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Uncertainty in Modeling & Simulation

0 Aleatory Uncertainty:
= inherent random dispersion in

0 Epistemic Uncertainty:
= due to lack of perfect

the system. Also known as:

knowledge about the system.

e variability

Also known as;:

e random error  incertitude
* irreducible uncertainty e systematic error
e reducible uncertainty
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Imprecise Probability and Its Different Forms
P=[P,P]

O Imprecise probability 1s a generalization and extension of the
classical probability theory that differentiates aleatory and
epistemic uncertainties explicitly in the probabilistic measure.

dSeveral forms have been proposed:
" Dempster-Shafer evidence theory [Dempster 1967; Shafer 1976]
= Coherent lower prevision [Walley 1991]
" Probability bound analysis [Ferson et al. 2002]
* Possibility theory [Dubois & Prade 1988]
" Fuzzy probability [Moller & Beer 2004]
= F-probability [Weichselberger 2000]
= Random set [Molchanov 2005]
= Cloud [Neumaier 2004]
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Overcome the Limitations of Classical Probability

O Inconsistency OIndeterminacy

p(Netherlands wins World Cup)

1lony Hayward, CEO of BPF. ... (was)
asked about the top kill (to stop gulf
oil spill), Mr. Hayward
acknowledged that it was far from a
sure fix. "We rate the probability of
success between 60 percent and 70

percent ..."”
O Total Ignorance -- New York Times, May 24, 2010
Netherlands wins World C
p([O I l up) p(success) =1[.6,.7]
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van Fraassen’s Cube Factory Paradox

Laplace’s Principle of Insufficient Reason requires a uniform
distribution, which leads to different answers for the same problem.
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P(side length of a randomly chosen cube <1/2)=?

O []

O O

_______

——————————————

',

______________

Multiscale Systems Engineering Research Group



Assumptions in Dutch Book Arguments

2 “Probability is a choice.” }

1. You must post all betting quotients of all events at
the beginning. The complete knowledge of all
outcomes, including their relationships of
dependency and mutual exclusiveness, in the world
of the discourse 1s fully expressed in your belief.

. The degrees of belief on all possible outcomes should be
explicit without any hesitation and indeterminacy.

1 Doubt and vagueness are not permitted, even if you have a
modest and diffident personality.

- You should choose the subjective probability that may not
be part of your #rue subjective feeling.
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Assumptions in Dutch Book Arguments
“Value-adding activities are irrational.”

2. You must accept all bets anyone wants to make at
your posted quotients. With the listed prices,
decisions of either ‘buy’ or ‘sell’ should be made
immediately, with probability denoting the fair price
at which you will both buy and sell the bet.

O There are only two possible options of decisions, 1.e.
‘not buy’=*sell’, and ‘not sell’=‘buy’.

2 Non-value-adding activities are deemed as rational.
A rational agent will make no profit through his/her
buy and sell activities, whereas there 1s always a
cunning bookie who tries to bankrupt you.

Georgia
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Generalized Interval Probability

0 The generalized interval probability p: 4 +—[0,1]x]0,1]
obeys the axioms of Kolmogorov:

(1) 0<p(E)L1(VE € #)
(2) p(2) =[1,1]=1
(3) For countable mutually disjoint events E;’s,

p(U_E)= ZP(E,-)

P(E, W E,) =p(E)+p(E,)—dualp(E, NE))
p(E®) =1-dualp(E)
— _— Improper interval
dual[.1,.2]=[.2,.1] dual[.2,.1]=][.1,.2] 8

™)
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Generalized Interval vs. Set-based Interval

2ls it possible to calculate with only zero and positive
numbers to solve all
scientific/engineering/financial/... problems?

2 »Yes, but the inclusion of negative
number 1s much more convenient.

»Similar to negative numbers, improper
Intervals can be considered as “negative”
Intervals.

