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ABSTRACT 

Uncertainty associated with input parameters and models 
in simulation has gained attentions in recent years. The 
sources of uncertainties include lack of data and lack of 
knowledge about physical systems. In this paper, we pre-
sent a new reliable simulation mechanism to help improve 
simulation robustness when significant uncertainties exist. 
The new mechanism incorporates variabilities and uncer-
tainties based on imprecise probabilities, where the statis-
tical distribution parameters in the simulation are intervals 
instead of precise real numbers. The mechanism generates 
random interval variates to model the inputs. Interval 
arithmetic is applied to simulate a set of scenarios simul-
taneously in each simulation run. To ensure that the inter-
val results bound those from the traditional real-valued 
simulation, a generic approach is also proposed to specify 
the number of replications in order to achieve the desired 
robustness. This new reliable simulation mechanism can 
be applied to address input uncertainties to support robust 
decision making.  

1 INTRODUCTION 

Modeling and simulation tools are valuable to assess 
complex systems when analytical approaches are not pos-
sible. We are usually interested in studying the behavior 
of complex systems under total uncertainty. Total uncer-
tainty is composed of two components: 
• Variability: it is due to the inherent randomness in the 

system. In literature, variability is also referred to as 
stochastic uncertainty, aleatory uncertainty, and irre-
ducible uncertainty. This component is irreducible even 
by additional measurements. The typical representation 
of variability is based on probability distributions.  

• Uncertainty: it is due to lack of perfect knowledge or 
enough information about the system. Uncertainty is 
also known as epistemic uncertainty, reducible uncer-
tainty, and model form uncertainty. Since the uncer-
tainty is caused by the lack of information about the 
system, it can be reduced by increasing our knowledge 
to fill the information gap.  

In the traditional simulation mechanism, probability 
distributions with deterministic parameters represent the 
variability of processes. This assumes that parameters of 
input distributions are known with certitude. The repre-
sentation does not capture the total uncertainty because it 
ignores the uncertainty component in simulation. Uncer-
tainties in simulation have different sources. For instance, 
the parameters of probability distributions may be uncer-
tain when the sample size of data for input analysis is 
small or when the measurement errors and the quality as-
sociated with the collected data cannot be ignored. When 
data are not available, experts usually give judgments, 
which are subjective and can be inconsistent. Other con-
tributors of uncertainties include lack of information 
about the dependency among factors and variables, as 
well as unknown time dependency of these factors.  Un-
certainties may also come from the simulation model it-
self due to partial knowledge about the physical system.   

Some argue that since the data itself can never be 
quantified with absolute certainty, thus uncertainty is sub-
jective. However, when uncertainty is significant in mak-
ing decisions, it must be quantified and incorporated into 
simulations.  And it must be interpreted through simula-
tion predictions, regardless the source of it. The two com-
ponents of the total uncertainty need to be represented ex-
plicitly if simulation is used in risk analysis and safety 
assessment, where decisions are made based on simula-
tion results. Neglecting the uncertainty component may 
lead to decisions that are not robust. 

This research is to develop a reliable simulation 
mechanism to represent the total uncertainty of systems 
under study. A simulation mechanism is reliable if its so-
lution is both complete and sound with respect to uncer-
tainties. A complete solution includes all possible occur-
rences. A sound solution does not include impossible 
occurrences. We propose a new simulation mechanism 
based on interval-valued probabilities, which are impre-
cise probabilities with interval parameters. For example, 
an interval exponential distribution is represented as 

]),exp([ λλ  where the rate parameter is an interval. The 
goal of reliable simulation is to incorporate uncertainties 
and support robust decision makings. In this approach, 
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probabilistic distributions represent variabilities, and in-
tervals capture uncertainties. The degree of uncertainty 
measures the level of knowledge or information we ac-
quire about the system. It can be considered as a deter-
mining factor of the parameters’ interval width and is 
proportionally related.  

