
 1

Independence in Generalized Interval Probability  
 

Yan Wang 
 
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 
Atlanta, GA 30332-0405; PH (404)894-4714; FAX (404)894-9342; email: 
yan.wang@me.gatech.edu 
 
ABSTRACT 

Recently we proposed a new form of imprecise probability based on the 
generalized interval, where the probabilistic calculus structure resembles the 
traditional one in the precise probability because of the Kaucher arithmetic. In this 
paper, we study the independence properties of the generalized interval probability. It 
resembles the stochastic independence with proper and improper intervals and 
supports logic interpretation. The graphoid properties of the independence are 
investigated. 

INTRODUCTION 

Probability theory provides the common ground to quantify uncertainty. 
However, it has limitations in representing epistemic uncertainty that is due to lack of 
knowledge. It does not differentiate the total ignorance from other probability 
distributions, which leads to the Bertrand-style paradoxes such as the Van Fraasen's 
cube factory (van Fraassen 1989). Probability theory with precise measure also has 
limitation in capturing indeterminacy and inconsistency. When beliefs from different 
people are inconsistent, a range of opinions or estimations cannot be represented 
adequately without assuming some consensus of precise values on the distribution of 
opinions. Therefore imprecise probabilities have been proposed to quantify aleatory 
and epistemic uncertainty simultaneously. Instead of a precise value of the probability 
( )P E p=  associated with an event E , a pair of lower and upper probabilities 
( ) [ , ]P E p p=  are used to include a set of probabilities and quantify epistemic 

uncertainty. The range of the interval [ , ]p p  captures the epistemic uncertainty 
component and indeterminacy. [0,1]P =  accurately represents the total ignorance. 
When p p= , the degenerated interval probability becomes a precise one. In a general 
sense, imprecise probability is a generalization of precise probability. 

Many representations of imprecise probabilities have been developed. For 
example, the Dempster-Shafer evidence theory (Dempster 1967; Shafer 1990) 
characterizes evidence with discrete probability masses associated with a power set 
of values, where Belief-Plausibility pairs are used to measure uncertainties. The 
behavioral imprecise probability theory (Walley 1991) models uncertainties with the 
lower prevision (supremum acceptable buying price) and the upper prevision 
(infimum acceptable selling price) following the notations of de Finetti's subjective 
probability theory. The possibility theory (Dubois and Prade 1988) represents 
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uncertainties with Necessity-Possibility pairs. Probability bound analysis (Ferson et 
al. 2003) captures uncertain information with pairs of lower and upper distribution 
functions. F-probability (Weichselberger 2000) represents interval probability as a set 
of probabilities which maintain the Kolmogorov properties. A random set 
(Malchanov 2005) is a multi-valued mapping from the probability space to the value 
space. Fuzzy probability (Möller and Beer 2004) considers probability distributions 
with fuzzy parameters. A cloud (Neumaier 2004) is a combination of fuzzy sets, 
intervals, and probability distributions.  

Recently we proposed a new form of imprecise probability based on the 
generalized interval (Wang 2008; 2010), where the probabilistic calculus structure is 
simplified based on the Kaucher arithmetic (Kaucher 1980). The generalized interval 
is an extension of the classical set-based interval with enhanced algebraic and 
semantic properties. Proper and improper interval probabilities are used. In this 
paper, we study the independence properties of the generalized interval probability. 

The concept of independence is essential for the probability theory to decompose 
a complex problem into simpler and manageable components. Similarly, it is 
fundamental for imprecise probability theories. Various definitions of independence 
have been developed, such as epistemic irrelevance and independence (Walley 1991), 
conformational irrelevance (Levi 1980), mutual independence (Weichselberger 
2000), and interval independence (Kuznetsov 1995). 

In the remainder of the paper, we first give a brief review of generalized interval. 
Then the generalized interval probability is introduced. The conditional probability 
and independence in the generalized interval probability are defined and discussed. 

GENERALIZED INTERVAL  

In the interval arithmetic, it is guaranteed that the output intervals calculated from 
the arithmetic include all possible combinations of real values within the respective 
input intervals. That is, if [ , ]x x  and [ , ]y y  are two real intervals (i.e., , , ,x x y y ∈ R ) and 
let { }, , ,/∈ + − ×D , then we have [ , ], [ , ], [ , ] [ , ],x x x y y y z x x y y x y z∀ ∈ ∀ ∈ ∃ ∈ =D D . For 
example, [1, 3] [2, 4] [3,7]+ =  guarantees that [1, 3], [2, 4], [3,7],x y z x y z∀ ∈ ∀ ∈ ∃ ∈ + = . 
Similarly, [3,7] [1, 3] [0,6]− =  guarantees that [3,7], [1, 3], [0,6],x y z x y z∀ ∈ ∀ ∈ ∃ ∈ − = . This 
is an important property that ensures the completeness of range estimations. When 
input variables are not independent, the output results will over-estimate the actual 
ranges. This only affects the soundness of estimations, not completeness. Some 
special techniques also have been developed to avoid over-estimations based on 
monotonicity properties of functions. 