Georgia
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Generalized Interval

QA Close relatives

= Modal Interval [Gardeiies et al. 1986; Vehi et al. 2000]
= Directed Interval [Dimitrova et al. 1992; Markov 1995; Popova 2001]
= AEFE Solution Set [Shary 1995; Kupriyanova 1995; Kreinovich et al. 1996; Goldsztejn 2005]

0 classical interval is defined as “set” O generalized interval is defined as “pair”

[a, b]"={x E R|a <x < b} x = |z,7] (2,7 € R)
a Group

Q Semi-group: no invertibility [.1,.2]—dual[.1,.2]

[.1,.2]—[.1,.2]" =[-.1, .1T° =[.1,.2]-[.2,.1]=[0,0]=0

0 The widths of generalized intervals
could reduce during calculation

[1,31+4[2,11=[3.4]
[1,3]+dual[1,3]=4
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Generalized Interval for Uncertainty

OThe width of an interval  wid([x,x]) =[x —x
captures epistemic uncertainty

dUncertainty 1s propagated by Kaucher interval
arithmetic (kaucher 1950]

Algebraic Corresponding Logic Interpretation Quantifier | Range
Relation: of z Estimation of z
[2,3]+[2.4]=[4,7] Vx € [2,3]",Vy € [24]",3z€ [47]" x+y =z = [4,7] is complete
[2,3]+[4.2]=[6,5] vx € [2,3]",Vz € [56],3y € [24]" x+y =12z \4 [5,6] is sound
[3,2]+[2,4]=[5,6] Vy € [2,4]",3x € [2,3]",3z € [56]" x +y =2z = [5,6] is complete
[3,21+[4.21=[7.4] vz e [47]",3x € [23], 3y € [24]" x+y =2z \v4 [4,7] is sound
complete = ‘no underestimation’ sound = ‘no overestimation’
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Completeness vs. Soundness

Complete Sound

QAll possibilities are QAll estimated variations
included 1n the are possible.
Var.iatio.n range aNo Over-estimation
estimation.

2aNo Under-estimation

I |

Is there any UQ method that can be both complete and sound?

“Thou Shalt Not Lie” (about your estimation). 12
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Kaucher interval arithmetic

X XYy:=4¢
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[Kaucher 1980]
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Kaucher interval arithmetic

x/y:

[Kaucher 1980]
r[:r/ﬂT/y] (QEO,T’:_>0£>Oy>O)
[x/y.r/_] (§20,T203<0y<0)
z/7,Z /7] (§20,5<0£>0 y>0)
[.r/g,&/_] (QEO,T<OQ<O y<0)
z/y.T/y] (z<0,7>0,y>0,7>0)
Z/y,z/y] (2<0,Z>0,y<0,7<0)
[.r/y*z:/y] (§<O,E<O£>Oy>0)
\[r/ya,/y] (§<O,E<O£<Oy<0)
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Kaucher interval arithmetic
[Kaucher 1980]

2.7 @ [y,7] = [z +yT+7]

2.7 [y.7] = [z -y T-7 r
= F
>
—F | dual Z
yeP yez y€ —P ycdual Z
xcP lzy, 7y [Ty, TY] [Ty, zy]  [zy, 2Y]
reZ 2y, 7yl  [min{ey, Ty} max{zy 7y} [Ty, zy] O
xre—P 2y, Ty] |27, zy] Ty, zy] [Ty, TY]
x cdualZ | [zy,7y] O [y, zy]  [max{zy, Ty} min{zy, Ty}]
Kaucher multiplication [z, 7] ® @ y] table
2,72 [y, 7] = [2.7] @ [1/7,1/y]
15
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More about Generalized Interval Probability

aConditional probability

p oy PENC) [p(ENC) FENC)
P(EIC); dualp(C) | p(C) ~ p(C)

Wang Y. (2010) Imprecise probabilities based on generalised intervals for
system reliability assessment. International Journal of Reliability & Safety,

4(4): 319-342 5
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More about Generalized Interval Probability

aConditional independence
p(AnB|C)=p(4]C)p(B|C)

* This definition of Independence 1s Graphoid

e Symmetry

* Decomposition

» Composition

« Weak union

« Contraction

* Reduction

* Redundancy

 Intersection

Wang Y., “Independence in generalized interval probability.” Proc. of 15 Int.
Conf. on Vulnerability and Risk Analysis and Management (ICVRAM 2011)
and 5% International Symposium on Uncertainty Modeling and Analysis

(ISUMA 2011), April 11-13, 2011, Hyattsville, Maryland, pp.37-44. 17
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More about Generalized Interval Probability

dGeneralized Interval Bayes’ Rule (GIBR)

P41 Jo(£)
>" dualp (A E ) dual p (Ej )

p(r14)-
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Logic Coherence Constraint (L.C.C.)

For a mutually disjoint event partition, the sum of the interval
probabilities 1s always one.

