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Abstract Kinetic Monte Carlo (KMC) method has been

widely used in simulating rare events such as chemical

reactions or phase transitions. Yet lack of complete

knowledge of transitions and the associated rates is one

major challenge for accurate KMC predictions. In this

paper, a reliable KMC (R-KMC) mechanism is proposed in

which sampling is based on random sets instead of random

numbers to improve the robustness of KMC results. In

R-KMC, rates or propensities are interval estimates instead

of precise numbers. A multi-event algorithm based on

generalized interval probability is developed. The weak

convergence of the multi-event algorithm towards the tra-

ditional KMC is demonstrated with a generalized Chap-

man–Kolmogorov equation.

Keywords Kinetic Monte Carlo � Uncertainty � Interval

probability � Differential Chapman–Kolmogorov equation

1 Introduction

Compared to molecular dynamics (MD), atomic scale

Kinetic Monte Carlo (KMC) (Chatterjee and Vlachos

2007) is more efficient in simulating the infrequent tran-

sition processes with longer times than thermal vibration.

To simulate the rare events of transitions or reactions,

several improvements of MD have been proposed to bridge

the gap of time scale and accelerate the simulation speed

of rare events, such as by running multiple trajectories

(Voter 1998), introducing bias potentials (Voter 1997), or

increasing temperatures (Sörensen and Voter 2000).

However, the inherent inefficiency of MD is that compu-

tational time is spent on trajectory prediction, which is not

important for rare event simulations.

KMC does not simulate a system based on its continu-

ous evolvement along time as in MD. Instead, it defines a

discrete set of states of the system (i.e. all possible con-

figurations). It simulates state transitions between states

which are triggered by events (also called processes in

chemistry-oriented literature) that cause state changes. For

instance, in the vapor deposition process of crystal growth

shown in Fig. 1a, each ‘‘snapshot’’ of the system at a time

where atoms are located in the space is a state of the KMC

model. In Fig. 1b, the major events that change the sys-

tem’s state include adsorption (particles in vapor are

attracted to solid surface) with rate a1 (rates indicate the

frequencies of events), desorption (particles previously

absorbed on the solid surface escape and are vaporized)

with rate a7, surface diffusion (particles on the surface

move to a different location) with rates a2 to a5, and ver-

tical diffusion (particles on the surface move into the solid)

with rate a6. In chemical reactions, the numbers of different

species naturally form the states of KMC models. Reac-

tions themselves are the events.

During the KMC simulation, events are randomly

selected to occur sequentially based on their respective

probabilities of occurrence, which are exponential distri-

butions in general. When an event occurs (or it is usually

said that the event is fired), the system’s state is updated

according to the nature of the event. At the same time, the

system’s clock that keeps track of the current time of the

system needs to be advanced by a certain period, which is
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also randomly generated based on probabilistic principles.

The clock provides information of how long the process

lasts. Therefore, KMC essentially simulates state transi-

tions or reactions. Clock advancement is not based on a

fixed time period but directly determined by when the next

event occurs. Trajectories of atoms are not simulated. Time

does not evolve continuously. This discrete-event approach

allows us to simulate much larger atomistic systems for

much longer times than those MD can provide.

Although the importance of KMC in rare-event simu-

lation has been widely recognized, there are three major

challenges in KMC simulation. The first challenge of

accuracy for KMC is that ideally all states and events have

to be known a priori and listed in the event catalog so that

the dynamics of physical processes can be simulated

accurately. That is, we should know all possible events and

the associated probabilities of occurrence under all con-

figurations when building KMC models. However, this is

not realistic because the lack of full knowledge of physical

systems does not allow us to know all possible states and

transition pathways.

The second challenge of robustness is that during sim-

ulation the occurring probabilities of events are assumed to

be accurate and fixed. In the real world, this is not true.

