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Uncertainty in Modeling & Simulation
 Aleatory Uncertainty:
 inherent random dispersion in

the system. Also known as:
• variability
• random error
• irreducible uncertainty

 Epistemic Uncertainty:
 due to lack of perfect

knowledge about the system.
Also known as:

• incertitude
• systematic error
• reducible uncertainty

Lack of
data Sources of Epistemic 

Uncertainty in 
Modeling & 
Simulation

Conflicting
beliefs

Conflicting
information

Lack of
introspection

Measurement
systematic

errors

Lack of
information

about
dependency

Truncation
errors

Round-off
errors

2



Multiscale Systems Engineering Research Group

Imprecise Probability and Its Different Forms 

Imprecise probability is a generalization and extension of the 
classical probability theory that differentiates aleatory and 
epistemic uncertainties explicitly in the probabilistic measure. 

Several forms have been proposed:
 Dempster-Shafer evidence theory [Dempster 1967; Shafer 1976]

 Coherent lower prevision [Walley 1991]

 Probability bound analysis [Ferson et al. 2002]

 Possibility theory [Dubois & Prade 1988]

 Fuzzy probability [Möller & Beer 2004]

 F-probability [Weichselberger 2000]

 Random set [Molchanov 2005]

 Cloud [Neumaier 2004]

[ , ]P PP
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Inconsistency

Total Ignorance

Overcome the Limitations of Classical Probability
Indeterminacy

Tony Hayward, CEO of BP, ... (was) 
asked about the top kill (to stop gulf 
oil spill), Mr. Hayward 
acknowledged that it was far from a 
sure fix. "We rate the probability of 
success between 60 percent and 70 
percent …" 

-- New York Times, May 24, 2010
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van Fraassen’s Cube Factory Paradox

0 1.00.5

Laplace’s Principle of Insufficient Reason requires a uniform 
distribution, which leads to different answers for the same problem.

P(side length of a randomly chosen cube ≤1/2)=?

P(face area of a randomly chosen cube ≤1/4)=?

P(volume of a randomly chosen cube ≤1/8)=?
5
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Assumptions in Dutch Book Arguments

1. You must post all betting quotients of all events at 
the beginning. The complete knowledge of all 
outcomes, including their relationships of 
dependency and mutual exclusiveness, in the world 
of the discourse is fully expressed in your belief. 
 The degrees of belief on all possible outcomes should be 

explicit without any hesitation and indeterminacy. 
 Doubt and vagueness are not permitted, even if you have a 

modest and diffident personality.  
 You should choose the subjective probability that may not 

be part of your true subjective feeling.

“Probability is a choice.”

6
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Assumptions in Dutch Book Arguments

2. You must accept all bets anyone wants to make at 
your posted quotients. With the listed prices, 
decisions of either ‘buy’ or ‘sell’ should be made 
immediately, with probability denoting the fair price 
at which you will both buy and sell the bet. 

 There are only two possible options of decisions, i.e. 
‘not buy’=‘sell’, and ‘not sell’=‘buy’. 

 Non-value-adding activities are deemed as rational. 
A rational agent will make no profit through his/her 
buy and sell activities, whereas there is always a 
cunning bookie who tries to bankrupt you.

“Value-adding activities are irrational.”
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Generalized Interval Probability
The generalized interval probability

obeys the axioms of Kolmogorov:
(1)
(2)
(3) For countable mutually disjoint events Ei’s,

: [0,1] [0,1]p A

( ) [1,1] 1  p
0 ( ) 1 ( )E E   p A

1
1

( ) ( )
n

n
i i i

i

E E


p p

dual[.1,.2] [.2,.1] dual[.2,.1] [.1,.2] 

1 2 1 2 1 2( ) : ( ) ( dua) )l (    E E E E E Ep p p p

( ) : ( )ua1 d l CE Ep p
proper interval improper interval
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Generalized Interval vs. Set-based Interval

Is it possible to calculate with only zero and positive 
numbers to solve all 
scientific/engineering/financial/… problems?