We use random interval generators to generate ran-
dom intervals instead of the traditional real-valued ran-
dom variates. The outputs of simulations are also inter-
vals. Therefore, calculations of performance measures are 
based on interval arithmetic. Interval statistics methods 
are used to report the mean and the standard deviation to 
provide a concise summary of the results. To ensure that 
the resultant intervals bound all possible real-valued out-
puts, a generic approach to determine the number of repli-
cations is proposed. 

The rest of the paper is organized as follows. In Sec-
tion 2, we review the related work of uncertainty quantifi-
cation in simulation and introduce imprecise probability. 
In Section 3, the random interval variants generating 
method and interval-based simulation are described. Sec-
tion 4 shows our approach to determine the number of 
replications for robustness. 

2 BACKGROUND 

In this section, we review the related work of uncertainty 
quantification in simulation, including the second order 
Monte Carlo, Bayesian methods, Delta method, and pa-
rametric bootstrapping. Some representations of imprecise 
probabilities are also introduced. 
 
2.1 Uncertainty Quantification in Simulation  

Uncertainties have been accounted for in simulation with 
different approaches. The following subsections summa-
rize the different methods that have been developed. 

2.1.1 Second Order Monte Carlo (SOMC) Simulation 

One of the popular simulation techniques that represent 
the total uncertainty in simulation is the second order 
Monte Carlo (SOMC) (Burmaster and Wilson 1996). A 
second-order probabilistic sensitivity analysis is superim-
posed on the traditional simulation so that uncertainties 
are quantified by sampling the parameters of the first-
order probabilistic distributions. SOMC contains two 
simulation loops. The inner loop is called the variability 
loop that reflects the natural variability. The outer loop 
represents the uncertainty of the input parameters of the 
inner loop.  

SOMC is easy to implement. However, the double-
loop simulation increases the number of runs. Thus the 
computational time increases. In each replication of the 

outer loop, the simulation output captures one of the pos-
sible scenarios associated with the uncertain parameters. 
As the number of replications increases the simulation ro-
bustness increases. However, the analyst does not know 
how many replications to run to achieve the desired ro-
bustness representing all possible scenarios. The addi-
tional question that has to be asked is whether the analyst 
has enough information to select the distributions of the 
input parameters in the outer loop. 

Furthermore, the soundness of the response meas-
urement is guaranteed in SOMC given that the distribu-
tions of the input parameters are valid. However, the 
completeness is not verifiable unless the number of repli-
cations for the outer loop increases tremendously. 

2.1.2 Bayesian Methods 

Recently the combination of the Bayesian analysis 
with simulation to capture model and parameter uncer-
tainties has attracted attentions (Chick 2001). Two types 
of uncertainties, model uncertainty and parameter uncer-
tainty, can be incorporated in the Bayesian methods. The 
basic idea is to place a prior distribution on each input pa-
rameter in simulation to describe its initial uncertainty.  
The prior distribution is then updated to a posterior distri-
bution based on the observed data associated with each 
parameter. The posterior distribution has more precise in-
formation about the values of the unknown parameters. 
The two distributions are used to guide the analyst to col-
lect additional data if needed. After a specified number of 
data points for each parameter are collected, the simula-
tion experiment is updated and run. 
 Glynn (1986) first proposed a general Bayesian ap-
proach to continuously update input distributions with 
real-world data. Chick (1997) suggested the applications 
of Bayesian analysis to a broader range of areas such as 
input uncertainties, rankings, response surface modeling, 
and experimental design. The input uncertainty issue was 
further explored by his continuous work and a simulation 
replication algorithm was developed (Chick 1999, Chick 
2000). Andradóttir and Bier (2000) also proposed the 
Bayesian analysis approach for input uncertainties and 
model validation. A Bayesian model average (BMA) 
method was proposed by Chick (2001). BMA is used 
when multiple candidate distributions are proposed for a 
single source of randomness (Ng. and Chick 2006). The 
idea of BMA was further improved by Zouaoui and Wil-
son (2001a, 2001b, 2003, 2004), where the analyst has 
more control on the number of simulation replications.  

