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Recently a generalized hidden Markov model (GHMM) was proposed for solving the
information fusion problems under aleatory and epistemic uncertainties in engineering
application. In GHMM, aleatory uncertainty is captured by the probability measure
whereas epistemic uncertainty is modeled by generalized interval. In this paper, the
problem of how to train the GHMM with a small amount of observation data is studied. An
optimization method as a generalization of the Baum–Welch algorithm is proposed. With
a generalized Baum–Welch′s auxiliary function and the Jensen inequality based on
generalized interval, the GHMM parameters are estimated and updated by the lower
and upper bounds of observation sequences. A set of training and re-estimation formulas
are developed. With a multiple observation expectation maximization (EM) algorithm, the
training method guarantees the local maxima of the lower and the upper bounds. Two
case studies of recognizing the tool wear and cutting states in manufacturing is described
to demonstrate the proposed method. The results show that the optimized GHMM has a
good recognition performance.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The hidden Markov model (HMM) with the capability of
statistical learning and classification has beenwidely applied
in speech recognition [1,2], character recognition [3] and
fault diagnosis [4]. Yet the HMM does not differentiate two
types of uncertainties. Aleatory uncertainty is inherent
randomness and irreducible variability in nature, whereas
epistemic uncertainty is reducible because it comes from the
lack of knowledge. The sources of epistemic uncertainty
cannot be ignored in engineering applications. All models
have errors because approximations are always involved
in model construction, and all experimental measurements
All rights reserved.
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contain systematic errors. In order to improve the robust-
ness of analysis, the effect of epistemic uncertainty should
be considered separately from the one from aleatory uncer-
tainty. Given the very different sources of the two uncer-
tainty components, we use two different forms to distinguish
the two. Aleatory uncertainty is represented as probability,
whereas interval is used to capture epistemic uncertainty.
Intervals naturally capture the measurement errors, as well
as the lower and upper bounds of model errors from the
incomplete knowledge, without the assumptions of prob-
ability distributions.

Recently a generalized interval probability which com-
bines generalized intervals with probability measures was
proposed by Wang [5]. The generalized interval is used to
represent the epistemic uncertainty component. Compared
to the classical interval, generalized interval based on the
Kaucher arithmetic [6] has better algebraic properties so
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that the calculus can be simplified. In addition, a generalized
hiddenMarkov model (GHMM), as a generalization of HMM,
was proposed for statistical learning and classification with
both uncertainty components [7]. In GHMM, the precise
values of a probability for HMM are replaced by the general-
ized interval probabilities.

Similar to HMM, the optimization of GHMM parameters
is also the central problem in model calibration [8]. In this
paper, an optimization method, which is based on a gen-
eralized Jensen inequality and a generalized Baum–Welch
algorithm (GBWA) in the context of generalized interval
probability theory, is proposed for training GHMM. The
parameters of GHMM are estimated and updated by using
GBWA. Different from the multiple observation training in
HMM [9], the GHMM parameters are estimated and
updated by the given lower and upper bounds of observa-
tion sequences. The lower and upper bounds capture the
epistemic uncertainty associated with the observation, such
as systematic error and bias. Based on a generalized Baum–

Welch′s auxiliary function, a set of training equations are
developed by optimizing the objective function. A set of
GHMM re-estimated formulas has been deduced by the
unique maximum of the objective function. The proposed
GBWA optimization method takes advantage of the good
algebraic property in the generalized interval probability,
which provides an efficient approach to train the GHMM. In
order to demonstrate the performance of the proposed
optimization method for training GHMM, two cases of tool
state and cutting state recognition in manufacturing pro-
cesses is provided. The tool states and cutting states are
recognized by the GBWA training algorithm of GHMM.

In the remainder of this paper, Section 2 provides the
overview of relevant work in generalized interval, general-
ized interval probability, and GHMM. Section 3 introduces
a generalized Jensen inequality. Section 4 introduces
optimization methods in training process of the GHMM.
Section 5 demonstrates the application for the tool state
and cutting state recognition based on the GBWA. Finally,
Section 6 is the conclusion.

2. Background

2.1. Generalized interval

The generalized interval is an extension of the classical
interval with better algebraic and semantic properties
based on the Kaucher arithmetic. A generalized inter-
valx : ¼ ½x; x�, (x; x ∈ℝ) is defined by a pair of real numbers
as x and x [10,11]. The generalized interval is not con-
strained by that the lower bound should be less than or
equal to the upper bound. For instance, both [0.1, 0.3] and
[0.3, 0.1] are valid in generalized interval. Interval [0.1, 0.3]
is called proper, whereas interval [0.3, 0.1] is called
improper. The relationship between proper and improper
intervals is established with the operator dual, defined
asdualx : ¼ ½x; x�. Operator pro returns the classical proper
interval. For instance, pro½0:3;0:1� ¼ ½0:1;0:3�, and pro½0:1;
0:3� ¼ ½0:1;0:3�.

Let x : ¼ ½x; x�, where x≥0; x≥0 ðx; x∈ℝþÞ, andy : ¼
½y; y�, where y≥0; y≥0 ðy; y∈ℝþÞ, be two non-negative
interval variables. Let fðtÞ ¼ ½f ðt Þ; f ðtÞ� be a generalized
interval function, where t¼ ½t ; t� is an interval variable.
The arithmetic operations of generalized intervals based
on the Kaucher arithmetic are defined as follows:

x þ y¼ ½x þ y; x þ y�; ð1Þ

x�dualy¼ ½x�y; x�y�; ð2Þ

x � y¼ ½x � y; x � y�; ð3Þ

x=dualy¼ ½x=y; x=y�; y≠0; y≠0 ð4Þ

log x¼ ½log x; log x�; x≠0; x≠0 ð5Þ
Note that the boldface symbols represent generalized

intervals in this paper. The greater than or equal to partial
order relationship between two generalized intervals is
defined as

½x; x�≥½y; y�⇔x≥y∧x≥y: ð6Þ

2.2. Generalized interval probability

The generalized interval probability [5] is defined as
follows. Given a sample space Ω and a s—algebra Ȧ of
random events over Ω, the generalized interval probability
p∈Kℝ is defined as p: A-[0,1]� [0,1] which obeys the
axioms of Kolmogorov: (1) pðΩÞ ¼ ½1;1�;(2) ½0;0�≤pðEÞ≤
½1;1� ð∀E∈AÞ; and (3) for any countable mutually disjoint
events Ei∩Ej ¼Φði≠jÞ; pð∪n

i ¼ 1EiÞ ¼∑n
i ¼ 1pðEiÞ.