Yes, but the inclusion of negative 
number is much more convenient.
Similar to negative numbers, improper

intervals can be considered as “negative”
intervals.



Multiscale Systems Engineering Research Group

Generalized Interval

 classical interval is defined as “set”

[a, b]*={x | a ≤ x ≤ b}

 Semi-group: no invertibility
[.1,.2]*−[.1,.2]* =[−.1, .1]*

 generalized interval is defined as “pair”

 Group
[.1,.2]−dual[.1,.2]
=[.1,.2]−[.2,.1]=[0,0]=0

 The widths of generalized intervals 
could reduce during calculation

[1,3]+[2,1]=[3,4]
[1,3]+dual[1,3]=4

Close relatives
 Modal Interval [Gardeñes et al. 1986; Vehí et al. 2000]
 Directed Interval [Dimitrova et al. 1992; Markov 1995; Popova 2001]
 AE Solution Set [Shary 1995; Kupriyanova 1995; Kreinovich et al. 1996; Goldsztejn 2005]
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Generalized Interval for Uncertainty

The width of an interval  
captures epistemic uncertainty
Uncertainty is propagated by Kaucher interval 

arithmetic [Kaucher 1980]

wid([ , ])x x x x 

complete = ‘no underestimation’ sound = ‘no overestimation’
11

Algebraic
Relation:

Corresponding Logic Interpretation Quantifier

of z
Range
Estimation of z

[2,3]+[2,4]=[4,7] ݔ∀ ∈ 2,3 ∗, ݕ∀ ∈ 2,4 ∗, ݖ∃ ∈ 4,7 ݔ		∗ ൅ ݕ ൌ ݖ ∃ [4,7] is complete

[2,3]+[4,2]=[6,5] ݔ∀ ∈ 2,3 ∗, ݖ∀ ∈ 5,6 ∗, ݕ∃ ∈ 2,4 ݔ		∗ ൅ ݕ ൌ ݖ ∀ [5,6] is sound
[3,2]+[2,4]=[5,6] ݕ∀ ∈ 2,4 ∗, ݔ∃ ∈ 2,3 ∗, ݖ∃ ∈ 5,6 ݔ		∗ ൅ ݕ ൌ ݖ ∃ [5,6] is complete
[3,2]+[4,2]=[7,4] ݖ∀ ∈ 4,7 ∗, ݔ∃ ∈ 2,3 ∗, ݕ∃ ∈ 2,4 ݔ		∗ ൅ ݕ ൌ ݖ ∀ [4,7] is sound
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Completeness vs. Soundness
Complete

All possibilities are 
included in the 
variation range 
estimation.
No Under-estimation

Sound

All estimated variations 
are possible.
No Over-estimation 

12
Is there any UQ method that can be both complete and sound? 

“Thou Shalt Not Lie” (about your estimation).



Multiscale Systems Engineering Research Group

Kaucher interval arithmetic 
[Kaucher 1980]
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Kaucher interval arithmetic 
[Kaucher 1980]
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Kaucher interval arithmetic 
[Kaucher 1980]
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More about Generalized Interval Probability

Conditional probability

   
 

 
 

 
 dua

| :
l

,
E C p E C p E C

E C
C p C p C

   
  
  

p
p

p
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Wang Y. (2010) Imprecise probabilities based on generalised intervals for 
system reliability assessment. International Journal of Reliability & Safety, 
4(4): 319‐342
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More about Generalized Interval Probability

Conditional independence

 This definition of Independence is Graphoid
• Symmetry
• Decomposition
• Composition
• Weak union
• Contraction
• Reduction
• Redundancy
• Intersection

     | | |A B C A C B C p p p

17

Wang Y., “Independence in generalized interval probability.” Proc. of 1st Int. 
Conf. on Vulnerability and Risk Analysis and Management (ICVRAM 2011) 
and 5th International Symposium on Uncertainty Modeling and Analysis 
(ISUMA 2011), April 11‐13, 2011, Hyattsville, Maryland, pp.37‐44.
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More about Generalized Interval Probability

Generalized Interval Bayes’ Rule (GIBR) 

     
   1

dual

|
|

| dual
i i

i n

j jj

A E E
E A

A E E





p p
p

p p
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Logic Coherence Constraint (L.C.C.)

 e.g. system state:

 logically consistent with precise probability

For a mutually disjoint event partition, the sum of the interval 
probabilities is always one.

