Uncertainties in Modeling & Simulation

Prof. Yan Wang
Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.
yan.wang@me.gatech.edu
Learning Objectives

- To understand fundamental concepts of Modeling & Simulation (M&S)
- To understand the major sources of epistemic uncertainty in M&S
How to study a system

Experiment with actual system

Experiment with a model of actual system

Physical model

Mathematical model

Analytical solution

Simulation
What is Modeling?
Why mathematical modeling?

- Advantages
- Disadvantages
An example of modeling

- Free fall model

\[
\begin{align*}
\frac{dv}{dt} &= g = \frac{F_D}{m} \\
\frac{dv}{dt} &= \frac{F_D + F_U}{m} = \frac{F_D - cv}{m} = g - \frac{c}{m} v \\
\frac{dv}{dt} &= \frac{F_D + F_U}{m} = \frac{F_D - c_1 v + c_2 \frac{dv}{dt}}{m} \\
\frac{dv}{dt} &= \frac{F_D + F_U}{m} = \frac{F_D - (c_0 + \gamma) v + c_2 \frac{dv}{dt}}{m}
\end{align*}
\]

Resistance/Drag force

White noise
Mathematical model

- **Dependent variable** = \(f(\text{Independent variable}) \)
 \[y = f(x) \]

- **High dimensional**
 \[y = f(x_1, x_2, \ldots) \]

- **Parametric systems**
 \[y = f(x, u) \]

- **“Noisy” systems**
 \[y = f(x, u, \gamma) \]
Complexity of Mathematical Models

- Simple → Complex
- Linear → Nonlinear
- Algebraic Equation / Closed-form → Differential Equation
- Static → Dynamic
Model Taxonomy

System model

Deterministic
 - Static
 - Continuous
 - Dynamic
 - Discrete

Stochastic
 - Static
 - Continuous
 - Dynamic
 - Discrete
Modeling & Simulation at Multiple Scales

Various methods used to simulate at different length and time scales
Simulation-based Design

model refinement

visualization
data mining/science

validation

parameter inversion
data assimilation
model/data error control

data/observations

optimization
uncertainty quantification

Simulation-based design

computer simulation

scalable algorithms & solvers

approximation
error control

verification

numerical model

geometry modeling & discretization schemes

mathematical model
(first-principles, empirical, multiscale)
Two types of “uncertainties”

- **Aleatory uncertainty** (variability, irreducible uncertainty, random error)
 - inherently associated with the randomness/fluctuation (e.g. environmental stochasticity, inhomogeneity of materials, fluctuation of measuring instruments)
 - can only be reduced by taking average of multiple measurements.

- **Epistemic uncertainty** (incertitude, reducible uncertainty, systematic error)
 - imprecision comes from scientific ignorance, inobservability, lack of knowledge, etc.
 - can be reduced by additional empirical effort (such as calibration).
Random Error

- Determines the *precision* of any measurement
- *Always* present in every physical measurement
 - Better apparatus
 - Better procedure
 - Repeat
- Estimate
Systematic Error

- Determines the accuracy of any measurement
- May be present in every physical measurement
 - calibration
 - uniform or controlled conditions (e.g., avoid systematic changes in temperature, light intensity, air currents, etc.)
- Identify & eliminate or reduce
Uncertainties in Modeling & Simulation

- **Aleatory Uncertainty**: inherent randomness in the system. Also known as:
 - stochastic uncertainty
 - variability
 - irreducible uncertainty

- **Epistemic Uncertainty**: due to lack of perfect knowledge about the system. Also known as:
 - Incertitude
 - system error
 - reducible uncertainty
Approximations in simulation

- From mathematical models to numerical models
 - Taylor series
 - Functional analysis

- From numerical models to computer codes
 - Discretization (differentiation, integration)
 - Searching algorithms (solving equations, optimization)
Mathematical models → Numerical models
Approximation in Taylor Series

Truncation

\[
f(x) = f(x_0) + f'(x_0)(x - x_0) + O(h^2) \\
= f(x_0) + f'(x_0)h + O(h^2)
\]

\[
f(x) = f(x_0) + f'(x_0)h + \frac{1}{2} f''(x_0)h^2 + O(h^3)
\]
Mathematical models \rightarrow Numerical models

Functional Analysis

- Convert complex functions into simple and computable ones by transformation in vector spaces
 - Fourier analysis
 - Wavelet transform
 - Polynomial chaos expansion
 - Spectral methods
 - Mesh-free methods
 - ...