The most important property of the generalized inter-
val probability is the logic coherence constraint (LCC): That
is, for a mutually disjoint event partition ∪n

i ¼ 1Ei ¼Ω, ∑n
i ¼ 1

pðEiÞ ¼ 1. The calculus structure of generalized interval
probability is very similar to the one in the classical
probability. The computation is greatly simplified com-
pared to other interval probability representations such as
the Dempster–Shafer evidence theory [12].

2.3. Generalized hidden Markov model

The GHMM is a generalization of HMM in the context of
generalized interval probability theory. In GHMM, all
probability values of HMM are replaced by generalized
interval probabilities. A GHMM is defined as follows. The
values of hidden states are in the form of S¼ fS1; S2;…; SNg,
where N is the total number of possible hidden states. The
hidden state variable at time t is qt , where qt : ¼ ½q

t
; qt �.

The M possible distinct observation symbols are V ¼ fv1;
v2;…; vMg. The generalized observation sequence is in the
form of O¼ ðo1;o2;…;oT Þ where ot is the observation
value at time t. Note that the observations have the values
of generalized intervals as random sets. Equivalently the
lower and upper bounds can be viewed separately. O ¼
o1; o2;…; oT

� �
denotes the lower bound of the observation

sequence, and O ¼ ðo1; o2;…; oT Þ denotes the upper bound,
where the value of ot and ot (t¼1,…,T) can be any of
fv1; v2;…; vMg.

Let qt∈pro½qt
; qt � and ot∈pro½ot ; ot � be real-valued ran-

dom variables that are included in the respective interval-
valued random sets ½q

t
; qt � and½ot ; ot �⋅A¼ ðaijÞN�N .is the
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state transition interval probability matrix, aij ¼ pðqtþ1 ¼
Sjjqt ¼ SiÞ, ð1≤i; j≤NÞ is the interval probability of the
transition from state Si at time t to state Sj at time t+1.
B¼ ðbjðkÞÞN�M is the observation interval probability
matrix. bjðkÞ ¼ pðot ¼ vkjqt ¼ SjÞ, 1≤j≤N;1≤k≤Mð Þ is the
interval probability of observations in state Sj at time t.
π¼ πið Þ1�N is the initial state interval probability distribu-
tion, whereπi ¼ p q1 ¼ Si

� �
, 1 ≤i≤Nð Þ. The compact GHMM

is denoted asλ¼ A;B; πf g.
Analogously to the classical HMM, the GHMM also have

three basic problems to solve in real applications. The
training problem of the GHMM is the crucial one. Its goal is
to optimize the model parameters so that we can obtain
the best model for the actual application scenario. A
generalized Baum–Welch algorithm (GBWA) in the context
of the generalized interval probability is proposed to
provide an efficient approach to train GHMM. The GBWA
is based on a generalized Jensen inequality, which is
introduced in the following section.
3. Generalized Jensen inequality

The commonly used criteria for the optimization of
HMM parameters include the maximum likelihood [13],
the maximum mutual information [14], and the minimum
discriminate information [15]. The maximum likelihood
estimation by Baum–Welch algorithm [16] based on Jen-
sen inequality is often adopted for optimizing the HMM
parameters. Jensen inequality, named after Johan Jensen in
1906, relates the value of a convex function of an integral
to the integral of the convex function [17]. As an important
mathematical tool it has been widely used, such as for
calculation of probability density function, statistical phy-
sics, information theory, and optimization. The use of
Jensen inequality is based on the precise value. Here,
interval values are used instead.
3.1. Generalized convex function

A generalized interval function f tð Þ is a generalized
convex function if

fðr1t1 þ r2t2Þ≤r1fðt1Þ þ r2fðt2Þ; ð7Þ
where t : ¼ ½t ; t �, r1 : ¼ ½r1; r1�,r2 : ¼ ½r2; r2�, t≥0; t≥0,
r1≥0; r1≥0, r2≥0; r2≥0, and r1 þ r2 ¼ ½1;1�. Under the same
conditions, it is a generalized concave function if

fðr1t1 þ r2t2Þ≥r1fðt1Þ þ r2fðt2Þ; ð8Þ
where fðtÞ is a generalized concave function. For instance,
logðtÞ defined in Eq. (5) is a generalized concave function.
3.2. Generalized Jensen inequality

For a generalized convex function fðtÞ and ri : ¼ ½r i; r i�,
r i40; r i40ði¼ 1;2;…;nÞ,∑n

i ¼ 1ri ¼ ½1;1�, the generalized
Jensen inequality can be stated as

f ∑
n

i ¼ 1
riti

 !
≤ ∑

n

i ¼ 1
rifðtiÞ ð9Þ
The mathematical induction is adopted to prove Eq. (9).
When n¼2, Eq. (9) is defined in Eq. (7). Suppose n¼k and

f ∑
k

i ¼ 1
riti

 !
≤ ∑

k

i ¼ 1
rif tið Þ

We need to prove that Eq. (9) is also correct when n¼k+1.

f ∑
kþ1

i ¼ 1
riti

 !
¼ f ∑

k�1

i ¼ 1
riti þ ðrk þ rkþ1Þ

 

� rk
dualðrk þ rkþ1Þ

tk þ
rkþ1

dualðrk þ rkþ1Þ
tkþ1

� ��

≤ ∑
k�1

i ¼ 1
rifðtiÞ þ ðrk þ rkþ1Þf

rk
dualðrk þ rkþ1Þ

tk

�

þ rkþ1

dualðrk þ rkþ1Þ
tkþ1

�
≤ ∑

k�1

i ¼ 1
rifðtiÞ þ rkf tkð Þ

þrkþ1f tkþ1
� �

¼ ∑
kþ1

i ¼ 1
rifðtiÞ:

Thus, we can obtain Eq. (9) for all iði¼ 1;2;…;nÞ.
It is straightforward that the opposite is true for a

generalized concave function

f ∑
n

i ¼ 1
riti

 !
≥ ∑

n

i ¼ 1
rifðtiÞ ð10Þ

The mathematical induction is also adopted to prove
Eq. (10). When n¼2, Eq. (10) is defined in Eq. (8). Suppose
n¼k and f ∑k

i ¼ 1riti
� �

≥∑k
i ¼ 1rif tið Þ. When n¼k+1

f ∑
kþ1

i ¼ 1
riti

 !
¼ f
�

∑
k�1

i ¼ 1
riti þ ðrk þ rkþ1Þ

rk
dualðrk þ rkþ1Þ

tk

�

þ rkþ1

dualðrk þ rkþ1Þ
tkþ1

��

≥ ∑
k�1

i ¼ 1
rifðtiÞ þ ðrk þ rkþ1Þf

rk
dualðrk þ rkþ1Þ

tk

�

þ rkþ1

dualðrk þ rkþ1Þ
tkþ1

�
≥ ∑

k�1

i ¼ 1
rifðtiÞ þ rkfðtkÞ

þrkþ1fðtkþ1Þ ¼ ∑
kþ1

i ¼ 1
rifðtiÞ:

Thus, we can obtain that Eq. (10) is correct for all
iði¼ 1;2;…;nÞ.