( ) [0.2, 0.3]down p ( ) [0.3, 0.5]idle p ( ) [0.5, 0.2]busy p

Focal events Non-focal events

19

ଵ݌∀ ∈ 0.2,0.3 ∗, ଶ݌∀ ∈ 0.3,0.5 ∗, ଷ݌∃ ∈ 0.2,0.5 ∗, ଵ݌ ൅ ଶ݌ ൅ ଷ݌ ൌ 1
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L.C.C. also implies …

Avoid sure loss
 IP:   ௜௜ , ௜௜

GIP:   ௜௜∈࣪ ௝௝∈ࣣ ,

௜௜∈࣪ ௝௝∈ࣣ

Coherence between previsions
 IP:   ௜௜ஷ௞ ௞ for all k

GIP:   ௜௜∈࣪ ௝௝∈ࣣ,௝ஷ௞ ௞ when 

or     ௞ ௜௜∈࣪,௜ஷ௞ ௝௝∈ࣣ when 
20
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ࡼ ߛ ߙ ൌ

	ଵሻߚ|ߙሺࡼ ଶሻߚ|ߙሺࡼ ଷሻߚ|ߙሺࡼ ସሻߚ|ߙሺࡼ

ሻߛ|ଵߚሺࡼ
ሻߛ|ଶߚሺࡼ
ሻߛ|ଷߚሺࡼ
ሻߛ|ସߚሺࡼ

· ሻߛሺࡼ

݈ܽݑ݀ 	ଵሻߚ|ߙሺࡼ ଶሻߚ|ߙሺࡼ ଷሻߚ|ߙሺࡼ ସሻߚ|ߙሺࡼ

ሻߛ|ଵߚሺࡼ ஼ሻߛ|ଵߚሺࡼ
ሻߛ|ଶߚሺࡼ ஼ሻߛ|ଶߚሺࡼ
ሻߛ|ଷߚሺࡼ ஼ሻߛ|ଷߚሺࡼ
ሻߛ|ସߚሺࡼ ஼ሻߛ|ସߚሺࡼ

ሻߛሺࡼ
஼ሻߛሺࡼ

=

଴.ଷ଼଼଴,଴.ଽଽ଻ଷ
଴.଻ସଵହ,଴.ଽ଴ଶସ
଴.ଷ଺଺଻,଴.଼଺଼଼
଴.ଵ଺ହହ,଴.ସଵସ଴

೅ ଴.ଵଵଽ଻,଴.ଵ଼ଶ଺
଴.ଵ଺଺ଶ,଴.ଷ଴଼଴
଴.ଷହ଼଻,଴.ସ଺଴ଷ
଴.ଷହହସ,଴.଴ସଽଵ

· ଴.ଷ଴଴଴,଴.ସହ଴଴

ௗ௨௔௟

଴.ଷ଼଼଴,଴.ଽଽ଻ଷ
଴.଻ସଵହ,଴.ଽ଴ଶସ
଴.ଷ଺଺଻,଴.଼଺଼଼
଴.ଵ଺ହହ,଴.ସଵସ଴

೅ ଴.ଵଵଽ଻,଴.ଵ଼ଶ଺ ଴.଴ସଵ଴,଴.ଵଽଷ଴
଴.ଵ଺଺ଶ,଴.ଷ଴଼଴ ଴.ଵହଶ଻,଴.ଵ଻଻ଶ
଴.ଷହ଼଻,଴.ସ଺଴ଷ ଴.ଷ଺଼ଷ,଴.ସ଺଼ଶ
଴.ଷହହସ,଴.଴ସଽଵ ଴.ସଷ଼଴,଴.ଵ଺ଵ଺