Generalized interval (Gardeñes et al. 2001; Dimitrova et al. 1994) is an extension 
of the set-based classical interval (Moore 1966) with better algebraic and semantic 
properties based on the Kaucher arithmetic (Kaucher 1980). A generalized interval 

( ): [ , ] ,x x x x= ∈x R  is not constrained by ≤x x  any more. Therefore,  [4,2]  is also a 
valid interval and called improper, while the traditional interval is called proper.  
Based on the Theorems of Interpretability (Gardeñes et al. 2001), generalized interval 
provides more semantic power to help verify completeness and soundness of range 
estimations by logic interpretations.  
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The four examples in Table 1 illustrate the interpretations for operator “+”, where 
the range estimation [ , ] [4,7]z z =  in the 1st row is complete and the estimation 
[ , ] [7, 4]z z =  in the 4th row is sound. /,,×−  have the similar semantic properties.  

Table 1. Illustrations of the semantic extension of generalized interval. 
Algebraic Relation: 
[ , ] [ , ] [ , ]x x y y z z+ =  

Corresponding Logic Interpretation Quantifier 

of [ , ]z z  

Range 
Estimation of 

[ , ]z z  

[2, 3] [2, 4] [4,7]+ =  ( ) ( ) ( ) ( )[2, 3] [2, 4] [4,7]x y z x y z∀ ∈ ∀ ∈ ∃ ∈ + =  ∃  [4,7] complete 

[2,3]+ =[4,2] [6,5]  ( ) ( ) ( ) ( )[2, 3] [5,6] [2, 4]x z y x y z∀ ∈ ∀ ∈ ∃ ∈ + =  ∀  [5,6] sound 

[2, 4] [5,6]+ =[3,2]  ( ) ( ) ( ) ( )[2, 4] [2, 3] [5,6]y x z x y z∀ ∈ ∃ ∈ ∃ ∈ + =  ∃  [5,6] complete 

+ =[3,2] [4,2] [7,4]  ( ) ( ) ( ) ( )[4,7] [2, 3] [2, 4]z x y x y z∀ ∈ ∃ ∈ ∃ ∈ + =  ∀  [4,7] sound 

 
Compared to the semi-group formed by the classical set-based intervals, 

generalized intervals form a group. Therefore, arithmetic operations of generalized 
intervals are simpler. The set of generalized intervals is denoted by 

[ ]{ }= ∈, | ,KR Rx x x x . The set of proper intervals is [ ]{ }= ≤, |IR x x x x , and the set of 
improper interval is [ ]{ }= ≥, |IR x x x x . The relationship between proper and improper 
intervals is established with the operator dual as dual , : ,x x x x⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ . 

The less than or equal to partial order relationship between two generalized 
intervals is defined as 
 , ,x x y y x y x y⎡ ⎤ ⎡ ⎤≤ ⇔ ≤ ∧ ≤⎣ ⎦ ⎣ ⎦  (2.1) 

The inclusion relationship is defined as 
 , ,x x y y y x x y⎡ ⎤ ⎡ ⎤⊆ ⇔ ≤ ∧ ≤⎣ ⎦ ⎣ ⎦  (2.2) 

With the Kaucher arithmetic, generalized intervals form a lattice structure similar 
to real arithmetic, which is not available in the classical interval arithmetic. This 
property significantly simplifies the computational requirement. For instance, in 
classical interval arithmetic, [0.2, 0.3] [0.2, 0.4] [0.4, 0.7]+ = . However, 
[0.4, 0.7] [0.2, 0.3] [0.1, 0.5] [0.2, 0.4]− = ≠ . Furthermore, [ ] [ ] [ ]0.1, 0.2 0.1, 0.2 0.1, 0.1 0− = − ≠ . In 
the Kaucher arithmetic, if a dual is associated with “–”, then 
[0.4, 0.7] dual[0.2, 0.3] [0.4, 0.7] [0.3, 0.2] [0.2, 0.4]− = − = . [ ] [ ]0.1, 0.2 dual 0.1, 0.2 0− = .  “×” and 
“÷” are similar.  