4. Optimization methods in training process
of the GHMM

During the training of GHMM, given the generalized
observation sequenceO¼ ðo1;o2;…;oT Þ, the model para-
meters A;B; π are adjusted to maximize the lower and the
upper bounds of pðOjλÞ. Different from the training of
HMM, we can choose ~λ ¼ f ~A; ~B; ~πg so that the lower and
the upper bounds of pðOj ~λÞ are both locally maximized by
using an iterative procedure of the generalized Baum–

Welch algorithm. The optimization method is based on the
following two inferences that are similar to the ones in the
HMM re-estimation [18].

Let ui :¼ ½ui;ui�, ui40;ui40; i¼ 1;…; S be positive
interval numbers, and let vi :¼ ½vi; vi�, vi≥0; vi≥0; i¼
1;…; S be nonnegative interval numbers such that
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∑ivi≥½0;0�. Then according to the generalized concavity of
the log function and the generalized Jensen inequality,

log
∑ivi

dual∑iui
¼ log ∑

i

ui

dual∑kuk

� �
vi

dualui

� �" #

≥∑
i

ui

dual∑kuk
log

vi
dualui

� �

¼ 1
dual∑kuk

∑
i
ðui logvi�dualui loguiÞ

" #
ð11Þ

Here every summation is from 1 to S.
If ci ¼ ½ci; ci�40 (i¼ 1;…;N), the maximum value of the

generalized interval function

f t1;…; tNð Þ ¼ ∑
N

i ¼ 1
ci log ti ð12Þ

subject to constraint ∑N
i ¼ 1ti ¼ 1 is reached when

ti ¼ ci=dual ∑
N

i ¼ 1
ci ði¼ 1;…;NÞ ð13Þ

This is obtained by setting the first derivatives of the
modified lower and upper objective functions as

∂
∂t i

f t1;…; tN
� �þ μð∑it i�1Þ ¼ 0; ð14Þ

and

∂
∂t i

f t1;…; tN
� �þ μð∑it i�1Þ ¼ 0; ð15Þ

where the Lagrange multipliers are μ ¼∑N
i ci and μ¼∑N

i ci.

4.1. Auxiliary interval function

Let S be the number of the state sequences with
length T. The generalized observations O¼ ðo1; o2;…; oT Þ are
divided into the lower bound observation sequence O ¼
ðo1; o2;…; oT Þ and the upper bound observation sequence
O ¼ ðo1; o2;…; oT Þ. In order to illustrate the training of the
GHMM, the lower bound observation sequence O ¼ o1;

�
o2;…; oT Þ is used as an example. Let ul

s be the joint interval
probability ul

s : ¼ p O;Q sjλ
� �

given model λ where Q s ¼
ðqs;1;qs;2;…;qs;T Þ, and let vls be the joint interval probability
vls : ¼ pðO;Q sj ~λÞ given model ~λ. Then we have

∑
s
ul
s ¼ pðOjλÞ; ∑

s
vls ¼ pðOj ~λÞ ð16Þ

Let the lower bound of auxiliary interval function Hlðλ; ~λÞ
be

Hlðλ; ~λÞ ¼∑
s
pðO;Q sjλÞlog pðO;Q sj ~λÞ ð17Þ

By substituting Eq. (16) into Eq. (11), we have

log
pðOj ~λÞ

dualpðOjλÞ≥
1

dualpðOjλÞ Hlðλ; ~λÞ�dualHlðλ; λÞ
h i

ð18Þ

In Eq. (18), we can obtain pðOj ~λÞ≥pðOjλÞ if Hlðλ; ~λÞ≥
Hlðλ; λÞ. That is, if we can find a model ~λ that makes the
right-hand side of Eq. (18) positive, the modelλ can be
improved. Clearly, the largest guaranteed improvement by
this method is to maximize Hlðλ; ~λÞ, hence the maximum
lower and upper bounds of pðOj ~λÞ are obtained. The
maximum value of pðOj ~λÞ for the upper bound observation
sequence can be obtained similarly.

4.2. Training of the lower and the upper bounds

Different from Baum–Welch algorithm in HMM [18,19],
the training procedure uses

log pðO;Q sj ~λÞ ¼ logðpðQ sj ~λÞ⋅pðOjQ s; ~λÞÞ ¼ log ~π l
q1

þ ∑
T�1

t ¼ 1
log ~a l

qtqtþ1
þ ∑

T

t ¼ 1
log ~b

l
qt
ðotÞ ð19Þ

where ~a l
ij,
~b
l
jðkÞ and ~π l

i are respectively the state transition
probability, the observation probability, and the initial
state probability corresponding to the lower bound obser-
vation sequence in the form of the generalized interval.
Substituting Eq. (19) into Eq. (17), and re-grouping terms
in the summation according to state transitions and
observations, we have

Hl λ; ~λ
� �¼ ∑

N

i ¼ 1
∑
N

j ¼ 1
clij log ~a

l
ij þ ∑

N

j ¼ 1
∑
M

k ¼ 1
dl
jk log

~b
l
jðkÞ

þ ∑
N

i ¼ 1
el1 log ~π

l
i ð20Þ

where

clij ¼∑
s
pðO;Q sjλÞ ∑

T�1

t ¼ 1
ξltði; jÞ ¼ pðOjλÞ ∑

T�1

t ¼ 1
ξltði; jÞ ð21Þ

dl
jk ¼∑

s
pðO;Q sjλÞ ∑

T

t ¼ 1;ot ¼ vk

γltðjÞ ¼ pðOjλÞ ∑
T

t ¼ 1;ot ¼ vk

γltðjÞ

ð22Þ

el1 ¼∑
s
pðO;Q sjλÞγl1ðiÞ ¼ pðOjλÞγl1ðiÞ ð23Þ

where ξltði;jÞ ¼ pðqt ¼ Si; qtþ1 ¼ SjjO; λÞ is the lower interval
probability of being in state Si at time t and in state Sj at
time t+1, and γltðiÞ ¼ pðqt ¼ SijO; λÞ is the lower interval
probability of being in state Si at time t when the
observation sequence O and the model λ are given. Thus,
clij;d

l
jk and el1 are the expected values of ∑T�1

t ¼ 1ξ
l
tði; jÞ,

∑T
t ¼ 1;ot ¼ vk

γltðjÞ, and γl1ðiÞ, respectively, based on model λ.
According to Eq. (13), Hlðλ; ~λÞ is maximized if and only if