Bayesian methods quantify the parameter uncertainty 
in the simulation response. However, the difficulty of 
computing the posterior distribution hindered the wide 
spread of its use. The analyst needs more computational 
procedures such as Markov chain Monte Carlo simulation 
or importance sampling to implement this method. The 
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non-generality of the Bayesian approach also reduces its 
use since it needs to be tailored to each application (Hen-
derson 2003). 

2.1.3 Delta Method 

Cheng and Holland (Cheng 1994, Cheng and Holland 
1997, Cheng and Holland 1998) developed a delta method 
for input uncertainties. The framework was also adopted 
by Zouaoui and Wilson (2001a, 2001b). The method as-
sumes that the model is known while input parameters are 
uncertain. The true values of the parameters are estimated 
by the maximum likelihood estimation (MLE), assuming 
that the parameters follow a normal distribution. 

The total simulation output variance is estimated by 
two terms. The first term is the simulation variance, and 
the second term is the input parameter variance. The early 
work of Cheng and Holland (Cheng 1994, Cheng and 
Holland 1997, Cheng and Holland 1998) did not include 
the bias in the mean square error (MSE) of the parame-
ters. The failure of including the bias is substantial in the 
sense that the simulation output confidence intervals are 
conservative, hence, the variance is overestimated (Hen-
derson 2003). 

Later Cheng and Holland (2004) improved on this 
method by taking into consideration of the bias in the 
MSE. Nonetheless, its major disadvantage is in the as-
sumption that the model is known with certainty. Fur-
thermore the performance of this method is not yet known 
compared to Bayesian and Bootstrap methods (Henderson 
2003). 

2.1.4 Bootstrap Approach 

Bootstrapping was developed by Efron (1993). There are 
two formulations of this technique, parametric and non-
parametric. Batron and Schruben (2001) proposed three 
non-parametric resampling methods to incorporate the er-
ror due to input distributions. These methods use empiri-
cal distribution functions (EDFs) to model the distribution 
functions of independent input random variables.  

For parametric resampling, Cheng and Holland 
(1997) utilized the bootstrap idea to quantify the effect of 
input parameter uncertainty for the parametric formula-
tion. Using the available information, the parameters are 
first estimated by the MLE. The estimates are used to 
draw a new sample of the observations. This process is 
repeated B  times obtaining B  estimates to the input pa-
rameters  (Cheng and Holland 2004).  

The use of percentile confidence interval is recom-
mended in the bootstrapping method in the absence of 
simulation uncertainty. Its use assumes that the statistics 
of interest are computed deterministically by the resam-
pling methods. When simulation uncertainty is present, 
percentile confidence intervals are based on a convolution 

of the input uncertainty and simulation uncertainty. In the 
bootstrapping simulation method, it is impossible to sepa-
rate these forms of uncertainty. Hence, it is still not clear 
how these intervals behave (Henderson 2003). 

2.2 Imprecise Probability 

In this paper, our proposed reliable simulation mechanism 
is based on imprecise probability. Instead of a precise 
value of the probability pEP =)(  associated with  an 
event E , a pair of lower and upper probabilities 

],[)( ppEP =  are used to quantify the uncertainty.  
 There are many representations of imprecise prob-
abilities. For example, the Dempster-Shafer evidence the-
ory (Dempster 1967, Shafer 1990) characterizes uncer-
tainties as discrete probability masses associated with a 
power set of values. Belief-Plausibility pairs are used to 
measure likelihood. The behavioral imprecise probability 
theory (Walley 1991) models behavioral uncertainties 
with the lower prevision (supremum acceptable buying 
price) and the upper prevision (infimum acceptable sell-
ing price). A random set (Malchanov 2005) is a multi-
valued mapping from the probability space to the value 
space. The possibility theory (Dubois and Prade 1988) 
provides an alternative to represent uncertainties with Ne-
cessity-Possibility pairs. Probability bound analysis (Fer-
son et al. 2003) captures uncertain information with p-
boxes which are pairs of lower and upper probability dis-
tributions. F-probability (Weichselberger 2000) incorpo-
rates intervals into probability values which maintains the 
Kolmogorov properties. Fuzzy probability (Möller and 
Beer 2004) considers probability distributions with fuzzy 
parameters. A cloud (Neumaier 2004) is a fuzzy interval 
with an interval-valued membership, which is a combina-
tion of fuzzy sets, intervals, and probability distributions. 
Recently, an imprecise probability with generalized inter-
val form (Wang 2008) was also proposed, where the 
probabilistic calculus structure is simplified based on the 
algebraic closure properties of the Kaucher arithmetic 
(Kaucher 1980) for generalized intervals.  