GENERALIZED INTERVAL PROBABILITY 

Definition 1. Given a sample space Ω  and a σ -algebra A  of random events over Ω , 
the generalized interval probability ∈p KR  is defined as [ ] [ ]: 0,1 0,1→ ×p A  which 
obeys the axioms of Kolmogorov: (1) ( ) [ ]1,1Ω =p ; (2) [ ] ( ) [ ] ( )0,0 1,1E E≤ ≤ ∀ ∈p A ; 
and (3) for any countable mutually disjoint events ( )i jE E i j∩ = ∅ ≠ , 

( ) ( )
11

nn

i iii
E E

==
= ∑p p∪ . Here “≤” is defined as in Eq.(2.1).  

 
Definition 2 (union). ( ) ( ) ( ): dual A S

S A
A S−

⊆
= −∑p p  for A ⊆ Ω . 
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Definition 3 (logic coherence constraint). For a mutually disjoint event partition 

1

n

ii
E

=
= Ω∪ , ( )

1
1

n

ii
E

=
=∑ p .   

 
The logic coherent constraint ensures that the imprecise probabilities are logically 

coherent with precise probabilities. For instance, given that ( ) 0.2, 0.3down ⎡ ⎤= ⎣ ⎦p , 

( ) 0.3, 0.5idle ⎡ ⎤= ⎣ ⎦p , ( ) 0.5, 0.2busy ⎡ ⎤= ⎣ ⎦p  for a system’s working status, we can interpret it 

as  ( ) ( ) ( ) ( )1 2 3 1 2 3
[0.2, 0.3] [0.3, 0.5] [0.2, 0.5] 1p p p p p p∀ ∈ ∀ ∈ ∃ ∈ + + = .  

With semantics, we differentiate non-focal events (“busy” in this example) from 
focal events (“down”, “idle”). An event E  is focal if the associated semantics for 
( )Ep  is universal. Otherwise, it is a non-focal if the semantics is existential. While 

the uncertainties associated with focal events are critical to the analyst, those 
associated non-focal events are not. 

CONDITIONAL PROBABILITY AND CONDITIONAL INDEPENDENCE 

The concepts of conditional probability and independence are essential for the 
classical probability theory. With them, we can decompose a complex problem into 
simpler and manageable components. Similarly, they are critical for imprecise 
probabilities. However, there is no agreement on how to define them yet.  

Different from all other forms of imprecise probabilities, which are based on 
convex probability sets, our conditional probability is defined directly from the 
marginal ones. 

 
Definition 4 (conditional probability). ( ) ( ) ( )| : / dualE C E C C= ∩p p p  

( ) ( ) ( ) ( ),p E C p C p E C p C⎡ ⎤= ∩ ∩⎣ ⎦  for all ,E C ∈A  and ( ) 0C >p . 
Thanks to the algebraic properties of generalized intervals, this definition can 

greatly simplify computation in applications. In traditional imprecise probabilities, 
linear and nonlinear programming procedures are heavily dependent upon to compute 
convex hulls of probability sets. In our definition, only algebraic computation is 
necessary.  

 
Definition 5. For , ,A B C ∈A , A  is said to be conditionally independent with B  on C  
if and only if ( ) ( ) ( )| | |A B C A C B C∩ =p p p . 
 
Definition 6. For ,A B ∈A , A  is said to be independent with B  if and only if 
( ) ( ) ( )A B A B∩ =p p p . 

 
The independence in Definition 5 is a special case of conditional independence in 

Definition 4, where C  is the complete sample space Ω . In addition to computational 
simplification, our approach also allows for logic interpretation of conditional 
independence in Definition 4 is interpreted as  
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 ( )( ) ( )( ) ( )( ) ( )1 2 3 1 2 3
' | ' | ' |p A C p B C p A B C p p p∀ ∈ ∀ ∈ ∃ ∈ ∩ =p p p  

This is useful to verify the completeness and soundness of interval bound 
estimations. The conditional independence in Definition 4 also has a second form, as 
shown in Theorem 3.1. 

 
Theorem 3.1. For , ,A B C ∈A , ( ) ( ) ( )| | |A B C A C B C∩ =p p p  ⇔  

( ) ( )| |A B C A C∩ =p p . 