Mathematical models → Numerical models

Functional Analysis

- Approximate the original $f(x)$ by linear combinations of basis functions $\psi_i(x)$’s as

$$ f(x) \approx \sum_{i=0}^{N} c_i \psi_i(x) $$

- In a vector space (e.g. Hilbert space) with an infinite number of dimensions

$$ f(x) = \sum_{i=0}^{\infty} c_i \psi_i(x) $$
Mathematical models \rightarrow Numerical models

Functional Analysis

- An inner product $\langle f, g \rangle$ is defined as a “projection” in the vector space, such as
 \[
 \langle f, g \rangle := \int_{-\infty}^{\infty} f(x)g(x)W(x)dx
 \]

- Typically we choose orthogonal basis functions $\psi_i(x)$'s such that
 \[
 \langle \psi_i, \psi_j \rangle = \int_{-\infty}^{\infty} \psi_i(x)\psi_j(x)W(x)dx = \begin{cases}
 \text{Constant} & (\forall i, j, i = j) \\
 0 & (i \neq j)
 \end{cases}
 \]
 for orthonormal basis functions
 \[
 \langle \psi_i, \psi_j \rangle = \int_{-\infty}^{\infty} \psi_i(x)\psi_j(x)W(x)dx = \begin{cases}
 1 & (i = j) \\
 0 & (i \neq j)
 \end{cases}
 \]
Mathematical models \rightarrow Numerical models

Functional Analysis

- The coefficients c_i's are computed by

\[
c_i = \frac{\langle f, \psi_i \rangle}{\langle \psi_i, \psi_i \rangle}
\]

- The computable function is

\[
f(x) \approx \sum_{i=0}^{N} c_i \psi_i(x)
\]

with \textit{truncation}!
Numerical Model \rightarrow Computer Code

Compute integrals

- Quadrature
 - Approximate the integrand function by a polynomial of certain degree
 - Approximate the integral by the weighted sum of regularly sampled functional values
 - e.g. Simpson’s 3/8 rule

\[
I \approx \int_{x_0}^{x_3} f^{(3)}(x) \, dx = \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right]
\]
Monte Carlo simulation

- Let $p(u)$ denote uniform density function over $[a, b]$
- Let U_i denote ith uniform random variable generated by Monte Carlo according to the density $p(u)$

Then, for “large” N

$$
\int_a^b f(x)dx \approx \frac{b - a}{N} \sum_{i=1}^{N} f(U_i)
$$

- Variance reduction (importance sampling) to improve efficiency
Numerical Model \rightarrow Computer Code

Compute derivatives

- **Finite-divided-difference methods**
 - Approximated derivatives come from Taylor series
 - e.g. forward-finite-difference

\[
\begin{align*}
 f(x_{i+1}) &= f(x_i) + f'(x_i)(x_{i+1} - x_i) + O(h^2) = f(x_i) + f'(x_i)h + O(h^2) \\
 f'(x_i) &= \frac{f(x_{i+1}) - f(x_i)}{h} + O(h)
\end{align*}
\]
Floating-Point Representation

- How does computer represent numbers?

Perfect world

Imperfect world
Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth $500 million

Why

- Computed horizontal velocity as floating point number
- Converted to 16-bit integer
- Worked OK for Ariane 4
- Overflowed for Ariane 5
 - Used same software
Do you trust your computer?

Rump’s function:
\[f(x, y) = 333.75y^6 + x^2(11x^2y^2 - y^6 - 121y^4 - 2) + 5.5y^8 + \frac{x}{2y} \]

\[f(x = 77617, y = 33096) = ? \]

- Single precision: \(f = 1.172603... \)
- Double precision: \(f = 1.1726039400531... \)
- Extended precision: \(f = 1.172603940053178... \)
- Correct one is: \(f = -0.8273960599468213 \)
Another Story

- On February 25, 1991
- A Patriot missile battery assigned to protect a military installation at Dhahran, Saudi Arabia
- But ... failed to intercept a Scud missile
- 28 soldiers died
- ... an error in computer arithmetic

 \[0.1 \times 10 \neq 1\]
IEEE 574 Standard

IEEE Floating Point Representation

<table>
<thead>
<tr>
<th>s</th>
<th>exponent</th>
<th>E</th>
<th>mantissa</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>w bits</td>
<td>8 bits</td>
<td>23 bits</td>
<td>$t = p - 1$ bits</td>
</tr>
</tbody>
</table>

IEEE Double Precision Floating Point Representation

<table>
<thead>
<tr>
<th>s</th>
<th>exponent</th>
<th>mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>11 bits</td>
<td>52 bits</td>
</tr>
</tbody>
</table>