Imprecise probability captures the total uncertainty 
and represents its two components quantitatively. It pro-
vides a concise form to improve the robustness of simula-
tion without the traditional sensitivity analysis alike op-
erations.  

3 RELIABLE SIMULATION MECHANISM 

The idea of the proposed new simulation mechanism is to 
compute and simulate based on intervals instead of the 
traditional floating-point numbers. In the traditional simu-
lation, if it is possible to collect data for an input random 
variable of interest, these data are used in fitting a theo-
retical distribution with certitude. However, when the 
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limitations mentioned in Section 1 are encountered and 
input uncertainties cannot be ignored, one needs to find 
new approaches to extend the current fitting method based 
on precise parameters.  

In the proposed new simulation mechanism, we in-
corporate input uncertainty factors by using intervals as 
input parameters. Based on imprecise probability, this 
mechanism allows us to simulate from a set of probabili-
ties at the same time and simultaneously consider a range 
of scenarios. Three major components of the new simula-
tion mechanism, random interval variate generation, in-
terval-based uncertainty propagation, and interval statis-
tics, are described in Sections 3.1, 3.2, and 3.3 
respectively. 

3.1 Random Interval Variate Generation 

The parameters of statistical distributions in reliable simu-
lation are intervals instead of real numbers. For example, 
an interval exponential distribution ([2,4]) expo  is used 
instead of (3) expo . With this interval representation of 
parameters, the degree of uncertainties is captured by in-
tervals’ widths. The larger the parameter interval width is, 
the less knowledge we have about this parameter. As a 
result, the cumulative distribution function (cdf) associ-
ated with an input is no longer one crispy curve. Instead, 
we have a pair of cdf’s corresponding to the lower and 
upper bounds. 
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Figure 1: Upper and lower cumulative distribution func-
tions are used in the inverse transform to generate random 
intervals 

 
Figure 1 illustrates the random interval variate gener-

ating method with the inverse transform. At a certain 
value of cumulative probability ( )xF , the generated ran-

dom variate is ],[ xx  where x  and x  are the lower and 
upper bounds of the random interval variate respectively. 
The upper and lower bounds of cdf in Figure 1 can also be 
read in a second way. For a value of a random variable 
x , the cumulative probability is represented by an inter-
val probability )](),([ xFxF . These two representations 
of uncertainties are equivalent. With this approach, ran-

dom intervals capture the uncertainty while the variability 
is represented by the probabilistic properties of the ran-
dom interval population. 

3.2 Uncertainty Propagation 

The propagation of uncertainties during simulation is 
based on interval arithmetic. Specifically, the Kaucher in-
terval arithmetic operations (Kaucher 1980) are used in 
calculation. We implement the random interval variate 
generation as well as the Kaucher interval arithmetic op-
erations in a Java-based object-oriented simulation pack-
age, JSim.  

An example of a simple linear system shown in Fig-
ure 2 is used to illustrate the simulation process. The ran-
dom numbers used in simulation are intervals, which are 
generated according to the corresponding interval prob-
abilistic distributions. The initial state of an entity is de-
termined by a Source, which creates entities based on sta-
tistical distributions of inter-arrival times. The entity starts 
its life cycle in the system with the arrival time repre-
sented by an interval [ , ]a a . Then each entity passes 
through the required Stations in its life cycle and stays for 
a time period of [ , ]i is s  for the i-th station. After an en-
tity’s life cycle ends, it is routed to a Sink. 

