 

derivative . Fig. 1 illustrates the algorithm of PF-TLBM. The composition is first calculated 

based on the initial temperature and phase field by solving Eq. (8) with the finite difference 

method. Then phase field is updated based on Eq. (6) with the updated composition values. 

The dissipative force in Eq. (15) is updated with the latest values of the phase field. The total 

force applied in LBM as in Eq. (21) is then updated. Temperature and liquid velocity field are 

coupled in TLBM as in Eq. (25). The updated velocity values are passed to update the 
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composition by solving the advection equations. The updated temperature and fluid velocity in 

TLBM are then used in PFM for the next iteration. The proposed PF-TLBM algorithm is 

implemented and integrated with the open-source phase field simulation toolkit OpenPhase 

[44]. 

Fig. 1. The flow chart of the PF-TLBM simulation algorithm

3. Simulation results and discussion

Here, Ti-6Al-4V alloy is used to demonstrate the PF-TLBM simulation scheme. In this 

model, the ternary Ti-6Al-4V alloy is treated as a binary alloy, and the solute is the combination 

of Al and V. This pseudo-binary approach is similar to the existing work [15,45], which was 

shown to be an effective replacement of the multi-component approach for modeling 

solidification kinetics of Ti-6Al-4V alloy. The physical properties of Ti-6Al-4V alloy are given 

in Table 1 [30]. 
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In order to reduce or eliminate the effect of numerical solute trapping, the fine grid spacing 

dx should be smaller than the solute diffusion length , where  is solute diffusivity /lD V lD

and  is interface velocity. The maximum dendrite growth velocity is assumed to be V

. Therefore, a fine grid spacing  and a coarse grid spacing max 50 mm/sV  0.1 μmdx 

 are adopted. Based on the von Neumann stability analysis or Fourier 30 3 μmx dx  

stability analysis, the upper limit of the time step is . 2 2 2min{ / 4 ,  / 4 ,  / 4 }lt dx D x x    

Therefore, the time step  is applied in all simulation runs. The initial temperature 0.1 μst 

is , which means that the undercooling is 8 K given the initial composition. The 1920 KT 

length of the simulated domain is  in the x-direction and the width is  900 xL dx 900 yL dx

in the y-direction. The initial radius of the nucleus is  and the interface width is 9 D dx

, which means that there are 6 nodes on the interface or boundary layer. The initial 5 dx 

composition of the solute is set as  for the whole simulation domain. The setup 0 10 wt%C 

of boundary conditions for all simulations is schematically illustrated in Fig. 2. Zero Neumann 

conditions are set at the bottom  and top  boundaries for the phase field  and 0y  yy L 

composition . Although the change of temperature gradient within the melt pool will affect C

the grain structure and grain size distribution [46], the change of temperature gradient can be 

assumed to be small given the fact that the small simulation domain is small compared with 

the whole melt pool. A fixed heat flux  [10] is set at the bottom boundary given H p yq c L T 

the constant cooling rate , while an adiabatic boundary condition is set at the 45 10  K/sT  

top boundary. When the dendrite grows in a forced flow, a constant flow velocity 

 is imposed at the top boundary of the domain. Periodic boundary conditions are 0.1 m/sw u

set at the left  and right  boundaries for the phase field , composition , 0x  xx L  C

temperature , and flow  . The nuclei are located at the bottom cold wall with constant T lu

heat flux to simulate the directional dendrite growth in selective laser melting. The locations 

of the three nuclei are , respectively. To compare the simulation 10 μm,  45 μm, and 80 μmx 
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results with the experiments done by Simonelli et al. [47], the orientation of the three nuclei is 

set to be almost the same as the orientation of reconstructed  grains based on the electron 

backscatter diffraction (EBSD) data.
Table 1. Physical properties of Ti-6Al-4V alloy

Physical properties Value

Melting point of pure Ti, 𝑇𝑚 [K] 1941
Liquidus temperature, 𝑇𝑙 [K] 1928
Solidus temperature, 𝑇𝑠 [K] 1878
Liquidus slope, 𝑚𝑙 [K/wt%] -1.3
Equilibrium partition coefficient, 𝑘𝑒 0.206