= e.g. system State:

Focal events Non-focal events

/

p(down) =[0.2,0.3] p(idle) =[0.3,0.5] p(busy) =[0.5,0.2]

" logically consistent with precise probability

Vp, € [0.2,0.3]*, Vp, € [0.3,0.5]*,3p; € [0.2,0.5]*, p; + P, + p3 = 1
19
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L.C.C. also implies ...

QAvoid sure loss
“IP: ¥, p;<1,%,p,>1
= GIP: ZiegDBi + Zjejﬁj <1,
ZiE?ﬁi T Zje?Bj =1
QCoherence between previsions
"IP: X2k pi + P, <1 forallk
"GIP: YiepDi + XjegjzkP; TPk =1 whenk €7
or Pyt XiepizkPi t LjesP; =1 whenk € P

20
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Sound but Incomplete GIBR

aFor example,

P(B1ly)

P@lf) P@p) P(alfy) P@IB)]|pi ] P

P(B4ly)

P(yla) =

P(B;ly) P(B:ly°)

dual | [P(alfr)  Plalfy) P(alBs) P(ldl|p sl pilg i)

[0.7415,0.9024] 0.1662,0.3080]
0.3667,0.8688] 0.3587,0.4603
0.1655,0. 4140] 0.3554,0.0491]

[0.3880,0.9973]7 [[0.1197,0.1826] [0.0410,0.1930]
| |
[
[

[0.3880,0.9973]7 [[0.1197,0.1826]
I ‘ I{ ‘ [0.3000,0.4500]

= [0.3143,0.4658]

[0.7415,0.9024]| |[0.1662,0.3080] [0.1527,0.1772]
[0 3667,0.8688] | |[0.3587,0.4603] [0.3683,0.4682]
[0.1655,0.4140]] 1[0.3554,0.0491] |

[0.3000,0.4500]

dua [0.7000,0.5500]

0.4380,0.1616]

(P(B1ly) P(Bily©)

P(Baly)  P(Baly©).

|

P(y) ]
P(y©)

Blumer, J. (2015) Cross-Scale Model Validation with Aleatory and Epistemic

Uncertainty, M.S. Thesis, Georgian Institute of Technology
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Sound but Incomplete GIBR
AGIBR estimation compared with MC sampling

GIBR posterior estimation
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Generalized Chapman-Kolmogorov Equation

Q“First-principles” model of the Markovian
property

pCx,t + At | p,t") = [dzp(x,t + At | 2,0)p(z.t | y,t )

State |
space

» time

¢ I At
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Generalized Differential C-K Equation

ADefine derivative of generalized interval

probability

— jdzp(x,t + At | z,0)p(z,t | y,t")

I

gCKE

& pr,t 1y.7) = lim -~ {p(r.t + At 7,0 -dualp | )

@t At—0 At

x[dzp(z,t + At | x,0) = 1] L.C.C.

= lim —+
At —0 At

\

Multiscale Systems Engineering Research Group
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—dual p(z,t + At | x,t)p(x,t | y,t")




Generalized leferentlal C-K Equation (cont’ d)

] f Pt + AL | z,0)p(z,t | y,t )
dz

5
— [yt = lim —
o PO 1) = I V| — dualpear + A | 0peat [3.t)

OSpatially divide the state space into two sub-
domains with J dz[]= j dz[]+ J‘ dz[]
b=l p=[>e

dTherefore

%, N
Pyt =0 g L

Georgia (%)
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Generalized Differential C-K Equation (cont’d)
dThen we have the Gen. Diff. C-K Eq. as

62B (x 1)

D gt )+ X P o)

+[ dzW(x | 2,0)p(z, 1 |y z') dual [ dzW(z | x,0)p(x, 1 | 3, z')

5—p(x ty,t") = —dualz

QALocal Drift-Diffusion - Generalized Fokker-Planck
Equation

OA (x t) 0°B, (x,1)
I%_ZH dualz

pQ |yt') + Z DI s

p(x,z | y,t")

AGlobal Jump - Interval Master Equation
L, = [ d=W(x |z,00p(z. | y,t ) - dual | dzW(z | x,0)p(x, ¢ | y,t")