଴.ଷ଴଴଴,଴.ସହ଴଴
଴.଻଴଴଴,଴.ହହ଴଴

ൌ ሾ0.3143,0.4658ሿ

Sound but Incomplete GIBR
For example,

21
Blumer, J. (2015) Cross‐Scale Model Validation with Aleatory and Epistemic 
Uncertainty, M.S. Thesis, Georgian Institute of Technology
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Sound but Incomplete GIBR
GIBR estimation compared with MC sampling

22

GIBR posterior estimation
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Generalized Chapman-Kolmogorov Equation

“First-principles” model of the Markovian 
property 

( , | , ') ( , | , ) ( , | , ')x t t y t dz x t t z t z t y t    p p p

time

State
space

y

z1

zn

x

t' t t+Δt 23
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Generalized Differential C-K Equation

Define derivative of generalized interval 
probability

 
0

1( , | , ') : lim ( , | , ') (du , | )al , '
t

x t y t x t t y t x t y t
t t 


   

 
p p p

0

( , | , ) ( , | , ')1lim
dual ( , | , ) ( , | , ')t

x t t z t z t y t
dz

z t t x t x t y tt 

              


p p
p p

( , | , ) 1dz z t t x t    p L.C.C.

( , | , ) ( , | , ')dz x t t z t z t y t   p p gCKE
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Spatially divide the state space into two sub-
domains with

Therefore

Generalized Differential C-K Equation (cont’d)

0

( , | , ) ( , | , ')1( , | , ') lim
dual ( , | , ) ( , | , ')t

x t t z t z t y t
x t y t dz

z t t x t x t y tt t 

                


p p
p

p p

x ε

z

z

[ ] [ ] [ ]
x z x z

dz dz dz
    

      

( , | , ')
x z x z

x t y t
t     


 


p I I
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Generalized Differential C-K Equation (cont’d)

Then we have the Gen. Diff. C-K Eq. as

Local Drift-Diffusion - Generalized Fokker-Planck 
Equation

Global Jump - Interval Master Equation

2

1 1 1

( , )( , ) 1( , | , ') dual ( , | , ') ( , | , ')
2

( | , ) ( , | , ') dual ( | , ) ( , | , ')

n n n iji
i i j

i i j

x tx t
x t y t x t y t x t y t

t x x x
dz x z t z t y t dz z x t x t y t

  


  

   
 

  

 

BA
p p p

W p W p

( | , ) ( , | , ') dual ( | , ) ( , | , ')
x z

dz x z t z t y t dz z x t x t y t
 
  I W p W p

2

1 1 1

( , )( , ) 1dual ( , | , ') ( , | , ')
2

n n n iji
x z i i j

i i j

x tx t
x t y t x t y t

x x x    


  

    
BA

I p p
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Generalized Fokker-Planck Equation

short-time transition probability density

solved by a path integral (PI) method
 initial distribution Q(t0)
 short-time transition probabilities P(t0),…, P(tk−1) 
 final distribution Q(tk)=P(tk−1)…P(t0)Q(t0) 

2

1 1 1

( , )( , ) 1( , | , ') dual ( , | , ') ( , | , ')
2

n n n iji
i i j

i i j

x tx t
x t y t x t y t x t y t

t x x x  


  

     
BA

p p p

11( ', | , ) exp [ ' ( , ) ] ( , )[ ' ( , ) ]
2

Tx t x t x x x t x t x x x t  


 
       

 
p A B A
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Markov Logic Coherence Constraint

Theorem. Given an interval matrix P=[pij]n×n
( ) and an interval vector Q=[qi]n×1
( ) with their respective elements as 
generalized interval probabilities with

and , if  T=PQ=[qi]n×1, 
then the elements of T=[ti]n×1 also satisfy 

. 1
1n

ii
 t

1
1n

iji
 p 1

1n

ii
 q

n nP KR
nQ KR

28

Wang Y. (2015) Stochastic dynamics simulation with generalized interval 
probability. International Journal of Computer Mathematics, 92(3): 623‐642
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Gen. F-P Equation – Example 1