Prefactor of interfacial energy stiffness, 𝜎 ∗
0  [J/m2] 0.5

Interfacial energy stiffness anisotropy, 𝜀 ∗ 0.35

Interface mobility, 𝑀𝜙 [m4/(J ⋅ s)] 1.2 × 10 - 8

Kinematic viscosity, 𝜈 [m2/s] 6.11 × 10 - 7

Thermal diffusivity, 𝛼 [m2/s] 8.1 × 10 - 6

Latent heat of fusion, 𝐿𝐻 [J/kg] 2.90 × 105

Specific heat capacity, 𝑐𝑝 [J/(kg ⋅ K)] 872

Density, 𝜌 [kg/m3] 4000

Fig. 2. Setup of boundary conditions.

3.1 Dendrite growth without latent heat

For comparison, dendrite growth is first simulated without the release of latent heat. Fig. 

3 shows the simulation results. The grain identification (ID) 0 represents the liquid phase, while 
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other grain IDs represent solid phases with different orientations. Using the temperature 

gradient  and growth rate , a solidification map is constructed based on the values G T  V

of the local cooling rate  and the ratio  [48]. The solidified microstructure can be GV /G V

equiaxed dendritic, columnar dendritic, cellular or planar as the ratio  increases. When /G V

the ratio  is small at the beginning of the simulation, the columnar dendritic growth /G V

pattern can be easily recognized at the time of 0.35 ms, as shown in Fig. 3(a). The primary 

arms and secondary arms can be differentiated without much difficulty. It is easy to observe 

that the primary arms of the dendrite grow faster than the secondary arms, as a result of the 

anisotropy of the interface energy. Without the release of latent heat, the secondary arms grow 

so fast that they quickly merge with each other as shown in Fig. 3(b-d). It is also seen in Fig. 

3(d) that growth competition between grains of different orientations exists. Vertices or corners 

occur during dendrite growth, as highlighted by circles. The segregation of solute occurs at the 

solid-liquid interface because the solid phase has a lower composition than the liquid phase. 

High segregation of solute can be observed at the grain boundaries between secondary arms 

inside the grains, as shown in Fig. 3(e). 

In this model, the effect of latent heat is not considered. As a result, the temperature is 

reduced monotonically from the top to the bottom of the simulation domain. At the same time, 

the detailed morphology of secondary arms cannot be observed, and there is no gap between 

grains. With the limitation of in-situ experimental methods, there is still no direct observation 

of dendrite growth under rapid solidification. For a slow solidification process, in-situ X-ray 

microscopy experiments [49] showed a much slower growth of secondary arms and that gaps 

between grains sustain for a long period during dendrite growth. Therefore, it is reasonable to 

suspect that the simulation without latent heat overestimates the solidification speed.
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Fig. 3. Dendrite growth without latent heat. Phase field at (a) 0.35 ms, (b) 0.7 ms, (c) 1.05 ms, (d) 1.4 ms, (e) 

composition field at 1.4 ms, and (f) temperature field at 1.4 ms.
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3.2 Non-isothermal dendrite growth with latent heat

In the second model, non-isothermal dendrite growth with the release of latent heat 

during the phase transition is considered. Fig. 4 shows the simulation results. The temperature 

field, composition distribution, and the morphology of the dendrite are quite different from the 

case of dendrite growth without latent heat in Section 3.1. The columnar dendritic growth 

pattern is shown in Fig. 4(a-d). Because of the release of latent heat, the temperature gradient 

 is smaller than that in the case without latent heat, which results in a lower ratio . At G /G V

the initial stage of growth, the columnar dendrites grow with the four-fold symmetry that is 

similar to equiaxed dendrites. Because of the high temperature gradient along the vertical 

direction, the vertical secondary arms become dominant, while the growth of horizontal 

secondary arms is suppressed. In Fig. 4(e), high segregation of solute can be observed at the 

grain boundaries and between secondary arms inside the grains, where some small portions of 

liquid are trapped and surrounded by the solid phase. The composition of trapped liquid phase 

increases as the liquid phase shrinks. The small pocket of liquid phase may remain liquid for a 

long period until solid diffusion takes away the remaining solute supersaturation before it is 

completely solidified. The degree of solute segregation at the solid-liquid phase decreases from 

the bottom to the top of the grains. 
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Fig. 4. Non-isothermal dendrite growth with latent heat. Phase field at (a) 0.35 ms, (b) 0.7 ms, (c) 1.05 ms, (d) 