26

Georgia (%)
Multiscale Systems Engineering Research Group Tech WS




Generalized Fokker-Planck Equation

OA O'B. (x,t
(1) p(x,t|y,t")+— Z Z,1 P~ éx i p(x,t |y, t")

aﬁp(x t|y,t )——dualz

Qdshort-time transition probability density

p(x',t +7|x,t) ocexp [—%[x '—x — A, )] B (x, ) [x '—-x — A(x,t)r]j
T

adsolved by a path integral (P1) method
= 1nitial distribution Q(¢,)
= short-time transition probabilities P(¢,),..., P(¢,_,)
= final distribution Q(z,)=P(z,_,)...P(¢))Q(%,)

27

Multiscale Systems Engineering Research Group Tech G




Markov Logic Coherence Constraint

AdTheorem. Given an interval matrix P=[p;],,
( P =KR™ ) and an interval vector Q=[q;] «;
(QeKR") with their respective elements as
generahzed interval probabilities with

Z andz, 1q =1 1f T= PQ [qz]nXD

then the elements of T=|t l.]n><1 also satisty
Tt =1,

i=1 1

Wang Y. (2015) Stochastic dynamics simulation with generalized interval
probability. International Journal of Computer Mathematics, 92(3): 623-642

28
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Gen. F-P Equation — Example 1

aBi-stable Stochastic Resonance System
dx/dt =cx —cx’ +a, sinQaft)+N(t) with N(t)=2BE)

dSolve the equivalent F-P equation

0 0 o’ , :
ap(x,t) = —a<Ap(x,t)) + @(Bp(x,t)) with A =cx —cx’ +a, sin(2zft)

T ————\x\—“‘> Gaussian initial dist.
| — c;=c,=1

0.8+ CZO:l

£:=0.01

B=0.31
A=[4—0.1,4+0.1]
B=[B-0.031,8+0.031]

0.2

———— o States
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Gen. F-P Equation — Example 1 (cont’d)

precise p.d.f. by PI

.—-‘L"‘_’/—
0.15 __<
'_\--_‘_—_'_—-—._
___\___——_‘____‘_‘—\—_
0 1_- IIIII pU
. P
""
‘. "0'.
£ LY
0.05 — E
- - ":.
Ty - .":: ..... 4 .
a1 f. > —
0- 5 P 5 Hpperpound p.d.f.
0
5 : ) -1 T
Time L b States
_)

lower bound p.d.f.
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Gen. F-P Equation — Example 2

aVan der Pol Oscillator

0 0

0 o’
ap(xpxzat) — _g(gl(xlaxz)p(xpxzat))_g(gz(xlaxz)p(xlaxzat))+D P 2p(x19x29t)

1 2 x2

4 |&wex) =X,
gz(xl,xz) = 24“600(1 — gxlz)x2 — a)éx1

Ol

e=1

D=0.1
A=A4+0.14
B=B+0.1B

B = [D 0 :l ¢=0.05
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Gen. F-P Equation — Example 2 (cont’d)

......

04~

upper bound p.d.f. 12

Ar=0.125
Ireal-vkz)alluectljI p.o(lj.f% =0~1.0 -
ower bound p.d.f. Georgia ()
P Multiscale Systems Engineering Research Group Tech @



Random Set Sampling

Real-valued
cdf s

Upper Bound

F,F]

™~ Lower Bound

Multiscale Systems Engineering Research Group
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Kinetic Monte Carlo (KMC)

AKMC 1s a type of discrete-
event stochastic simulation
methods

AKMC i1s extensively used in
physics and chemistry

OKMC

= defines a discrete set of states
of the system (i.e. all possible
configurations)

= simulates state transitions
between states which are
triggered by events (also called
processes in chemistry-oriented
literature) that cause state
changes.

propensity —> -

Multiscale Systems Engineering Research Group

de.g. vapor deposition

00

L solid surface

/QO
ooC

particles

0..
L 4

(a) discrete states
A@)— rate
j a

Aty
v

(b) possibci6e events
de.g. 2H,0 © 2H, + O,

states: combinations of # of species
H,O n n2 n4
H, 0 2 4
O, 0 1 2
events: reactions

ay: «—




KMC Sampling Algorithm

dFor each 1teration
= Randomly choose an event out of all possible ones
= Update the system state as a result of the event
= Randomly sample a time duration Af of the event

= Update the system clock: 1 =7 + At
1

a©

uz """"""""""" P

upr— .‘ 4
0

A B C
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How KMC Works — event selection

event | v - ! . time
event j b v L Y > time
event M v - v v . time

O The inter-arrival time 7; of event ; 1s assumed to be
exponentially distributed as

T ~ Exponential(a;)