Proof. ( ) ( ) ( )| | |A B C A C B C∩ =p p p  ⇔  

( ) ( ) ( ) ( ) ( )/ dual | / dualA B C C A C B C C∩ ∩ = ⋅ ∩p p p p p  ⇔   

( ) ( ) ( )/ dual |A B C B C A C∩ ∩ ∩ =p p p  ⇔   ( ) ( )| |A B C A C∩ =p p  . □ 
 
Corollary 3.2 For , , ,A B C D ∈A  and A D∩ = ∅ , the conditional independence 
between A  and B  given C  and between A  and D  given C  infers the independence 
between A D∪  and B  given C . 
Proof. ( ) ( ) ( )| ( ) / dualA D B C A D B C B C∪ ∩ = ∪ ∩ ∩ ∩p p p  

( ) ( ) ( )/ dualA B C D B C B C⎡ ⎤= ∩ ∩ + ∩ ∩ ∩⎣ ⎦p p p  

( ) ( ) ( ) ( )/ dual / dualA B C B C D B C B C= ∩ ∩ ∩ + ∩ ∩ ∩p p p p  

( ) ( ) ( ) ( ) ( )| | | | |A B C D B C A C D C A D C= ∩ + ∩ = + = ∪p p p p p  □ 
 

The most intuitive meaning of “independence” is that an independence 
relationship satisfies several graphoid properties. With , , ,X Y Z W  as sets of random 
variables and “⊥ ” denoting independence, the axioms of graphoid are  

(A1) Symmetry: | |X Y Z Y X Z⊥ ⇒ ⊥  
(A2) Decomposition: ( ), | |X W Y Z X Y Z⊥ ⇒ ⊥  

(A3) Weak union: ( ) ( ), | | ,X W Y Z X W Y Z⊥ ⇒ ⊥  

(A4) Contraction: ( ) ( )( ) ( )| | , , |X Y Z X W Y Z X W Y Z⊥ ∧ ⊥ ⇒ ⊥  

(A5) Intersection: ( )( ) ( )( ) ( )| , | , , |X W Y Z X Y W Z X W Y Z⊥ ∧ ⊥ ⇒ ⊥  
The stochastic independence in precise probability is semi-graphoid satisfying 

symmetry, decomposition, weak union and contraction. When the probability 
distributions are strictly positive, intersection is also satisfied. Then, it becomes 
graphoid. Here, we show that conditional independence in generalized interval 
probability has these graphoid properties. 
 
Corollary 3.3 (Symmetry) For random variables , ,X Y Z , | |X Y Z Y X Z⊥ ⇒ ⊥ . 
Proof. |X Y Z⊥  ⇒  ( ) ( ) ( )| | |X x Y y Z z X x Z z Y y Z z= ∩ = = = = = = =p p p  for any 

values of , ,x y z  ⇒  ( ) ( ) ( )| | |Y y X x Z z Y y Z z X x Z z= ∩ = = = = = = =p p p  ⇒  
|Y X Z⊥ . □ 
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Remark. If knowing Y does not tell us more about X, then similarly knowing X does 
not tell us more about Y. 
 
Corollary 3.4 (Decomposition) For random variables , , ,X Y Z W , 

( ), | |X W Y Z X Y Z⊥ ⇒ ⊥ . 

Proof. ( ), |X W Y Z⊥  ⇒  ( ) ( )| |X x W w Y y Z z X x Z z= ∩ = ∩ = = = = =p p  for any 

values of , ,x y z . Since Y y=  is equivalent to ( ),W has all possibl evalues Y y= , 

( ) ( ) ( )| | |X x Y y Z z X x W all values Y y Z z X x Z z= ∩ = = = = ∩ = ∩ = = = = =p p p  ⇒  
|X Y Z⊥ . □  

Remark. If combined two pieces of information is irrelevant to X, either individual 
one is also irrelevant to X. 
 
Corollary 3.5 (Composition) For random variables , , ,X Y Z W , 
( ) ( ) ( )| | , |X Y Z X W Z X W Y Z⊥ ∧ ⊥ ⇒ ⊥ . 
Proof. Because |X Y Z⊥  ⇒   

( ) ( ) ( )| | |X x Y y Z z X x W all values Y y Z z X x Z z= ∩ = = = = ∩ = ∩ = = = = =p p p  and 
|X W Z⊥  ⇒  

( ) ( ) ( )| | |X x W w Z z X x W w Y all values Z z X x Z z= ∩ = = = = ∩ = ∩ = = = = =p p p , the 
combination of the above two gives us 
( ) ( )| |X x W w Y y Z z X x Z z= ∩ = ∩ = = = = =p p , which is ( ), |X W Y Z⊥ . □ 

Remark. The combined two pieces of information that are individually irrelevant to 
X is also irrelevant to X. 
 