~a l
ij ¼

clij
dual∑jclij

¼ ∑
T�1

t ¼ 1
ξltði;jÞ dual ∑

T�1

t ¼ 1
γltðiÞ

�
ð24Þ

~b
l
jðkÞ ¼ dl

jk=dual∑
k
dl
jk ¼ ∑

T

t ¼ 1;ot ¼ vk

γltðjÞ dual ∑
T

t ¼ 1
γltðjÞ

�
ð25Þ

~π l
i ¼ el1=dual∑

i
el1 ¼ γl1ðiÞ ð26Þ

Eqs. (24)–(26) are regarded as the lower bound re-
estimation formulas. The maximum value of Hl λ; ~λ

� �
can

be reached by the lower bound re-estimation formulas.
Hence the maximum value of pðOj ~λÞ is also obtained.

In a similar vein, we can obtain the upper bound re-
estimation formulas as

~au
ij ¼ cuij=dual∑

j
cuij ¼ ∑

T�1

t ¼ 1
ξut ði;jÞ dual ∑

T�1

t ¼ 1
γut ðiÞ

�
ð27Þ
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~b
u
j ðkÞ ¼ du

jk=dual∑
k
du
jk ¼ ∑

T

t ¼ 1;ot ¼ vk

γut ðjÞ dual ∑
T

t ¼ 1
γut ðjÞ

�
ð28Þ

~πu
i ¼ eu1=dual∑

i
eu1 ¼ γu1ðiÞ ð29Þ

where ~au
ij ,

~b
u
j ðkÞ and ~πu

i are respectively the upper state
transition probability, the upper observation probability,
and the upper initial state probability used in the form of
the generalized interval. ξut ði;jÞ is the upper interval prob-
ability of being in state Si at time t and in state Sj at time t
+1, and γut ðiÞis the upper interval probability of being in
state Si at time t when the observation sequence O and the
model λ are given. The maximum values of Huðλ; ~λÞ and
pðOj ~λÞ then can be obtained.
4.3. Training of the GHMM

According to the concept of multiple observation
sequences [9], O ¼ ðo1; o2;…; oT Þ and O ¼ ðo1; o2;…; oT Þ
are regarded as two independent observation sequences.
The GHMM re-estimation formulas then are defined
according to the EM algorithm of statistics as

~a ij ¼
∑T�1

t ¼ 1ξ
l
tði;jÞ þ∑T�1

t ¼ 1ξ
u
t ði;jÞ

dual ∑T�1
t ¼ 1γltðiÞþ∑T�1

t ¼ 1γut ðiÞ
� � ð30Þ

~bjðkÞ ¼
∑T

t ¼ 1;ot ¼ vk
γltðjÞ þ∑T

t ¼ 1;ot ¼ vk
γut ðjÞ

dual ∑T
t ¼ 1γltðjÞ þ∑T

t ¼ 1γut ðjÞ
� � ð31Þ

~πi ¼ 1
2ðγl1ðiÞ þ γu1ðiÞÞ ð32Þ

where ~a ij, ~bjðkÞ and ~πi are the state transition interval
probability, the observation interval probability, and the
initial state interval probability, respectively [1,8]. Differ-
ent from HMM [1], the re-estimation is based on
~a ij ¼
∑T�1

t ¼ 1ξtði;jÞ
dual∑T�1

t ¼ 1γt
¼ ∑T�1

t ¼ 1αl
t ið Þaijbjðotþ1Þβltþ1ðjÞ=dualpðOjλÞ þ∑T�1

t ¼ 1αl
t ið Þaijbjðotþ1Þβltþ1ðjÞ=dualpðOjλÞ

dual ∑T�1
t ¼ 1αl

t ið Þβlt ið Þ=dualpðOjλÞ þ∑T�1
t ¼ 1αl

t ið Þβlt ið Þ=dualpðOjλÞ
� � ð1≤i; j ≤NÞ; ð33Þ
~bjðot ¼ νkÞ ¼
∑
T

t ¼ 1;ot ¼ νk

γtðjÞ

dual ∑
T

t ¼ 1
γtðjÞ

¼
∑
T

t ¼ 1;ot ¼ νk

αl
tðjÞβltðjÞ=dualpðOjλÞ þ αu

t ðjÞβut ðjÞ=dualpðOjλÞ
� �

dual ∑
T

t ¼ 1
αl
tðjÞβltðjÞ=dualpðOjλÞ þ αu

t ðjÞβut ðjÞ=dualpðOjλÞ
� �

ð1≤j≤N;1≤k≤MÞ; ð34Þ

~π i ¼
1
2

αl
1ðiÞβl1ðiÞ

dualpðOjλÞ þ
αu
1ðiÞβu1ðiÞ

dualpðOjλÞ

 !
ð1≤i≤NÞ; ð35Þ

where αl
t ið Þ is the lower forward interval variable, αu

t ðiÞ is
the upper forward interval variable, βlt ið Þ is the lower
backward interval variable, and βut ið Þ are the upper back-
ward interval variable, respectively defined as

αl
tðiÞ : ¼ pðo1; o2;…;ot ; qt ¼ SijλÞ ð36Þ

αu
t ðiÞ : ¼ pðo1; o2;…; ot ; qt ¼ SijλÞ ð37Þ

βltðiÞ : ¼ pðotþ1; otþ2;…; oT jqt ¼ Si; λÞ ð38Þ

βut ðiÞ : ¼ pðotþ1; otþ2;…; oT jqt ¼ Si; λÞ ð39Þ
The forward and the backward interval variables can be

derived similar to the ones in HMM.
The trained model parameters ~λ ¼ f ~A; ~B; ~πg can be

obtained by applying the re-estimation in Eqs. (33)–(35).
With O ¼ ðo1; o2;…; oT Þ and O ¼ ðo1; o2;…; oT Þ regarded as
two independent observation sequences, we can define

pðOjλÞ : ¼ pðOjλÞpðOjλÞ ð40Þ

pðOj ~λÞ : ¼ pðOj ~λÞpðOj ~λÞ ð41Þ
where p Ojλð Þ is the interval probability of generalized obser-
vation under the condition of initial modelλ; p Oj ~λ� �

is the
interval probability of generalized observation under the
condition of initial model ~λ. According to the lower and the
upper bound re-estimation formulas, p Oj ~λ� �

≥p Ojλð Þ can also
be obtained, since the values of interval probabilities are
between 0 and 1. In an iterative procedure, the value of
p Oj ~λ� �

is gradually increased. The final result pðOj ~λÞ is a so-
called maximum likelihood estimation of GHMM.