0The probability that the inter-arrival time of event j is the
minimum among M independent events

Pr[Tj = mm(Tl,...,TM)]—aj [(a, +-+a,,)

A Therefore, uniformly sample to choose the next event

R A S S

a, a, a; ay,
Multiscale Systems Engineering Research Group




How KMC Works — clock advancement

event1 _+ y ' > time
eve:nt j b v L Y > time
event M 4 y v ', time
overall nextevent _qee oo 0@ oo e time

QThe inter-arrival time 7, of event j 1s
P (Tj < Z') =1 —exp(—ajr) (G=L....M)

QThe earliest time 7W=min(7,...,T),) of any event occurs is
P (T<1) < z') =1-P (T<1) > z—) =1 —HZIP (Tj > z-) =1 —exp(—(Zflaj)rj

QdTherefore, exponentially sample to advance clock

T, = —Inp/ Z?flzl a; where p~Uniform(0,1)

Multiscale Systems Engineering Research Group



Uncertainty in KMC Simulation

OUncertain rate or propensity a;’s

aSources

= kinetic rate in biochemical reactions varies over time instead

of a constant because of the macromolecular crowding effect
[Berry 2002; Schnell & Turner 2002]

 Existing solution: use fractal & Zipf-Mandelbrot relationships

= biochemical processes such as diffusion, translocation,
protein synthesis and folding do not occur instantaneously

and are often affected by spatial homogeneities [Bratsun et al.
2005; Barrio et al. 2006; Burrage et al. 2007]

 Existing solution: delay stochastic simulation algorithm
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Multi-Event Algorithm
—a simple illustration

Q Given events A,B,C with the respective rates a,=[1,3], a,=[1,3] and
a,=[4,5] as proper or precise intervals

1. Sort rates based on uncertain level (widths of intervals) in the ascending order
a;=[4,5], a,=[1,3], a,=[1,3]
“flip” 1n an alternating pattern (apply dual) a',=[4,5], a',=[3,1], a',=[1,3]

3. Introduce a null event N (in this example, rate a,=[1,0]) so that
a,=a'\+a',+a'y+a'y is a precise number (here a,=[9,9])
Build empirical c.d.f. with probability mass p~= a'/a, for event ;

5. As shown below, sample u~Uniform(0,1) and choose either one or two events

to fire 1 Upper Bound

Lower Bound

[Wang (2013), Soft Comp., 17(8)]

0 | | !
C A B N
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Multi-Event Algorithm

Q For M possible events with interval rates a,, a,, ..., ,,, the assorted ones
are alV, a®@, ... aM where
wid(a" ) < wid (a@)) <. < wid(a®)
3  Define *-sum, denoted by Z , recursively as
Yoa0) VAo V) _ : VELGY ()
ijlaf - dual(zjzl a )+a (J _2,...,M) with ijl a’) =a

Theorem. If generalized intervals X and Yy are not improper and wid (x) < wid (y ),
then dualX +Yy isnot improper and wid (dualx +y) < widy.

Q Therefore,

wid(Z’f"‘la@) <wida¥" <wida” (J =2,...,M)

Jj=1
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Multi-Event Algorithm — cont’d

3 In other words, the c.d.f. always has the following shape

A
L . o T
() ‘
2.av
uxa,rg-------------------1 - A== == --
0 Z S Q) I —— Lower bound of a¥)
j=1
Z*J -1 a(j)l T Upper bound of a*)
j=1
‘ | | | | >
0 " J-1 J J+H1 M null

0 With the rate of the null event  calculated as a_, = [O, wid (Z:Za@ )} :
the real-valued sum is

a, = dual(ZZaU)) + [O, wid(zzamﬂ

0 The intent that “the maximum and minimum possible probabilities to fire
event J are specified by [Qm /ag,a” | ao] ”” is maintained!
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Best- and Worst-Case Clock Advancement

£, .t 1< [t,,t, 1+IT,,T,]

current .
updated fime increment
0 The shortest time for a set of events to fire 1s when all of them

occur at the same time =2 lower bound.

aThe longest time for a set of events to fire 1s when they occur
one by one = upper bound

Multiscale Systems Engineering Research Group



Best- and Worst-Case Clock Advancement

£, .t 1< [t,,t, 1+IT,,T,]

updated Cu.rrent increment
time

O The least time for a set of events to fire 1s when all of them
occur at the same time.