Corollary 3.6 (Contraction) For random variables , , ,X Y Z W , 
( ) ( )( ) ( )| | , , |X Y Z X W Y Z X W Y Z⊥ ∧ ⊥ ⇒ ⊥ .  

Proof. ( )| ,X W Y Z⊥  and |X Y Z⊥  ⇒  ( )( ) ( ) ( )| | |X W Y Z X Y Z X Z∩ ∩ = ∩ =p p p  

⇒  ( ), |X W Y Z⊥ . □ 
Remark. If two pieces of information X and Y are irrelevant with prior knowledge of 
Z and X is also irrelevant to a third piece of information W after knowing Y, then X is 
irrelevant to both W and Y before knowing Y.  
 
Corollary 3.7 (Reduction) For random variables , , ,X Y Z W , 
( ) ( )( ) ( )| , | | ,X Y Z X W Y Z X W Y Z⊥ ∧ ⊥ ⇒ ⊥ .  

Proof. |X Y Z⊥  and ( ), |X W Y Z⊥  ⇒  

( ) ( ) ( )( ) ( )( )| | | |X Y Z X Z X W Y Z X W Y Z∩ = = ∩ ∩ = ∩ ∩p p p p  ⇒ ( )| ,X W Y Z⊥ . □ 
Remark. If two pieces of information X and Y are irrelevant with prior knowledge of 
Z and at the same time X is also irrelevant to both W and Y, then X is irrelevant to the 
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third piece of information W even after knowing Y.  
 
Corollary 3.8 (Weak union) For random variables , , ,X Y Z W , 

( ) ( ), | | ,X W Y Z X W Y Z⊥ ⇒ ⊥  

Proof. From the decomposition property in Corollary 3.4, ( ), | |X W Y Z X Y Z⊥ ⇒ ⊥ .  
Then from the reduction property in Corollary 3.7,  
( ) ( )( ) ( )( )| , | | ,X Y Z X W Y Z X W Y Z⊥ ∧ ⊥ ⇒ ⊥ . □ 
Remark. Gaining more information about irrelevant Y does not affect the irrelevance 
between X and W.  
 
Corollary 3.9 (Redundancy) For random variables For random variables X  and Y , 

|X Y X⊥ .  
Proof. ( ) ( )| |Y X X Y X∩ =p p  ⇒  |Y X X⊥  ⇒  |X Y X⊥  because of symmetry 
property in Corollary 3.3. □ 
 
Corollary 3.10 (Intersection) For random variables , , ,X Y Z W , 

( )( ) ( )( ) ( )| , | , , |X W Y Z X Y W Z X W Y Z⊥ ∧ ⊥ ⇒ ⊥ . 

Proof. ( )| ,X W Y Z⊥  ⇒  ( ) ( )| |X W Y y Z X Y y Z∩ = ∩ = = ∩p p  for any y . Therefore, 

( ) ( )| |X W Y all values Z X Y all values Z∩ = ∩ = = ∩p p . That is, ( ) ( )| |X W Z X Z∩ =p p . 

Then ( )| ,X Y W Z⊥ ⇒ ( ) ( ) ( )| | |X W Y Z X W Z X Z∩ ∩ = ∩ =p p p ⇒ ( ), |X W Y Z⊥  □ 
Remark. If combined information W and Y is relevant to X, then at least either W or 
Y is relevant to X after learning the other.  
 

Compared to other definitions of independence in imprecise probabilities, the 
independence defined in generalized interval probability has the most of graphoid 
properties. Walley’s epistemic irrelevance (Cozman and Walley 2005) does not have 
symmetry, whereas the epistemic independence as well as Kuznetsov’s interval 
independence (Cozman 2008) do not have the contraction property. Among three 
possibilistic conditional independence (de Campos and Huete 1999), the two with not 
modifying information comparison operation and with default conditioning are not 
symmetric, whereas the one with not gaining information satisfies all.   

SUMMARY 

In this paper, the conditional independence in a new form of imprecise 
probability, generalized interval probability, is defined and studied. The generalized 
interval probability is a generalization of traditional precise probability that considers 
variability and incertitude simultaneously, in which proper and improper intervals 
capture epistemic uncertainty. With an algebraic structure similar to the precise 
probability, generalize interval probability has a simpler calculus structure than other 
forms of imprecise probabilities. It is shown that the definition of independence in 
generalized interval probability has graphoid properties similar to the stochastic 
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independence in the precise probability.  
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