 

 
Figure 2: Simple Linear System Based on Intervals 
 
In this interval-based simulation, the calculations of 

the performance measures are based on interval arithme-
tic. As a simple example to illustrate, the total time of an 
entity in the system is the total time spent from Station 1 
to Station k and is computed as 11[ , ]+ + + +… … kks s s s .  

One important part of the interval-based simulation 
mechanism is the simulation clock. The partial order be-
tween two intervals is more complex than real numbers. 
In other words, the less than or equal to relationship be-
tween ],[ aa  and ],[ bb  can be defined in several ways. To 
simplify the implementation, we still use the real-valued 
simulation time to keep track of events. If the time of the 
next event is a random interval ],[ tt , the simulation clock 
is advanced based on a random variable t  that is uni-
formly distributed within ],[ tt , i.e. ( )ttUt ,~ . For in-
stance, if the current simulation time is 0t  and the inter-
arrival time of entities are randomly generated as intervals 

],[ ii aa ’s, these arrival events are assumed to be uni-

formly distributed within ],[ ii aa ’s and random numbers 

are sampled from ],[ ii aa ’s to specify their arrival times. 
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The clock advances based on this real-valued time 
]),([~ iii aaUa . All other events that trigger the clock to 

advance are modeled in a similar vein.  

3.3 Interval Statistics 

The simulation outputs for performance measures are in-
tervals. Therefore statistics based on intervals should be 
used to draw conclusions from the sample data. The most 
frequently used statistical summaries are the mean (aver-
age) and the variance (standard deviation). Section 3.3.1 
shows how to compute the arithmetic mean of interval 
data and Section 3.3.2 discusses algorithms used to com-
pute bounds on the variance for an interval data set. 

3.3.1 Mean 

The mean of a set of intervals  
{[ , ] | , , }∈ ≤ ∈ ∈i i ii i ix x x x x xIR R R  is also an interval. 
It should include the smallest possible and the largest pos-
sible means. which can be calculated from any possible 
real number ],[ iii xxx ∈ . Because the formula to calculate 
mean is a monotone function, the lower bound of the inter-
val mean is just the average of the left endpoints ix ’s, and 
the upper bound is the average of the right endpoints ix ’s 
(Granvilliers et al. 2003). Therefore the arithmetic mean of 
random intervals is given by  

1 1

1 1
, ,μ μ

= =

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑

N N

i i
i i

x x
N N

                         (1) 

where N  is the sample size of random intervals. 

3.3.2 Variance 

One of the important measures of data dispersion is vari-
ance. Computing the range for the variance ],[ VV  for a 
set of intervals is an NP-hard problem (Granvilliers et al. 
2003). Kreinovich et al. proposed algorithms to obtain the 
bounds on the variance (Ferson et al. 2007, Granvilliers et 
al. 2003, Xiang et al. 2007). For computing the lower 
bound of the variance V , there exists computationally 
feasible algorithms. It was found that V  can be computed 
in ))log(( nnO  computational steps for n   interval data 

points ],[ ii xx . On the other hand, computing the upper 

bound of the variance V  requires computational effort 
that grows exponentially with the number of intervals in 
the data set (Granvilliers et al. 2003). However, for sev-
eral special cases such as when intervals are not over-
lapped and there is no interval completely nested in an-
other one, ))log(( nnO  and  linear time algorithms are 

available to compute V  (Ferson et al. 2007, Xiang et al. 
2007).   