dThe lower bound of clock advancement is

T, = —Inp/ Y., a; where p~Uniform(0,1)
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Best- and Worst-Case Clock Advancement

aThe longest possible time for the set of events to fire 1s when
the events occur consecutively one by one.
7)) vy L@ Ly
with exponential inter-arrival times
XM ~Exponential(ay), X P ~Exponential(a,),..., X" ~Exponential (a,,_;)

. N

a4, = Zi:lc—li The c.d.f. of T is
N
— _ (1) (n) _ _ (n) . . n—1 _
where )% D _a-a P(T ST)—I P(T >7]=1-3"" 4 exp(-g7)
n-—1 o.
N 1 h A = —
_ . =t () where “°;
\gﬂ_l B Zizlc—zi Zj:lcl l=0 C_Zl’ _Q]
[#]

aYet a simpler sampling of the upper bound of clock
advancement 1s T =—Inp |:Zn—; U a }

U
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Reactions of LacZ and LacY proteins in E. coli

dgrLacZ

1 6.42E-5

9.52E-5
i A
[Lachactose 431
( : 0.4
product [ RbsRibosomelLacZ ]7
A
0.7 1] | 045
- 03 dgersLacZ]

RbsLacZ

0.45
: —> dgrRbsLacY
[RbsRlbosomeLacY}t 0.3 Srbs At ]
0.4 0.17 L>| RbsLacY
: > 1

0.015
v TrLacY1 TrLacZ2 [« 1 II Tr iC21
TersLach | TrLacY?2 I(—

0.036 :

0.1

Y 42E- —>
14 Lacy o222 dgrLacY 036 ?[ PLacRNAP ]
: >RNAP

a Rates have the ranges of £1% and +10% of the nominal
0 Results with averages of 20 runs are compared

|
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Reactions of LacZ and LacY proteins in E. coli
10000 360 ,
- —rea
- - :::Jamtmound ,’ 350 - - - -intval01_LBound
tim- — -intvalo1_UBound / 2340 - _—_-Ifntt:’ra:':;_EBBoun:
2 - -!ntval10_LBound / § !“ anb_Lboun
Em 1/ — -intvali0_UBound .nm- — -intvalt0_UBound
[
: e
Em Em-
S,
2000 ~
290 - ol
0 ' - ' ' ' r
0 500 _Fm 1500 2000 0 500 _I-!m 1500 2000
a) product b) Ribosome
p
2 30
—real —real A
- “intval01_LBound - - ‘intval01_LBound -
» |~ intvai1_usound /] — -intvalo1_UBound - Z
.! - - !ntval10_LBound /f N 29 - B -!ntval10_LBound
-8 — -intvall0_UBound P | intval10_UBound
51 5
£ 5
3 Q
E B
o 0- . . .
o ° 500 mo 1500 2000
e
(c) dgrLacY (d) LacZ

Multiscale Systems Engineering Research Group



Jaquieyo apoue

Jaquieyd apoyied

Reliable Kinetic Monte Carlo

0 Sensitivity analysis on-the-fly with random set sampling
= Implemented in SPPARKS (e.g. Microbial Fuel Cell)
10D

current generated

40H -

Event type Species and reactions Rate
constant

R1: water dissociation H,0 &+ OH +H" 10! £10%

R2: carbonic acid dissociation CO, + H,0 < HCO,” + H* 10! £10%

R3: acetic acid dissociation AcH < Ac + H" 10!

R4: reduced thionine first | MH;* <> MH, + H* 10!

dissociation

R5: reduced thionine second MH42+ < MH;*+ H* 10!

dissociation

R6: acetate with oxidized | Ac"+MH'+NH,"+H,0 — | 10! £10%

mediator X T MH;*+HCO,” + H*

R7: oxidation double | MH,>* — MH" + 3H" + 2¢~ 10!

protonated mediator

R8: oxidation single protonated | MH;" — MH*+ 2H" + 2¢~ 10!

mediator

R9: oxidation neutral mediator MH, — MH" + H" + 2¢~ 10!