Uncertainties are always involved in estimating the tran-

sition rates thus the probabilities of events. When the rates

are estimated by physical experiments, measurement errors

are unavoidable. When rates are estimated from first-

principles calculation, numerical setup and approximations

for computability bring unintentional uncertainties such as

the exchange–correlation treatment in density functional

theory (DFT) and sampling limitation in quantum Monte

Carlo simulation, both of which are quantum mechanical

simulation methods to study electronic structures. Model

uncertainty is also inevitable when mathematical models

are used to describe physical phenomena. In addition, the

transition rates are dynamically changing over time. For

instance, in diffusions, when the material structure is under

dynamic mechanical load, the stress will change the dif-

fusion rate. Furthermore, bulk diffusion or inter-layer mass

transport is very sensitive to temperature change compared

to surface diffusion or intra-layer mass transport. Tem-

perature variation will affect the accuracy of KMC pre-

diction. In biochemical processes, the crowding effect,

where macromolecules block reaction paths, changes

kinetic constants of reactions.

The third challenge of efficiency for KMC is that the

time scales of the events vary significantly. Thus it is

possible that the frequencies or probabilities of those

events are in very different scales. For instance, in simu-

lating of diamond growth in chemical vapor deposition,

surface diffusion could be several orders faster than

adsorption and desorption. Computational time is not

optimized to focus more on slower but critical events.

In this paper, we propose a reliable KMC (R-KMC)

simulation framework to address the second challenge of

KMC, which is to improve the robustness of KMC pre-

diction under input uncertainty. The need to quantify

variability and incertitude separately has been well-rec-

ognized. Variability or aleatory uncertainty is the inherent

randomness in the system because of fluctuation and

perturbation, whereas incertitude or epistemic uncertainty

is due to lack of perfect knowledge about the system. The

sources of epistemic uncertainty in modeling and simu-

lation include lack of data or missing data, conflicting

information, conflicting beliefs, lack of introspection,

measurement and numerical errors, and lack of informa-

tion about dependency.

Here, the new R-KMC mechanism is to perform

sampling based on imprecise probability. Interval-valued

rates and probabilities are used as a result of the lack of

perfect knowledge about transitions. The interval width

captures the epistemic portion of uncertainty. Statistical

sampling is based on random sets instead of random

numbers. Thus the two types of uncertainties are repre-

sented and used explicitly to increase the confidence of

simulation results. In the remainder of the paper, in Sect.

2 we give a brief overview of self-learning and adaptive

KMC which are to address the first challenge of KMC,

some approaches to address the uncertain rate challenge,

simulation acceleration to address the third challenge,

and lastly imprecise probability. In Sect. 3, we introduce

the proposed R-KMC mechanism. The multi-event

algorithm as the core part of R-KMC is described. In

Sect. 4, the R-KMC is demonstrated by examples. And

finally in Sect. 5, the convergence of R-KMC towards

traditional KMC is studied.

(a) discrete states 

(b) possible events 

a1 

a2 a3 

a4 
a5 

a7 

a6 

solid surface 

particles 

Fig. 1 Example states and events in vapor deposition process

simulation
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2 Background

The major concept of the proposed R-KMC mechanism is

that since the lack of complete knowledge on the under-

lying physics of reaction or transition processes poses

challenges on the accuracy and robustness of KMC pre-

diction, reliable KMC simulation should be conducted

such that more information about imprecise parameters

can be provided without significantly increasing compu-

tational load and the robustness can be improved. The

three major KMC challenges are interrelated to each

other. Some approaches have been proposed to address

those challenges.

2.1 The stochastic simulation algorithm (SSA)

In KMC, how often event j occurs or the probability that even

j is fired is determined by its associated rate aj (also called

propensity in chemistry-oriented literature) with respect to

other events. Among all M possible transitions leaving the

current state, the probability pj of the transition from the

current state to state j is the probability of firing event j,

calculated as pj ¼ aj=
PM

i¼1 ai. The time between transition

events Xj is exponentially distributed with the parameter or

rate aj. Thus the probability that the inter-arrival time of

event j is the minimum among M independent events is

Pr½Xj ¼ minðX1; . . .;XMÞ� ¼ aj=ða1 þ � � � þ aMÞ. Thus, for

each KMC step, an event is randomly selected based on the

proportions a1=
PM

i¼1 ai

� �
,…, aM=

PM
i¼1 ai

� �
. In addition,

once an event is fired, the clock of the system is advanced by

a second random value t that is exponentially distributed with

the rate
PM

i¼1 ai, which is the earliest occurring time for any

event out of M independent ones that are exponentially dis-

tributed. This is the most used so-called direct method or

SSA (Gillespie 1976), among others (Chatterjee and Vlachos

2007), which was first proposed by Gillespie. The event

selection process in the original algorithm has the linear time

complexity. More efficient selection algorithm with data

structures of two-level binning (Maksym 1988), binary tree

(Blue et al. 1995), and distinct rate list (Schulze 2002) have

been developed.