Bi-stable Stochastic Resonance System 

Solve the equivalent F-P equation

3
1 2 0 0/ sin(2 ) ( )dx dt c x c x a f t N t   

   
2

2
( , ) ( , ) ( , )p x t A p x t Bp x t

t x x
  

  
  

3
1 2 0 0sin(2 )with A c x c x a f t  

( ) 2 ( )with N t B t

Gaussian initial dist.
c1=c2=1
a0=1
f0=0.01
B=0.31
A=[A−0.1,A+0.1]
B=[B−0.031,B+0.031]

29
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Gen. F-P Equation – Example 1 (cont’d)

upper bound p.d.f.

lower bound p.d.f.

precise p.d.f. by PI

30
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Gen. F-P Equation – Example 2

Van der Pol Oscillator 
   

2

1 2 1 1 2 1 2 2 1 2 1 2 1 22
1 2 2

( , , ) ( , ) ( , , ) ( , ) ( , , ) ( , , )p x x t g x x p x x t g x x p x x t D p x x t
t x x x
   

   
   

1 1 2 2
2 2

2 1 2 0 1 2 0 1

( , )
( , ) 2 (1 )

g x x x
A

g x x x x x  

 
  

    

2
2

0
0
D

B
Dx

 
  
  

ζ=0.05
ω0=1
ε=1
D=0.1
A=A±0.1A
B=B±0.1B

31
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Gen. F-P Equation – Example 2 (cont’d)

upper bound p.d.f.

lower bound p.d.f.
real-valued p.d.f.

Δt=0.125
t=0~1.0 32
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Random Set Sampling

33

P-Box

F

x

1

0

],[ xx

],[ FF

Upper Bound

Lower Bound
Real-valued

cdf’s
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Kinetic Monte Carlo (KMC)
KMC is a type of discrete-

event stochastic simulation 
methods 

KMC is extensively used in 
physics and chemistry

KMC
 defines a discrete set of states

of the system (i.e. all possible 
configurations)

 simulates state transitions 
between states which are 
triggered by events (also called 
processes in chemistry-oriented 
literature) that cause state 
changes. 

e.g. vapor deposition

e.g. 2H2O ↔ 2H2 + O2

(b) possible events

a1

a2 a3

a4
a5

a7

a6

solid surface

(a) discrete states

particles

states: combinations of # of species
H2O n n-2     n-4    …
H2 0        2        4      …
O2 0        1        2      …
events: reactions
a1: → a2: ←

rate

propensity 34
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KMC Sampling Algorithm
For each iteration
Randomly choose an event out of all possible ones
Update the system state as a result of the event
Randomly sample a time duration ∆t of the event 
Update the system clock: t = t + ∆t

35
Uncertainty associated with rate a is modeled by interval [aL, aU]

u2

u1

1

0
B CA

a(A)

a(B)

a(C)
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How KMC Works – event selection

The inter-arrival time Tj of event j is assumed to be 
exponentially distributed as 

Tj ~ Exponential(aj)

The probability that the inter-arrival time of event j is the 
minimum among M independent events 

Therefore, uniformly sample to choose the next event

timeevent 1

timeevent j

timeevent M

Tj

1 1P r[ min( , , )] / ( )j M j MT T T a a a    

a1 a2 aj aM
36
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How KMC Works – clock advancement

The inter-arrival time Tj of event j is

The earliest time T(1)=min(T1,…,TM) of any event occurs is 

Therefore, exponentially sample to advance clock

timeevent 1

timeevent j

timeevent M

Tj

timeoverall next event

   1 exp ( 1, , )j jP T a j M      

         1 1

1 1
1 1 1 exp

M

jj

M

jj
aP T P T P T   

 
           
  
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Uncertainty in KMC Simulation
Uncertain rate or propensity aj’s
Sources
 kinetic rate in biochemical reactions varies over time instead 

of a constant because of the macromolecular crowding effect 
[Berry 2002; Schnell & Turner 2002]

• Existing solution: use fractal & Zipf-Mandelbrot relationships 
 biochemical processes such as diffusion, translocation, 

protein synthesis and folding do not occur instantaneously 
and are often affected by spatial homogeneities [Bratsun et al. 
2005; Barrio et al. 2006; Burrage et al. 2007]