1.4 ms, (e) composition field at 1.4 ms, and (f) temperature field at 1.4 ms.
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The simulated solute trapping is verified as follows. Based on the simulation results, the 

partition coefficient at the tips of dendrites is estimated as

.
3.96 0.223
17.7
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l

Ck
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  
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which is close to the above simulation result. The average temperature in the whole simulation 

domain is higher than that in the case without latent heat. The temperature of the solid phase is 

higher than that of the liquid phase, as shown in Fig. 4(f), which decreases the undercooling 

and the driving force of growth. The release of latent heat prevents the secondary arms from 

merging with each other quickly, which explains the columnar dendritic growth to some extent.

The simulation results suggest that it is important to consider heat transfer, especially latent 

heat, during the solidification process, which provides detailed composition, temperature, and 

grain growth pattern information.

3.3 Non-isothermal dendrite growth with latent heat in a forced flow

A further refinement of the model is to incorporate fluid flow. A constant flow velocity 

 is imposed at the top boundary of the domain along the positive x-direction. 0.1 m/sw u

Simulation results are shown in Fig. 5. Note that the magnitude of the velocity field is 

represented by the colors of the arrows rather than their sizes. The velocities corresponding to 

the arrows appearing in the solid phase region are near zero. 

It is observed that the columnar dendrite morphology is slightly different from that in non-

isothermal dendrite growth without flow. Compared to Fig. 4(e), the growth of some horizontal 

secondary arms in Fig. 5(e) is enhanced under the effect of flow, which is shown in the regions 
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highlighted with rectangles. In addition, the primary dendrite is inclined slightly under the 

forced flow, as the vertical dashed line in Fig. 5(e) indicates. When the flow encounters the 

continually growing dendrites, the local velocity field is disturbed. Some vortexes are observed 

in Fig. 5(a). The flow changes the dendrite morphology by affecting both the composition and 

the temperature field. The flow can accelerate grain growth by enhancing solute diffusion and 

increasing undercooling, which results in a higher driving force. It is also observed in Fig. 5(f) 

that the temperature and temperature gradient rise slightly in a forced flow. This is because the 

flow enhances the growth of some horizontal secondary arms and increases the release of latent 

heat. The simulation results suggest that the melt flow has some effect on dendrite growth. 

However, our sensitivity study shows that the rapid solidification can suppress the flow effect 

if velocity is relatively small.
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Fig. 5. Non-isothermal dendrite growth with latent heat in a forced flow. Phase field and flow field at (a) 0.35 

ms, (b) 0.7 ms, (c) 1.05 ms, (d) 1.4 ms, (e) composition field at 1.4 ms, and (f) temperature field at 1.4 ms.
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3.4 Experimental comparison

Solidification of Ti-6Al-4V has several pathways, including suppression of the reaction 

and primary beta phase formation, monovariant reactions, and invariant reactions for the 

residue alloy melt [51]. Our model simulates the rapid solidification process of Ti-6Al-4V with 

emphasis on primary beta phase formation. During the SLM process of Ti-6Al-4V alloy, the 

 phase is formed from the liquid. Then the prior  phase transforms to the acicular     

martensite phase. This solid-state phase transition is described by the Burgers orientation 

relationship. However, the solid-state phase transition is not considered in our solidification 

simulation. Given that in-situ experimental observation of dendrite evolution during rapid 

solidification process is challenging, it is difficult to compare simulated dendrite morphology 

and growth with experimental observation directly.

 Nevertheless, EBSD images of acicular  martensite phases, which originate from the  

parent  grains, are available. Here, the simulated dendrite morphology is compared with the 

reconstructed prior  phase orientation map from an EBSD image [47], as shown in Fig. 6. 

It is observed that acicular  martensite phases are formed in the prior columnar  grains.   

Usually, prior columnar  grains have a high aspect ratio because of the high temperature 

gradient along the building direction. The simulated dendrite morphology in Fig. 5(d) matches 

qualitatively with the prior columnar  grains, such as the bottom-right corner with a size of 

in Fig. 6. The primary arm spacing is 35 μm. Because of the growth competition 90 90 μm

between grains of different orientations, curved grain boundaries, highlighted by circles, are 

observed when two dendrites encounter each other, which was also predicted by simulations. 