The local maxima of GHMM parameters can be
obtained by the iterative training algorithm as follows:
(1)
 Choose an initial model λ¼ A;B; πf g.

(2)
 Choose the generalized observation sequenceO¼

o1;o2;…;oTð Þ, i.e. the lower boundO ¼ o1; o2;…; oT

� �
and the upper bound O ¼ o1; o2;…; oTð Þ.
(3)
 Obtain the trained model ~λ ¼ f ~A; ~B; ~πg based on Eqs.
(33)–(35).
(4)
 If the local or global optimum of p Oj ~λ� �
is reached,

then stop; otherwise, go back to the training model
and use ~λ to replaceλ.
5. Case studies

5.1. Recognition of tool wear

5.1.1. Experimental setup and data processing
In order to demonstrate the performance of the pro-

posed optimization method for training GHMM, a training
model of tool wear is developed. The experimental bench
is illustrated in Fig. 1. The cutting tests are conducted on
Mikron UCP800 Duro, which is a five-axis machining
center. The thrust force is measured by a Kistler 9253823
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dynamometer. The resulted signals are converted into
output voltages. Then these voltage signals are amplified
by Kistler multichannel charge amplifier 5070. Force
signals are simultaneously recorded by NI PXIe-1802 data
recorder with 5 kHz sampling frequency. The computer
screen is connected by a junction box NI SCB-68. The
collected signals are displayed by Cathode ray tube CRT.
The workpiece is 300M steel material by heat treatment.
A carbide cutter SANDVIK R216.34-20050, IAK38H 1620,
∅20.0 mm is selected as a cutting tool. The cutting tool is
zoomed in by Olympus STM6 measure microscope and
recorded by a computer. The workpiece is continuously
processed under different processing conditions until the
obvious cutting tool wear is observed.

The tool states are classified into three categories: the
initial processing status of the tool is named sharp state
(pattern 1), the wear processing status of the tool is named
wear state (pattern 3), and the status between sharp state
and wear state is named slight wear state (pattern 2) [20].
The pictures of sharp cutting tool I and wear cutting tool II,
with a 570� magnification under the same calibration
condition, are shown in Fig. 2.

The real-time cutting processing signals under a sharp
cutting tool condition and a wear cutting tool condition
are shown as Fig. 3. Signal I represents the sharp cutting
tool condition. Its processing condition is defined by a
1000 rpm spindle speed, a 400 mm/min feed rate, a 2 mm
cutting depth, and a 2 mm cutting width. Signal II repre-
sents the wear cutting tool condition. Its processing con-
Fig. 1. Experimental bench for cutting processing.

Fig. 2. The pictures of cutting edge: sharp
dition is defined by a 2000 rpm spindle speed, a 70 mm/
min feed rate, a 5 mm cutting depth, and a 1 mm cutting
width. We can see that the amplitude increases signifi-
cantly under the sharp cutting condition in Fig. 3.

The fast Fourier transform (FFT) processing results of
the time domain signals in the sharp cutting tool and wear
cutting tool conditions are shown in Fig. 4. It shows that
the frequency spectrum is significantly different under
different cutting tool conditions.

Wavelet analysis, which can record the detailed infor-
mation of the different frequency band, is a superior time–
frequency analysis tool [21]. In this work, the four-level
wavelet packet decomposition is used. The root mean
square (RMS) of the wavelet coefficients at different scales
is shown in Fig. 5. It can be found that RMS results are
significantly different for the three states.

To quantify measurement errors as the source of epis-
temic uncertainty, each value of experimental data is con-
verted into a form of generalized interval by considering an
error of 75%. Then the four-level wavelet packet decom-
position is applied. The RMS of the wavelet coefficients at
different scales are taken as the feature observations vector.
The training procedure for finding the optimal model is
carried out. The GHMM convergence curve of log-likelihood
is shown in Fig. 6. It can be seen that the GHMM training
process has a good convergence property. The optimized
GHMM can be obtained.
5.1.2. Recognition of tool wear
The state recognition of tool wear plays a critical role in

the automation processing of machine tools. However, the
cutting edge (I), wear cutting edge (II).

Fig. 3. Dynamometer signals.



Fig. 4. The frequency spectrum: sharp cutting state (I) and wear cutting
state (II).

Fig. 5. The RMS of coefficient in three states.

Fig. 6. The training convergence curve.

Fig. 7. Flow chart of the tool states recognition.
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state recognition is not an easy task for some reasons. For
instance, the machining processes are non-linear and time
varying, which makes it difficult to model. The acquired
sensor signals are affected by some uncertainties such as
geometry variances, workpiece material properties, digiti-
zer′s noise, and sensor nonlinearity. Recently some classi-
fication methods are used for cutting state recognition. For
example, the feature extraction of wavelet transform is
used to monitor tool wear [22]; a HMM classifier is used as
monitoring the cutting tool condition [23]; an artificial
neural network is applied as an on-line and indirect tool
for wear monitoring [24]; and a support vector machine is
used for state recognition of tool wear [20]. Among these
methods, epistemic uncertainty is often ignored.
In this paper, the GHMM enhances the reasoning process.
As shown in Fig. 7, a system for tool state recognition based
on GHMM is designed. It is composed of the wavelet-based
feature extraction and the RMS of the wavelet coefficients for
GHMM input. Each GHMM pattern is trained by the RMS of
lower and upper bounds from post treatment, and test sample
is recognized by the GHMM based classification method.