• Existing solution: delay stochastic simulation algorithm  
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Multi-Event Algorithm 
– a simple illustration

 Given events A,B,C with the respective rates a1=[1,3], a2=[1,3] and 
a3=[4,5] as proper or precise intervals

1. Sort rates based on uncertain level (widths of intervals) in the ascending order 
a3=[4,5], a1=[1,3], a2=[1,3]

2. “flip” in an alternating pattern (apply dual) a'3=[4,5], a'1=[3,1], a'2=[1,3]
3. Introduce a null event N (in this example, rate aN=[1,0]) so that 

a0=a'1+a'2+a'3+a'N is a precise number (here a0=[9,9])
4. Build empirical c.d.f. with probability mass pj= a'j/a0 for event j
5. As shown below, sample u~Uniform(0,1) and choose either one or two events 

to fire

1

0

Upper Bound

Lower Bound

A BC N

u2

u1
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 For M possible events with interval rates a1, a2, …, aM, the assorted ones 
are a(1), a(2), …, a(M), where

 Define *-sum, denoted by       , recursively as

 Therefore, 

Theorem. If generalized intervals x and y are not improper and , 
then is not improper and .

Multi-Event Algorithm

     (1) (2) ( )wid wid wid M  a a a
*

   * * 1 * 1( ) ( ) ( ) ( ) (1)
1 1 1

: dual 2, , with 
J J Jj j J j

j j j
J M

 

  
     a a a a a

   wid widx y
 wid dual wid x y ydual x y

   * 1 ( ) ( 1) ( )
1

wid wid wid 2, ,
J j J J

j
J M

 


   a a a
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Multi-Event Algorithm – cont’d
 In other words, the c.d.f. always has the following shape

 With the rate of the null event calculated as , 
the real-valued sum is

 The intent that “the maximum and minimum possible probabilities to fire 
event J are specified by ” is maintained!

* 1 ( )
1

J j
j



 a

* ( )
1

J j
j  a Lower bound of a(J)

Upper bound of a(J)

J+1JJ−1

* ( )
1

M j
j  a

M null

a0

0

u×a0

( ) ( )
0 0/ , /J Ja a a a 

 

 * ( )
1

0, wid
M j

null j 
    a a

   * *( ) ( )
0 1 1

dual 0, wid
M Mj j

j j
a

 
      a a
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Best- and Worst-Case Clock Advancement

The shortest time for a set of events to fire is when all of them 
occur at the same time  lower bound. 

The longest time for a set of events to fire is when they occur 
one by one  upper bound

[ , ] [ , ] [ , ]L U L U L Ut t t t T T 
current

time incrementupdated
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Best- and Worst-Case Clock Advancement

The least time for a set of events to fire is when all of them 
occur at the same time. 

The lower bound of clock advancement is

[ , ] [ , ] [ , ]L U L U L Ut t t t T T 
current

time incrementupdated
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Best- and Worst-Case Clock Advancement
The longest possible time for the set of events to fire is when 

the events occur consecutively one by one. 

Yet a simpler sampling of the upper bound of clock 
advancement is

  (1) (2) ( )n nT X X X   

with exponential inter-arrival times

0 1
(1)

1 1

1 ( )
1 1 1

...
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Reactions of LacZ and LacY proteins in E. coli

 Rates have the ranges of          and            of the nominal
 Results with averages of 20 runs are compared

PLac

RNAP

PLacRNAP

TrLacZ1

RbsLacZ

TrLacZ2TrLacY1
TrLacY2

RbsLacY

Ribosome

RbsRibosomeLacZ

RbsRibosomeLacY

TrRbsLacZ

TrRbsLacY

LacY

LacZ

dgrLacZ

dgrRbsLacZ

dgrLacY

dgrRbsLacY

0.17

10

1

10.0151

0.36

0.17 0.45

0.17

0.45

0.4

0.4

0.036

0.015

6.42E-5

6.42E-5

0.3

0.3

lactose

LacZlactose

14

product

9.52E-5

431

1% 10%
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Reactions of LacZ and LacY proteins in E. coli