4 SIMULATION ROBUSTNESS MEASURE 

In order to have reliable and robust simulations, interval 
outputs produced by the interval input parameters should 
include those possible scenarios. That is, we need to have 
a certain level of confidence that the lower and upper 
cdf’s of interval outputs bound the output cdf obtained 
from any bounded real-valued input parameters.  
 Three factors play the roles to achieve the above 
mentioned enclosure effect. The first is the interval width 
of interval input parameters. As the width of the interval 
parameters increases, the probability that the real-valued 
cdf is enclosed by the lower and upper cdf’s increases. 
However, if the interval width of inputs increases more 
than needed, the widths of the simulation output intervals 
will be over-estimated. The second factor is the value of 
the input real-valued parameters with respect to the 
bounds of the interval parameters. As the value of the 
real-valued parameter gets closer to either bound of the 
interval parameter, the probability of including the real-
valued cdf between the lower and upper cdf’s decreases. 
The third factor is the number of replications used in 
simulation. As the number of replications increases, the 
probability of enclosure will increase. The most reliable 
output is achieved by having an infinite number of repli-
cations. But obviously, this is impractical. 

In this section, we derive an algebraic relationship 
between the number of replications and the accuracy of 
the estimate measured by the probability of enclosure. 
The relationship is used to determine the minimum num-
ber of replications necessary for a prefixed value of accu-
racy. The relationship can be also used inversely. If the 
analyst can afford a certain number of replications, this 
relationship provides the width of the interval parameter 
to be used to achieve a certain level of accuracy. 

The approach used to find the number of replications 
n  is based on the probability of having an assumed real-
valued random variable x bounded by the corresponding 
random interval ],[ xx  at any cumulative probability p in 
cdf. The goal is to achieve the probability of enclosure 

( ) 1[ , ] α∈ ≥ −P x x x                           (2) 
where x  is the random variable if the simulation is run 
from any real-valued parameter bounded by the interval 
parameter. 

There are three possible locations of x  with respect 
to [ , ]x x : <x x , >x x , and ≤ ≤x x x . The last location 
is the desirable one. If the independence of the lower and 
upper bounds is assumed, the probability in (2) can be 
rewritten as 

1( ) ( ) ( ( ))P x x x P x x P x x≤ ≤ = ≤ × − ≤           (3) 
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Order statistics is used to ensure that the probability 

in (3) at any cumulative probability p  is at least α−1 . If 
the real-valued variables are ordered as )()2()1( ,....,, nxxx ,  

the corresponding value of p  associated with the thr  or-
dered observation is given by nr )5.0( − . The sampling 
distribution of the transformed order statistics cdf is given 
by ( )xGr . ( )xGr  is interpreted as the probability that at 
least r observations in the sample do not exceed x and can 
be calculated as (Stuart 1987) 

( ) ( )1( ) ( ) ( )
−

=

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑

n
j n j

r
j r

n
G x F x F xj          (4) 

where )(xF  is the cdf of the random variable x . 
Based on the ordered statistics sampling distribution, 

the probability of having the thr  random variable rx  be-

tween the thr bounds of the interval random variable 
],[ rr xx   is given by  

( ))(1)()( rrrr xGxGxrxxP −×=≤≤             (5) 

where )( rxG  and )( rxG  are the lower and the upper 
sampling distribution. Substituting (4) in (5) we receive 
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j
n

n

rj

jn
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j
n

xrxxP rr

)(1)(1

)(1)()(
 (6) 

The probability in (6) can be used for any probabilis-
tic distribution function by replacing the lower and the 
upper cumulative distribution functions )(xF  and )(xF  
respectively with the corresponding distribution form. 
This relationship is used to determine the number of rep-
lications needed to ensure that the probability in (2) is 
achieved. 
 Here we derive the specific form of (6) for the expo-
nential distribution to demonstrate the use of the derived 
relationship. Assume a stochastic process follows an ex-
ponential distribution with an estimated real-valued mean 
of β . An interval exponential distribution with the mean 

of ],[ ββ  is used to enclose the real-valued cdf, where 

],[ βββ ∈ . The upper bound cdf is associated with β  

and the lower bound cdf  is with β . Substituting the ex-
ponential cumulative distribution functions  

( ) β/1 xexF −−=  

( ) β/1 xexF −
−=  

into (6) we receive  
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1)(
 (7) 

where r  is the order of the observation associated with 
the percentile p . With the inverse transform of exponen-
tial distribution 

1ln( )β= − −rx p  

rx  is calculated at the cumulative probability p . (7) now 
can be approximated as  
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(8) gives the probability that the random real variable 

x  of order r  is bounded between the random interval 
variable ],[ xx  when both are exponentially distributed. 
Setting the probability to a desired value, we can estimate 
the number of replications n  at each percentile. 