In this system, 10 signals of each pattern are taken out
from 60 signals for training. Each pattern of the optimized
GHMM with respect to the corresponding state is estab-
lished, and the remaining signals of each pattern are used
to test the validity of the models. For each optimized
GHMM, the current observation sequence of the test
sample is substituted. The log-likelihood values related
to three optimized GHMMs are calculated. The log-
likelihoods of test samples with respect to the optimized
models are compared. The output states with the max-
imum log-likelihoods are selected. Here, the maxi–min
criterion (pessimistic criterion) [25] of interval comparison
is adopted to improve the reliability of estimation. In this
criterion, the minimal result for each interval will be
chosen first. Then the maximal value of these minimal
results is selected. The GHMM recognition results of tool
wear are shown in Table 1. The results are compared with
the ones by the same recognition procedure based on the
traditional HMM [26].

5.1.3. Result analysis
As shown in Table 1, most samples have been recog-

nized correctly, where accuracy rate of GHMM (95%) is
higher than accuracy rate of HMM (91.7%). In the GHMM-
based classification method, the three incorrect recogni-
tion results are consistent with the tendency of tool wear,
and it will not damage the cutting tools. However, in the
HMM-based classification method, there are two incorrect
recognition results (nos.43 and 53) where a wear state is
mistakenly recognized as a sharp state. As a result,
replacement of a worn tool will be postponed and cause



Table 1
Pattern classification results of the tool wear recognition.

No. Cutting depth
(mm)

Cutting width
(mm)

Spindle speed
(rpm)

Feed rate
(mm/min)

Test
pattern

Output of
GHMM

Output of
HMM

Recognition
result of GHMM

Recognition
result of HMM

1 0.5 2 1000 240 1 1 1 Correct Correct
2 0.5 2 1000 280 1 1 1 Correct Correct
3 0.5 2 1000 320 1 1 1 Correct Correct
4 0.5 2 1000 360 1 1 1 Correct Correct
5 0.5 2 1000 400 1 1 1 Correct Correct
6 0.5 3 1000 200 1 1 1 Correct Correct
7 0.5 3 1000 240 1 1 1 Correct Correct
8 0.5 3 1000 280 1 1 1 Correct Correct
9 0.5 3 1000 320 1 1 1 Correct Correct

10 0.5 3 1000 360 1 1 1 Correct Correct
11 0.5 3 1000 400 1 1 1 Correct Correct
12 0.5 4 1000 200 1 1 1 Correct Correct
13 0.5 4 1000 240 1 1 1 Correct Correct
14 0.5 4 1000 280 1 1 2 Correct Incorrect
15 0.5 4 1000 320 1 1 1 Correct Correct
16 0.5 4 1000 360 1 1 1 Correct Correct
17 0.5 4 1000 400 1 2 1 Incorrect Correct
18 0.5 5 1000 200 1 1 1 Correct Correct
19 0.5 5 1000 240 1 1 1 Correct Correct
20 0.5 5 1000 280 1 1 1 Correct Correct
21 0.5 5 1000 320 1 1 1 Correct Correct
22 1 2 1000 240 1 1 1 Correct Correct
23 1 2 1000 320 1 2 2 Incorrect Incorrect
24 1.5 2 1000 200 1 1 1 Correct Correct
25 3 0.6 1000 320 2 2 2 Correct Correct
26 3 0.6 1000 360 2 2 2 Correct Correct
27 3 0.6 1000 400 2 2 2 Correct Correct
28 3 0.8 1000 200 2 2 2 Correct Correct
29 3 0.8 1000 240 2 2 2 Correct Correct
30 3 0.8 1000 280 2 2 2 Correct Correct
31 3 0.8 1000 320 2 2 2 Correct Correct
32 6 0.4 1000 320 2 2 2 Correct Correct
33 6 0.4 1000 360 2 2 2 Correct Correct
34 6 0.4 1000 400 2 2 2 Correct Correct
35 6 0.6 1000 200 2 2 2 Correct Correct
36 6 0.6 1000 240 2 2 2 Correct Correct
37 6 0.6 1000 280 2 2 2 Correct Correct
38 9 0.4 1000 280 2 2 2 Correct Correct
39 9 0.4 1000 320 2 2 2 Correct Correct
40 9 0.4 1000 360 2 2 2 Correct Correct
41 9 0.6 1000 200 2 2 2 Correct Correct
42 12 0.4 1000 320 2 3 3 Incorrect Incorrect
43 5 1 2000 70 3 3 1 Correct Incorrect
44 5 1 2000 70 3 3 3 Correct Correct
45 5 1 2000 70 3 3 3 Correct Correct
46 5 1 2000 70 3 3 3 Correct Correct
47 5 1 2000 70 3 3 3 Correct Correct
48 5 1 2000 70 3 3 3 Correct Correct
49 5 1 2000 70 3 3 3 Correct Correct
50 5 1 2000 70 3 3 3 Correct Correct
51 5 1 2000 70 3 3 3 Correct Correct
52 5 1 2000 70 3 3 3 Correct Correct
53 5 1 2000 70 3 3 1 Correct incorrect
54 5 1 2000 70 3 3 3 Correct Correct
55 5 1 2000 70 3 3 3 Correct Correct
56 5 1 2000 70 3 3 3 Correct Correct
57 5 1 2000 70 3 3 3 Correct Correct
58 5 1 2000 70 3 3 3 Correct Correct
59 5 1 2000 70 3 3 3 Correct Correct
60 5 1 2000 70 3 3 3 Correct Correct
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tool damage. The comparison shows that the GHMM-
based classification method is superior to the HMM-
based classification method.
Furthermore, in the proposed GHMM-based classifica-
tion method, the log-likelihood values are in the form of
generalized interval probability. The width of an interval
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probability quantifies the extent of epistemic uncertainty
component. The results can improve the reliability of
recognition by using the extra information provided by
the interval values. For example, three log-likelihood values
of no. 17 in Table 1, with respect to the three optimized
GHMMs, are shown in Table 2. We can find that interval
[�60.0859, �28.9406] contains interval [�41.3431,
�35.6949]. The recognition result is sharp state, which is
correct by the maxi-max criterion (optimistic criterion) of
interval comparison [25]. This provides the extra information
that the state could be possibly misinterpreted, and the fact
may be also misinterpreted. Therefore, we are informed that
it is better to conduct more experiments and collect more
feature data so that more accurate decision can be made. In
contrast, the HMM-based classification method by which a
precise probability value does not provide such information.
For example, three log-likelihood values of no. 14 in Table 1,
with respect to the three optimized HMMs, are shown in
Table 3. The recognition result is a slight wear state, which is
incorrect by a simple comparison of the log-likelihood
values.
Table 3
The recognition result of no. 14 based on the HMM.