Furthermore, the secondary arm spacing of the simulated microstructure is , 2 1.2 μm 

which is close to the calculated value  based on an analytical model proposed by 2 1.5 μm 

Bouchard and Kirkaldy [50], as

. (33)
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The difference between the predicted and observed secondary arm spacing is possibly caused 

by parameter uncertainty and model-form uncertainty. The parameter uncertainty can be 
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associated with the interface energy , latent heat , solute diffusivity , and local  HL lD

velocity of the interface .V

Fig. 6.  and corresponding reconstructed  orientation maps from EBSD data. Courtesy of Simonelli et   
al. [47]

3.5 Convergence study with finer mesh

To assess the sensitivity of mesh size on the simulation results, a finer mesh  0.03 μmdx 

is used in the convergence study. Other simulation setups are kept the same. Fig. 7 shows the 

simulation results of dendrite growth without latent heat and non-isothermal dendrite growth 

with latent heat in a forced flow at 0.7 ms. After the mesh refinement, the difference in dendrite 

growth speed with and without latent heat becomes more obvious. Without latent heat, as 

shown in Fig. 7(a), some detailed morphology of secondary arms can now be observed around 

the dendrite tips, but not at the bottom of dendrites. In contrast, with latent heat, as shown in 

Fig. 7(c), the morphology has clear patterns of secondary arms that are similar to the ones in 

Fig. 5(b). The growth speed of dendrites using the fine mesh  is almost the same 0.03 μmdx 

as that in the coarse mesh . The dendrite growth slows down when latent heat is 0.1 μmdx 

considered. The solute distribution with the fine mesh is also similar to that of the coarse mesh. 

The results further confirm that considering latent heat is necessary to reveal the details of 

secondary arms and provide more realistic kinetics of dendrite growth. Compared to the fine 

mesh, the simulation with the coarse mesh  reveals enough details of dendrite 0.1 μmdx 

growth and reduces the computational cost.
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Fig. 7. With fine mesh, (a) phase field and (b) composition field in dendrite growth without latent heat at 0.7 ms; 
(c) phase field and flow field, and (d) composition field in non-isothermal dendrite growth with latent heat in a 

forced flow at 0.7 ms.

3.6 Quantitative analysis

To compare the effects on temperature quantitatively, the thermal histories in different 

simulation scenarios are plotted in Fig. 8, where the three curves are the temperatures observed 

at the location of  and  for the cases without latent heat, with latent heat, 45 μmx   = 0 μmy

and with latent heat and flow, respectively. There is little difference in the thermal histories 

with and without considering melt flow, whereas considering latent heat gives a significantly 

different prediction. At the beginning of solidification (0≤ t < 175 µs), the effect of latent heat 

is not obvious because the fraction of phase transition is small. The temperature drops at a 

similar rate for all three cases. When t ≥ 175 µs, the temperature without latent heat decreases 



26

linearly. In contrast, the temperature with latent heat decreases slowly and starts to increase at 

t = 875 µs because of the continuous release of latent heat. The phenomenon is commonly 

known as recalescence during solidification of metals, similarly observed in the simulation 

results of Ref. [10]. 

Fig. 8. Thermal histories at the location of ,  under different conditions.45 μmx   = 0 μmy

Fig. 9 shows the temperature distribution of non-isothermal dendrite growth along the y-

direction at . It is observed that the forced flow reduces the temperature values but  = 45 μmx

increases the temperature gradients only slightly.