We solve the equation in (8) numerically for three ra-
tios of ]/,[ ββββ  as ]1.1,9.0[ , ]2.1,8.0[  , and ]4.1,6.0[   
and construct Tables 1, 2 and 3 respectively. The tables 
can be used based on the ratios between the bounds of the 
interval mean and the real-valued mean regardless the ab-
solute values of the means. The numbers of replications 
were calculated to achieve the confidence levels (CLs) of 
90% and 95%. For Table 1 the number of replications was 
calculated only at 90% CL. The number of replications 
needed at 90% CL is very large in general due to the nar-
row interval of 0 9 1 1[ . , . ] . The numbers of replications for 
95% CL are even greater than the corresponding ones for 
90% CL. It is noticed that as the interval width increases 
the number of replications for simulation decreases at the 
same percentile yielding the same probability of enclo-
sure.  
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Table 1: Calculation of the numbers of replications 
needed for  the interval ratio ]1.1,9.0[]/,[ =ββββ   

r 1.0=α  
1 >1030 max(p)=0.271 
2 >1030  max(p)=0.300 
3 >1030  max(p)=0.317 
4 >1030  max(p)=0.330 
5 >1030  max(p)=0.342 
6 >1030  max(p)=0.352 
7 >1030  max(p)=0.362 
8 >1030  max(p)=0.371 
9 >1030  max(p)=0.379 

10 >1030  max(p)=0.387 
20 >1030  max(p)=0.452 
30 >1030  max(p)=0.501 
40 >1030  max(p)=0.542 
50 >1030  max(p)=0.578 
60 >1030  max(p)=0.609 
70 >1030  max(p)=0.638 
80 >1030  max(p)=0.664 
90 >1030  max(p)=0.687 
100 >1030  max(p)=0.708 
110 >1030  max(p)=0.728 
120 >1030  max(p)=0.746 
130 >1030  max(p)=0.762 
140 >1030  max(p)=0.777 
150 >1030  max(p)=0.792 
160 >1030 max(p)=0.804 
170 >1030  max(p)=0.817 
180 >1030 max(p)=0.828 
190 >1030  max(p)=0.838 
200 >1030 max(p)=0.848 
250 >1030  max(p)=0.888 
300 433 
350 418 
400 448 
450 488 

 
 

In the calculation, we stopped when n is greater than 
1030 because the program reaches its computational limit 
of calculating the large n due to the factorial. In the tables, 

)1030(>  indicates the limit is reached. The maximum 
bounding probability when 1030=n  is also given in the 
tables. The transition from 1030>  to three or two deci-
mals of replication numbers shows how affordable it is to 
reach the completeness of the solution in these orders of 
r . For the small orders of observations, the number of 
replications required for a specified CL is very large. It 
shows the difficulty of enclosing the real-valued cdf at 
small orders of r  for small interval widths compared to 
large interval widths. For the very large orders of observa-
tions, the number of replications also starts to increase. 
This is due to the narrow width of the cdf  bounds at the 
high cumulative probability as the cdf curves become flat-
ter. 