Test sample Log-likelihood values
Optimized models

Sharp optimized
model

Slight wear
optimized model

Wear
optimized
model

No. 17 (Sharp) �12.6576 �11.6025 �60.0658

Fig. 8. Experimental setup for milling processing.
5.2. Recognition of cutting states

A second example of GHMM application to the recogni-
tion of cutting states is described here. The cutting
experimental setup is shown as Fig. 8. The experiments
are conducted in a numerical control milling machine tool
DM4600. The tool is a high-speed steel SNMG120412-MA
UE6020 with 20 mm diameter, tool bar 80 mm length, and
three teeth. The material of workpiece is aluminum alloy
6160, and the shape of workpiece is rectangular with a cut
top right corner. The spindle speed is kept constant at
3400 rpm, and the feed rate is 1020 mm/min. 0.2 mm
radial cutting depth and 12–25 mm axial cutting depth
are adopted. The vibration signals of spindle are obtained
by gradually increasing axial depth of cutting. Two accel-
erometers PCB-352C33 are settled on the spindle housing
along the X and Y directions of the machine tool, respec-
tively. A data recorder unit NI PXI-1042 with a 5120 Hz
sampling rate is used to acquire acceleration signals.

Standard deviation (STD) [27], power spectrum density
(PSD) [28], and mean square frequency (MSF) [29], as the
features of pattern recognition, are used to detect cutting
states. To quantify measurement errors, these feature values
are considered to have a general error 75%. The cutting
states are divided into three stages: stable stage I, transitional
stage II, and chatter stage III. The interval forms of STD, PSD
andMSF are considered as multiple observation sequences in
the proposed GHMM. Four signal groups of each pattern are
taken out of the 33 signal groups to train GHMM. All signals
Table 2
The recognition result of no. 17 based on the GHMM.

Test sample Log-likelihood values
Optimized models

Sharp optimized model Sli

No. 17 (Sharp) [�60.0859, �28.9406] [�
of each pattern are used for test. The test results are shown
in Table 4. It is shown that the success rate of the cutting
state recognition is 100%. With the number of feature
numbers increased, the success rate may be increased by
the analysis of experimental results.

6. Conclusion

The need to consider aleatory and epistemic uncertain-
ties has been widely recognized. In this paper an optimiza-
tion method GBWA based on a generalized interval
probability theory to distinguish the two uncertainty com-
ponents is proposed. The observation sequence is viewed
separately as the lower and the upper bound observation
sequences. A generalized Baum–Welch′s auxiliary function
and a generalized Jensen inequality are used. Similar to
HMM training, a set of training equations are derived. The
lower and upper bound re-estimation formulas have been
developed based on a multiple observation concept.
According to the multiple observations EM algorithm, this
method guarantees the local maxima for the lower and
upper bound observation sequences. Two cases of tool state
ght wear optimized model Wear optimized model

41.3431, �35.6949] [�73.9063, �171.8820]



Table 4
Pattern classification results of cutting states.

No. Radial depth
of cutting (mm)

Axial depth
of cutting(mm)

Spindle speed
(rpm)

Feed rate
(mm/min)

Test pattern Output of GHMM Recognition result
of GHMM

1 0.2 12 3400 1020 I I Correct
2 0.2 12 3400 1020 II II Correct
3 0.2 12 3400 1020 III III Correct
4 0.2 13 3400 1020 I I Correct
5 0.2 13 3400 1020 II II Correct
6 0.2 13 3400 1020 III III Correct
7 0.2 14 3400 1020 I I Correct
8 0.2 14 3400 1020 II II Correct
9 0.2 14 3400 1020 III III Correct

10 0.2 16 3400 1020 I I Correct
11 0.2 16 3400 1020 II II Correct
12 0.2 16 3400 1020 III III Correct
13 0.2 15 3400 1020 I I Correct
14 0.2 15 3400 1020 II II Correct
15 0.2 15 3400 1020 III III Correct
16 0.2 17 3400 1020 I I Correct
17 0.2 17 3400 1020 II II Correct
18 0.2 17 3400 1020 III III Correct
19 0.2 18 3400 1020 I I Correct
20 0.2 18 3400 1020 II II Correct
21 0.2 18 3400 1020 III III Correct
22 0.2 21 3400 1020 I I Correct
23 0.2 21 3400 1020 II II Correct
24 0.2 21 3400 1020 III III Correct
25 0.2 22 3400 1020 I I Correct
26 0.2 22 3400 1020 II II Correct
27 0.2 22 3400 1020 III III Correct
28 0.2 24 3400 1020 I I Correct
29 0.2 24 3400 1020 II II Correct
30 0.2 24 3400 1020 III III Correct
31 0.2 25 3400 1020 I I Correct
32 0.2 25 3400 1020 II II Correct
33 0.2 25 3400 1020 III III Correct
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and cutting state recognition in manufacturing processes
are used to demonstrate the new method. The results show
that the GHMM based classification has a good recognition
performance. With the two kinds of uncertainty quantified
by the generalized interval probability, the GHMM-based
recognition results provide more information, thus more
robust decisions can be made. Yet there are some limita-
tions for the proposed approach. The computational cost of
the GHMM is higher than that of the classical HMM, since
the data of GHMM observation sequences are twice as
much as that of HMM. How to reduce the computational
cost of GHMM will be included in the future study.
Acknowledgments

The work here is supported by the National Natural
Science Foundation of China (nos. 51175208 and 51075161),
the State Key Basic Research Program of China (no.
2011CB706803). The authors also thank the contribution of
ICINCO 2012.

References

[1] L.R. Rabiner, A tutorial on hidden Markov models and selected
applications in speech recognition, Proceedings of the IEEE 77 (2)
(1989) 257–286.
[2] N.U. Nair, T.V. Sreenivas, Multi-pattern Viterbi algorithm for joint
decoding of multiple speech patterns, Signal Processing 90 (12)
(2010) 3278–3283.

[3] G.B. Song, P. Martynovich, A study of hmm-based bandwidth
extension of speech signals, Signal Processing 89 (10) (2009)
2036–2044.

[4] M. Dong, D. He, P. Banerjee, J. Keller, Equipment health diagnosis
and prognosis using hidden semi-Markov models, International
Journal of Advanced Manufacturing Technolology 30 (7-8) (2006)
738–749.

[5] Y. Wang, Imprecise probabilities based on generalized intervals for
system reliability assessment, International Journal of Reliability &
Safety 4 (2010) 319–342.