(c) dgrLacY (d) LacZ

(a) product (b) Ribosome
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Reliable Kinetic Monte Carlo
 Sensitivity analysis on-the-fly with random set sampling
 Implemented in SPPARKS (e.g. Microbial Fuel Cell)

10%

Event type Species and reactions Rate
constant

R1: water dissociation H2O ↔ OH− + H+ 101

R2: carbonic acid dissociation CO2 + H2O ↔ HCO3
− + H+ 101

R3: acetic acid dissociation AcH ↔ Ac− + H+ 101

R4: reduced thionine first
dissociation

MH3
+ ↔ MH2 + H+ 101

R5: reduced thionine second
dissociation

MH4
2+ ↔ MH3

+ + H+ 101

R6: acetate with oxidized
mediator

Ac− + MH+ + NH4
+ + H2O →

XAc + MH3
+ + HCO3

− + H+
101

R7: oxidation double
protonated mediator

MH4
2+ → MH+ + 3H+ + 2e− 101

R8: oxidation single protonated
mediator

MH3
+ → MH+ + 2H+ + 2e− 101

R9: oxidation neutral mediator MH2 → MH+ + H+ + 2e− 101

R10: proton diffusion through
PEM

H+ → H_+ 10−2

R11: electron transport from
anode to cathode

e− → e_− 10−2

R12: reduction of oxygen with
current generated

2H_+ + 1/2O2_ + 2e_− →
H2O_

105

R13: reduction of oxygen with
current generated

O2_ + 4e_− + 2H2O_ →
4OH_−

103

anode cham
ber

cathode cham
ber

(a) H2O in anode chamber

(b) H+ in cathode chamber

10%

10%
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More Applications of GIP
Multiscale uncertainty quantification based on 

Generalized Hidden Markov model
Generalized interval for global sensitivity 

analysis
Molecular dynamics with on-the-fly sensitivity 

analysis
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Multiscale Uncertainty Quantification

 Generalized Hidden Markov 
Model (GHMM)

 Multiscale information assimilation
 Single-Scale Single-Point observation
 Single-Scale Multi-Point observation
 Multi-Scale Multi-Point observation

 Carbon nano-tube (CNT) composite 
actuator design example

Observable

1i ,x

Hidden

4i ,x
3i ,x

2i ,x
ix

yW

xW

Scale Z

Scale Y

Scale X

k,1zkz
zW

jy
j ,1y

j ,2y

iX

jY

kZ

microscale 

z: bending strain rate of 
actuator
(Z: observable) 

y1: conductivity of 
composite (1%CNT)
(Y1: observable)
y2: conductivity of 
composite (2%CNT)
(Y2: observable) 

x: resistivity of 
single CNT

major contributors of epistemic uncertainty in multiscale analysis:
• lack of data
• inconsistent observations
• measurement errors

mesoscale nanoscale 

[Wang (2011) J. Mech. Des., 133(3), 031004]
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Cross-Scale Model Validation

Bayesian model validation

 Δρ/n: electrical resistivity change  Measureable
 σ: total displacement cross section
 Tm: maximum possible level of transferred energy
 Td: damage threshold MD
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[Tallman, Blumer, Wang, & McDowell, IDETC/CIE2014]
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Generalized Interval for
Global Sensitivity Analysis

High efficiency (No probability distribution, No sampling)
Hartley-like measure in generalized information theory [Klir 2006]

Sensitivity index

 First-order information gain

 Second-order information gain
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Reliable Molecular Dynamics 
– interval interatomic potentials

 Interval-valued positions 
and velocities as a result of 
imprecise interatomic 
potentials

 Uncertainty effect is 
assessed on-the-fly with 
single run of simulation

 Integrated with LAMMPS

Sensitivity Analysis 
results ±2%

α% = 0.1%, 
classical intervals

Kaucher
intervals

[Tran & Wang, 2017, Comp. Mat. Sci.]
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Thanks!
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