- If $E = 2^w - 1$ and $T \neq 0$, then v is NaN regardless of S.
- If $E = 2^w - 1$ and $T = 0$, then $v = (-1)^S \times \infty$.
- If $1 \leq E \leq 2^w - 2$, then $v = (-1)^S \times 2^{E - \text{bias}} \times (1 + 2^{1-p} \times T)$; normalized numbers have an implicit leading significand bit of 1.
- If $E = 0$ and $T \neq 0$, $v = (-1)^S \times 2^{\text{emin}} \times (0 + 2^{1-p} \times T)$; denormalized numbers have an implicit leading significand bit of 0.
- If $E = 0$ and $T = 0$, then $v = (-1)^S \times 0$ (signed zero)

where $\text{bias} = 2^w - 1$ and $\text{emin} = 2 - 2^{w-1} = 1 - \text{bias}$
Distribution of Values

- 6-bit IEEE-like format
 - $w = 3$ exponent bits
 - $t = 2$ fraction/mantissa bits
 - bias = 3
Distribution of Values (zoom-in view)

- 6-bit IEEE-like format
 - $w = 3$ exponent bits
 - $t = 2$ fraction/mantissa bits
 - $bias = 3$

Denormalized
Normalized
Infinity
Round-Off Errors

- Overflow error – “not large enough”
- Underflow error – “not small enough”
- Rounding error – “chopping”

http://www.cs.utah.edu/~zachary/ispc/applets/FP/FP.html
Rounding

\[D \times \beta^E = \pm \left(d_0 + \frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \cdots + \frac{d_{p-1}}{\beta^{p-1}} \right) \beta^E \]

- Round by chopping (round toward zero)
 - Truncate base expansion after \((p-1)^{st}\) digit
 - Machine epsilon \(\varepsilon_{\text{machine}} = \beta^{1-p} \)

- Round to nearest (round to even)
 - Last digit is even in case of tie
 - Machine epsilon \(\varepsilon_{\text{machine}} = \frac{1}{2} \beta^{1-p} \)

\[\left| \frac{\text{fl}(x) - x}{x} \right| \leq \varepsilon_{\text{machine}} \]
Cancellation

- Subtraction between two p-digit numbers having the same sign and similar magnitudes yields result with fewer than p digits.
- Significant digits of two numbers cancel.
- Despite exactness of result, cancellation often implies serious loss of information.
- Relative uncertainty in difference is largely due to previous rounding errors.

$$(1 + \varepsilon) - (1 - \varepsilon) = 1 - 1 = 0$$
Special Numbers

- standard range of values permitted by the encoding (from $1.4e-45$ to $3.4028235e+38$ for float)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 / 0.0</td>
<td>NaN</td>
</tr>
<tr>
<td>1.0 / 0.0</td>
<td>Infinity</td>
</tr>
<tr>
<td>-1.0 / 0.0</td>
<td>-Infinity</td>
</tr>
<tr>
<td>NaN + 1.0</td>
<td>NaN</td>
</tr>
<tr>
<td>Infinity + 1.0</td>
<td>Infinity</td>
</tr>
<tr>
<td>Infinity + Infinity</td>
<td>Infinity</td>
</tr>
<tr>
<td>NaN > 1.0</td>
<td>false</td>
</tr>
<tr>
<td>NaN == 1.0</td>
<td>false</td>
</tr>
<tr>
<td>NaN < 1.0</td>
<td>false</td>
</tr>
<tr>
<td>NaN == NaN</td>
<td>false</td>
</tr>
<tr>
<td>0.0 == -0.0</td>
<td>true</td>
</tr>
</tbody>
</table>
Floating point Hazards

<table>
<thead>
<tr>
<th>This expression</th>
<th>does NOT equal to this expression</th>
<th>when</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - f</td>
<td>-f</td>
<td>f is 0</td>
</tr>
<tr>
<td>f < g</td>
<td>! (f >= g)</td>
<td>f or g is NaN</td>
</tr>
<tr>
<td>f == f</td>
<td>true</td>
<td>f is NaN</td>
</tr>
<tr>
<td>f + g – g</td>
<td>f</td>
<td>g is infinity or NaN</td>
</tr>
</tbody>
</table>

- The result is 2.6000000000000001
- The result is 0.29 28
Comparing Floating Point Numbers

- Try to avoid floating point comparison directly
- Testing if a floating number is greater than or less than zero is even risky.
- *Instead*, you should compare the absolute value of the difference of two floating numbers with some pre-chosen epsilon value, and test if they are "close enough"
- If the scale of the underlying measurements is unknown, the test “abs(a/b - 1) < epsilon” is more robust.
- Don’t use floating point numbers for exact values
Uncertainties in M&S

- Model errors due to approximations in truncation or sampling
 - Taylor approximation
 - Functional analysis
- Numerical errors due to floating-point representation
 - Round-off errors
Summary

- Modeling is *abstraction*
- M&S *always* has *approximations* involved, which are important sources of epistemic uncertainty.
- Computer tricks us
Further Readings