[6] E. Kaucher, Interval analysis in the extended interval space IR,
Computing Supplement 2 (1980) 33–49.

[7] Y. Wang, Multiscale uncertainty quantification based on a general-
ized hidden Markov model, ASME Journal of Mechanical Design 3
(2011) 1–10.

[8] Y.M. Hu, F.Y. Xie, B. Wu, Y. Cheng, G.F. Jia, Y. Wang, M.Y. Li, An
optimization method for training generalized hidden Markov model
based on generalized Jensen inequality, in: Proceedings of the 9th
International Conference on Informatics in Control, Automation and
Robotics, 2012, pp. 268–274, doi: 10.5220/0004118202680274.

[9] X.L. Li, M. Parizeau, R. Plamondon, Training hidden Markov models
with multiple observations—a combinatorial method, IEEE Transactions
on Pattern Analysis and Machine Intelligence 22 (4) (2000) 371–377.

[10] E.D. Popova, All about generalized interval distributive relations.
I. Complete Proof of the Relations Sofia, 2000.

[11] E. Gardenes, M.A. Sainz, L. Jorba, R. Calm, R. Estela, H. Mielgo,
A. Trepat, Modal intervals, Reliable Computing 2 (2001) 77–111.

[12] G. Shafer, A Mathematical Theory of Evidence, Princeton University
Press, NJ, USA, 1976.

[13] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from
incomplete data via the EM algorithm, Journal of the Royial
Statistical Society 39 (1977) 1–38.

http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref1
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref1
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref1
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref2
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref2
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref2
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref3
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref3
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref3
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref4
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref4
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref4
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref4
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref5
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref5
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref5
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref6
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref6
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref7
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref7
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref7
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref8
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref8
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref8
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref9
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref9
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref10
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref10
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref11
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref11
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref11


F. Xie et al. / Signal Processing 94 (2014) 319–329 329
[14] L. Bahl, P. Brown, P. Souza, R. Mercer, Maximum mutual information
estimation of hidden Markov model parameters for speech recogni-
tion, in: Acoustics, Speech, and Signal Processing, IEEE International
Conference on ICASSP, 1986, pp. 49–52.

[15] S. Kullback, M. Khairat, A note on minimum discrimination informa-
tion, The Annals of Mathematical Statistics 37 (1965) 279–280.

[16] L.E. Baum, T. Petrie, G. Souls, N. Weiss, A maximization technique
occurring in the statistical analysis of probabilistic functions of
Markov chains, Annals of Mathematical Statististics 41 (1) (1970)
164–171.

[17] J. Jensen, Sur les functions convexes et les inégalités entre les valeurs
moyennes, Acta Mathematica 30 (1) (1906) 175–193.

[18] S. Levinson, R. Rabiner, M. Sondhi, An introduction to the application
of the theory of probabilistic functions of a Markov process to
automatic speech recognition, Bell Systems Technical Journal 62
(1983) 1035–1074.

[19] B.H. Juang, L.R. Rabiner, Hidden Markov models for speech recogni-
tion, Technometrics 33 (3) (1991) 251–272.

[20] S. Guan, L.S. Wang, Study on identification method of tool wear
based on singular value decomposition and least squares support
vector machine, Advances in Intelligent and Soft Computing 112
(2012) 835–843.

[21] N. Fang, S.P. Pai, S Mosquea, Effect of tool edge wear on the cutting
forces and vibrations in high-speed finish machining of Inconel 718:
an experimental study and wavelet transform analysis, International
Journal of Advanced Manufacturing Technolology 52 (2011) 65–77.
[22] Y. Choi, R. Narayanaswami, A. Chandra, Tool wear monitoring in
ramp cuts in end milling using the wavelet transform, International
Journal of Advanced Manufacturing Technolology 23 (2004) 419–428.

[23] L.M. Owsley, L.E. Atlas, G.D. Bernard, Self-organizing feature maps
and hidden Markov models for machine-tool monitoring, IEEE
Transactions on Signals Processing 45 (1997) 2787–2798.

[24] B. Sick, On-line and indirect tool wear monitoring in turning with
artificial neural network: a review of more than a decade of
research, Mechanical System Signal Processing 16 (2002) 487–546.

[25] L Cabulea, M. Aldea, Making a decision when dealing with uncertain
conditions, Acta Universitatis Apulensis Mathematics-Informatics 7
(2004) 85–92.

[26] A.A. Kassim, Z. Mian, M.A. Mannan, Tool condition classification
using Hidden Markov Model based on fractal analysis of machined
surface textures, Machine Vision and Applications 17 (2006) 327–336.

[27] Z. Yao, D. Mei, Z. Chen, On-line chatter detection and identification
based on wavelet and support vector machine, Journal of Materials
Processing Technology 210 (5) (2010) 713–719.

[28] S. Tangjitsitcharoen, In-process monitoring and detection of chip
formation and chatter for CNC turning, Journal of Materials Proces-
sing Technology 209 (10) (2009) 4682–4688.

[29] X. Li, A brief review: acoustic emission method for tool wear
monitoring during turning, International Journal of Machine Tools
and Manufacture 42 (2002) 157–165.

http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref12
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref12
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref13
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref13
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref13
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref13
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref14
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref14
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref15
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref15
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref15
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref15
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref16
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref16
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref17
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref17
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref17
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref17
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref18
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref18
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref18
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref18
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref19
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref19
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref19
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref20
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref20
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref20
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref21
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref21
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref21
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref22
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref22
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref22
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref23
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref23
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref23
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref24
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref24
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref24
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref25
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref25
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref25
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref26
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref26
http://refhub.elsevier.com/S0165-1684(13)00227-2/sbref26

	A generalized interval probability-based optimization method for training generalized hidden Markov model
	Introduction
	Background
	Generalized interval
	Generalized interval probability
	Generalized hidden Markov model

	Generalized Jensen inequality
	Generalized convex function
	Generalized Jensen inequality

	Optimization methods in training process of the GHMM
	Auxiliary interval function
	Training of the lower and the upper bounds
	Training of the GHMM

	Case studies
	Recognition of tool wear
	Experimental setup and data processing
	Recognition of tool wear
	Result analysis

	Recognition of cutting states

	Conclusion
	Acknowledgments
	References