Fig. 9. The temperature distribution of non-isothermal dendrite growth along the vertical line at . = 45 μmx

Table 2 summarizes the dendrite tip temperature gradient G, dendrite tip growth velocity 

V, and their combinations for the three cases of simulations. When the release of latent heat is 

considered, the dendrite tip temperature gradient G, dendrite tip growth velocity V, and average 

growth velocity Vave are smaller than those without latent heat. The local cooling rate GV and 
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the ratio G/V are also lower. When a forced flow is imposed, the dendrite tip temperature 

gradient G and dendrite tip growth velocity V slightly increase. This suggests that the forced 

flow can accelerate dendrite growth, resulting in further release of latent heat and a higher 

temperature gradient. The average growth velocities Vave with the flow and without the flow 

are almost the same, which means that the release of latent heat can stabilize the dendrite 

growth. The local cooling rate GV and the ratio G/V increase slightly with the forced flow. The 

effect of melt flow on dendrite growth is suppressed by the rapid solidification.
Table 2. Quantitative analysis of simulation results

Without latent 
heat

With latent heat
With latent heat 
and flow

Dendrite tip temperature gradient G at 1.4 
ms [K/mm]

130 80 100

Dendrite tip growth velocity V at 1.4 ms 
[mm/s]

49 43 44

Average growth velocity Vave [mm/s] 46.9 44.7 45
Local cooling rate GV [K/s] 6370 3440 4400

Ratio G/V [ ]K ⋅ s/mm2 2.65 1.86 2.27

4. Conclusions

In this work, a mesoscale multi-physics model is developed to simulate the rapid 

solidification of Ti-6Al-4V alloy by integrating the phase-field method and the thermal lattice 

Boltzmann method. This model simulates the rapid solidification process of Ti-6Al-4V with 

emphasis on primary  phase formation. The model concurrently predicts solute transport, 

phase transition, heat transfer, latent heat, and melt flow. The local non-equilibrium partition 

coefficient is calculated based on Aziz's model to compute the solute distribution during rapid 

solidification. The diffusivity of the liquid is temperature-dependent, while other physical 

properties of Ti-6Al-4V are assumed to be constant. By considering the release of latent heat, 

the model can predict the composition distribution, temperature field, grain growth, and 

dendrite morphology with more detail than models without latent heat. The results show that 

considering latent heat is important for modeling thermal effects on the dendrite growth. The 

average growth rate Vave is lower with latent heat than without it. The local cooling rate GV and 

the ratio G/V are lower as well. The recalescence occurs during the non-isothermal dendrite 
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growth. 

The effect of fluid flow on dendrite growth is small under rapid solidification. The 

advection changes the distributions of temperature and composition. The flow can accelerate 

the grain growth by enhancing solute diffusion and increasing undercooling, which results in a 

higher driving force. The forced flow enhances the growth of horizontal secondary arms and 

increases the temperature gradient slightly.

The simultaneous considerations of solute transport, kinetics of phase transition, and 

thermal effects are necessary to understand rapid solidification. The multi-physics modeling 

approach can elucidate the complex physical processes with more details. The challenge of 

coupling multiple physical effects is the highly varied time scales used in these simulated 

processes. Because of the high cooling rate in rapid solidification, the time step needs to be 

small enough for numerical stability. However, the dimensionless relaxation time in TLBM 

should be greater than 0.5 and not much larger than 1 because of truncation errors [52]. The 

trade-offs mostly rely on sensitivity studies. In our model, a variable grid approach is taken to 

treat PFM and TLBM separately to alleviate this problem. 

There are several approximations in our model that may affect the accuracy of predictions. 

First, the interface mobility is assumed to be constant. However it depends on temperature in 

reality. Since there is a lack of experimental results, molecular dynamics simulations can be 

applied to estimate mobility and assess the influential factors such as temperature. Interatomic 

potentials for Ti-6Al-4V alloy for molecular dynamics nevertheless need to be developed. 

Second, the pseudo-binary approach is adopted to model the ternary alloy. However, Al and V 

will not be trapped in the same way during rapid solidification. A multi-component multi-phase 

model is needed to reveal further details. Third, to simulate the complete process of SLM, 

nucleation and solid-state phase transition should also be considered to predict the final 

microstructure. This allows for direct quantitative comparison and model validation based on 

existing experimental capabilities. Some emerging in-situ characterization techniques for rapid 

solidification such as dynamic transmission electron microscopy [53] can help calibrate and 

validate models. Fourth, the current model is only applied to the 2D domain. Future work will 
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include the extension to 3D domains. 3D models will be much more computationally 

demanding. Parallelization is a viable solution to this issue. Both the phase-field method and 

the thermal lattice Boltzmann method can be easily adapted for parallel computation. 
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