 
 

 

Table 2: Calculation of the numbers of replications 
needed for  the interval ratio ]2.1,8.0[]/,[ =ββββ  

rr 1.0=α  05.0=α  
1 >1030  max(p)=0.306 >1030  max(p)=0.306 
2 >1030  max(p)=0.360 >1030 max(P)=0.360 
3 >1030  max(p)=0.395 >1030  max(p)=0.395 
4 >1030  max(p)=0.424 >1030  max(p)=0.424 
5 >1030  max(p)=0.448 >1030  max(p)=0.448 
6 >1030  max(p)=0.470 >1030  max(p)=0.470 
7 >1030  max(p)=0.491 >1030  max(p)=0.491 
8 >1030  max(p)=0.509 >1030  max(p)=0.509 
9 >1030  max(p)=0.526 >1030  max(p)=0.526 

10 >1030  max(p)=0.542 >1030  max(p)=0.542 
20 >1030  max(p)=0.666 >1030  max(p)=0.666 
30 >1030  max(p)=0.748 >1030  max(p)=0.748 
40 >1030  max(p)=0.806 >1030  max(p)=0.806 
50 >1030  max(p)=0.849 >1030  max(p)=0.849 
60 >1030  max(p)=0.882 >1030  max(p)=0.882 
70 143 >1030  max(p)=0.906 
80 105 >1030  max(p)=0.926 
90 106 >1030  max(p)=0.940 

100 112 273 
110 120 161 
120 129 152 
130 138 154 
140 147 160 
150 156 167 

 
 
Table 3: Calculation of the numbers of replications needed 
for  the interval ratio ]4.1,6.0[]/,[ =ββββ  

r 1.0=α  05.0=α  
1 >1030  max(p)=0.396 >1030  max(p)=0.396 
2 >1030  max(p)=0.506 >1030  max(p)=0.506 
3 >1030  max(p)=0.577 >1030  max(p)=0.577 
4 >1030  max(p)=0.631 >1030  max(p)=0.631 
5 >1030  max(p)=0.675 >1030  max(p)=0.675 
6 >1030  max(p)=0.712 >1030  max(p)=0.712 
7 >1030  max(p)=0.743 >1030  max(p)=0.743 
8 >1030  max(p)=0.769 >1030  max(p)=0.769 
9 >1030  max(p)=0.792 >1030  max(p)=0.792 
10 >1030  max(p)=0.811 >1030  max(p)=0.811 
20 29 >1030  max(p)=0.920 
30 32 46 
40 42 45 
50 51 53 
60 61 62 
70 71 72 
80 81 82 
90 91 91 

100 101 101 
 

 
The calculations in Tables 1, 2 and 3 are based on the 

exponential distributions, which can be extended to other 
distributions by substituting the appropriate cdf’s in (6) 
for interval distributions and the inverse function of cdf 
for the real-valued distribution. For instance, when the 
normal distributions are assumed for the real-valued vari-
ables ),(~ 1σμNx  and the interval random variables 
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)],,([~],[ 2σμμNxx , the normal cdf used for the upper 
and the lower bounds is given by  
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where the error function erf  is given by 

dtexerf
x t∫= −
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Substituting the cdf  of normal distributions in (6) we 
have  
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rx  is calculated from the inverse transform of normal dis-
tribution as 
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where 1−erf  is the inverse of the error function. The 
normal distribution cdf and its inverse are not available in 
closed form. Their computation requires the use of 
numerical procedures, which are widely available in 
software for statistical modeling.    

5 CONCLUDING REMARKS 

In this paper we proposed an interval based reliable 
simulation mechanism, which simulates based on inter-
vals instead of floating-point numbers. A random interval 
variate generating method was used to generate random 
intervals from a pair of cdf’s corresponding to the lower 
and upper bounds of the input parameter. We also pro-
posed the method to determine the number of replications 
for simulation robustness and output reliability. This 
mechanism differentiates input uncertainty from variabil-
ity. It is implemented in a Java-based object-oriented 
simulation package.  

The future work includes the systematic study of the 
real-valued time in simulation clock. We need to investi-
gate how this affects the simulation results when the se-
quence of events will be different among replications. We 
also need to study the fitting of other distribution func-
tions with interval parameters, e.g. Gamma and Log-
normal functions. How to interpret the meanings of the 
collected interval statistics requires further investigations.  
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