R10: proton diffusion through | H* — H_* 1072

PEM

R11: electron transport from | e —e 1072

anode to cathode

R12: reduction of oxygen with | 2H * + 1/20, + 2e =~ — | 103

current generated H,0_

R13: reduction of oxygen with | O, + 4e =~ + 2H,0_ — | 103

Multiscale Systems Engineering Research Group

158 1

100 1

amount of H2O In anods chamber

Real
= = ‘Intervall0_LBound
=— = Intervali0_UBound

e mm o

™

'__-_-_-__H-

o 1.0 20 30
thme
(a) H,0O in anode chamber

amount of H+ in calthode chanber

= =Intval10_UBound
= = ‘Intervall0_LBound
Real

0 1 :_ % ©
(b) H+ in cathode chamber




More Applications of GIP

OMultiscale uncertainty quantification based on
Generalized Hidden Markov model

AGeneralized interval for global sensitivity
analysis

dMolecular dynamics with on-the-fly sensitivity
analysis

48
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Multiscale Uncertainty Quantification

0 Generalized Hidden Markov 0 Multiscale information assimilation
Model (GHMM) = Single-Scale Single-Point observation
Observable = Single-Scale Multi-Point observation
//Zr\ _\ = Multi-Scale Multi-Point observation

0O Carbon nano-tube (CNT) composite
actuator design example

5 b major contributors of epistemic uncertainty in multiscale analysis:
) ¢ lack of data
* inconsistent observations
* measurement errors
— — microscale u mesoscale RL nanoscale
 — é> - Vi condudt ity of
. . composite (1%CNT) ~——_—
— — — z: bending strain rate of (.. observable) X: resistivity of

actuator
(Z: observable)

Y,: conductivity of single CNT
composite (2%CNT)
(Y,: observable)

[Wang (2011) J. Mech. Des., 133(3), 031004]
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Cross-Scale Model Validation

dBayesian model validation
0 /n|o,T )p(o,T, T,|0)|dT,dT
O pO)|[[p(Ap/ n|0.T,)p(0.T,, | T))p(T, | 0)]dT,dT,

dual [ [ [[p(&p/n|a,T,)p(o.T,, | T)p(T, |9)p(9)]deT do

Primary knock-on
atom - Pl\&

Ap/n: electrical resistivity change € Measureable

O 0 & © q\? 0 2 O ©

= o: total displacement cross section PPN, M
. . o } t latti it
= T : maximum possible level of transferred energy @ seif nterstial atom, SIA

= T, damage threshold € MD

angle=0.0 angle=57.0 angle=90.0

1

=—mid

lower
—

—upper

=—mid
lower
——upper

=—mid
lower
=—upper

0.5 0.5 0.5

0 : I ‘
0 90 100 % 50 1007 % 50 100
Recoil energy (T) Recoil energy (T) Recoil energy (T)

Damage function (v)

Damage function (v)

Damage function (v)

[ Tallman, Blumer, Wang, & McDowell, IDETC/CIE2014]
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Generalized Interval for
Global Sensitivity Analysis

QA High efficiency (No probability distribution, No sampling)

a Hartley-like measure in generalized information theory [Kiir 2006]
M(Y) = log, (1 + width(Y))

adSensitivity index a, a
M(Y|x;) = log, (1 + width(Y(Xq, oo, Xis r X7))) I lm

= First-order information gain o—o — fl[aX)=y — > e—
—o —
M(Y) — M(Y|x;) n
- M(Y) 1.2
. . . = @ Sensitivity Zone w.rtu
= Second-order information gain g 1o & Sensitiityzone wrtt |
% 0'8- ? ?
= 06f | ' 0
[Hu, Wang, Cheng, and Zhong (2015) J. Mech. Des. g | ! !
137(4): 041701] z : S
= 0.2f
8
de-d m ? et CdA
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1C

Reliable Molecular Dynamics
— Interval interatomic potentials

0 Interval-valued positions
and velocities as a result of

0% = 0.1%,

classical intervals

imprecise interatomic
potentials

A199 earn rad alloy defl noabs0 001 txt
—eo— 4199 eamn rad alloy defl. abs0 001 txt T
—e— A19%9 eamn rad alloy defl noabs0.01 .ttt | 11
modale9mP . eam alloy. def txt

| T modal?2pP . eam. alloy. def txt

Kaucher
intervals

%

T 0 Uncertainty effect is
assessed on-the-fly with
(SR . single run of simulation

a a Integrated with LAMMPS

1 % \ Sensitivity Analysis
I ........ - results £2%

Interval-valued position

09000000
000000
000 00 0¢
0000000

Strain
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Thanks!

Dr. Ola Batarseh
Dr. Jie Hu

Dr. Anh Tran

Dr. Aaron Tallman
Mr. Joel Blumer
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