2.2 Self-learning and adaptive KMC

To address the first challenge of KMC, self-learning or

adaptive KMC methods have been proposed to accumulate

the knowledge of events and build on-the-fly while running

KMC, including searching saddle points on the potential

energy surface (PES) as part of the simulation, such as by

the dimmer method (Henkelman and Jónsson 2001; Mei

et al. 2009) and the drag method (Trushin et al. 2005).

However, in these adaptive KMC methods where saddle

points are searched on-the-fly, it is assumed that the PES

estimated by DFT is accurate. This assumption makes the

KMC simulation not robust, since DFT itself has various

approximations. Particularly, approximations of exchange

and correlation energies in DFT are the major sources of

errors.

2.3 Uncertain rate

The uncertainty associated with probabilities in KMC

simulation has been recognized. It was shown that the

kinetic rate in biochemical reactions varies over time

instead of being a constant, because of the macromolecular

crowding effect (Berry 2002; Schnell and Turner 2004). It

causes mutual impenetrability of solute molecules and

phase separation, thus increased folding and refolding rates

or reduced diffusion rates. To model the so-called spatial

challenge and time dependency of kinetic rates, fractal and

Zipf–Mandelbrot relationships were used. A combination

of spatial lattice diffusion and chemical reaction simula-

tions was proposed to model the actual crowding effect. In

addition, delays associated with transcription and transla-

tion are essential in modeling cellular pathways and regu-

latory networks, where biochemical processes such as

diffusion, translocation, protein synthesis and folding do

not occur instantaneously and often affected by spatial

homogeneities. Delay SSA (Bratsun 2005; Burrage et al.

2007) were proposed to capture delays in temporal models,

where the quantities of reactants and products are updated

separately with a delayed period of time.

2.4 Simulation acceleration

To improve the time efficiency of KMC, a s-leap method

(Gillespie 2001; Rathinam et al. 2003) was proposed to

sample the number of reactions instead of reaction time

based on the intrinsic relation between the exponential and

Poisson distributions. To alleviate the problem that nega-

tive number of species may appear because a large number

of reactions are fired at once, improved methods such as

leap based on binomial distributions (Chatterjee et al.

2005; Tian and Burrage 2004) and multinomial distribu-

tions (Auger et al. 2006; Cai and Xu 2007) have been

proposed. The coarse-grained KMC (Katsoulakis et al.

2003) enables simulation of larger length and time scales

by grouping lattice sites into coarse cells as the basic

spatial unit in simulation. A partitioning approach (Haseltine

and Rawlings 2002) categorizes events based on speeds

so that fast events are simulated by leaping or even con-

tinuous methods to achieve acceleration. Nested SSA

(E et al. 2007) simulates fast reactions in the inner loop and

slow reactions in the outer loop. Accelerated superbasin

KMC (Chatterjee and Voter 2010) dynamically introduces

Reliable kinetic Monte Carlo simulation based on random set sampling
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biases for frequent events so that rare transitions can hap-

pen more frequently.

2.5 Imprecise probability

The imprecise probability is a generalization of the tra-

ditional precise probability where probability values are

no longer precise numbers. Instead of a precise value of

the probability PðEÞ ¼ p associated with an event E, a

pair of lower and upper probabilities PðEÞ ¼ ½p; �p� are

used to include a set of probabilities and quantify the

uncertainty. Imprecise probability differentiates epistemic

and aleatory uncertainties both qualitatively and quantita-

tively, which is the alternative to the traditional sensitivity

analysis in probabilistic reasoning to model indeterminacy

and imprecision. The range of the interval ½p; �p� captures the

epistemic uncertainty component. When p ¼ �p, the degener-

ated interval probability becomes a precise one.

Several theories and representations of imprecise

probability have been proposed. The Dempster–Shafer

theory (Dempster 1967; Shafer 1976) characterizes evi-

dence with discrete probability masses associated with a

power set of values. The theory of coherent lower previ-

sions (Walley 1991) models uncertainties with the lower

and upper previsions with behavioral interpretations. The

possibility theory (Dubois and Prade 1988) represents

uncertainties with Necessity–Possibility pairs. Probability

bound analysis (Ferson et al. 2003) captures uncertain

information with pairs of lower and upper distribution

functions or p-boxes. Interval probability (Kuznetsov

1995) characterizes statistical properties as intervals.

F-probability (Weichselberger 2000) represents an interval

probability as a set of probabilities which maintain the

Kolmogorov properties. A random set (Molchanov 2005)

is a multi-valued mapping from the probability space to

the value space. Fuzzy probability (Möller and Beer 2004)

considers probability distributions with fuzzy parameters.

A cloud (Neumaier 2004) is a combination of fuzzy sets,

intervals, and probability distributions. Recently a gen-

eralized interval probability (Wang 2010) based on the

generalized interval (Dimitrova et al. 1992; Gardeñes

et al. 2001) was proposed.

A generalized interval x :¼ ½x; �x� is defined as a pair

of numbers. In contrast, the classical set-based interval is

defined as x; �x½ �½ � :¼ x 2 Rjx� x� �xf g. ½x; �x� is called

proper if x� �x, and called improper if x� �x. The intro-

duction of improper intervals greatly simplifies the cal-

culus structure of interval probability and makes it very

similar to the precise probability in the traditional

probability theory. The calculation of generalized inter-

vals is based on the Kaucher interval arithmetic

(Kaucher 1980). Particularly, for two intervals ½x; �x� and

½y; �y�, addition and subtraction are defined as ½x; �x� þ
½y; �y� ¼ ½xþ y; �xþ �y� and ½x; �x� � ½y; �y� ¼ ½x� �y; �x� y�
respectively. The width of interval x ¼ ½x; �x� is defined as

widx :¼ j�x� xj ð1Þ

The relationship between proper and improper intervals

is established by a dual operator defined as

dual½x; �x� :¼ ½�x; x� ð2Þ

In generalized interval probability, the probability

measure has the value of generalized interval. The most

important property of the generalized interval probabi-

lity is the logic coherence constraint (LCC). It is stated

that for a mutually disjoint event partition
Sn

i¼1 Ei ¼ X,

the sum of interval probabilities is always one, i.e.
Pn

i¼1 pðEiÞ ¼ 1. The LCC ensures that the imprecise

probabilities are logically coherent with precise proba-

bilities. For instance, for a system’s working status with

pðdownÞ ¼ ½0:2; 0:3�, pðidleÞ ¼ ½0:3; 0:5�, and pðbusyÞ ¼
1� pðdownÞ � pðidleÞ ¼ ½0:5; 0:2�. We can interpret it as

8p1 2 0:2; 0:3½ �½ �ð Þ 8p2 2 0:3; 0:5½ �½ �ð Þ 9p3 2 0:2; 0:5½ �½ �ð Þ
p1 þ p2 þ p3 ¼ 1ð Þ

according to the interpretability theorems (Gardeñes et al.

2001) of generalized interval.

Based on the logic interpretation, we differentiate non-

focal events from focal events. An event E is focal if the

associated semantics for pðEÞ is universal (8). Otherwise,

it is non-focal if the semantics is existential (9). In the

above example, ‘down’ and ‘idle’ are focal events,

whereas ‘busy’ is non-focal. The selection of focal and

non-focal events is problem-specific and dependent on the

analyst’s interest. If the epistemic component of uncer-

tainty associated with an event is critical to the analyst, it

is treated as a focal event. Otherwise, it is a non-focal

event. The semantics of 8 is critical, absolute, and

uncontrollable, whereas that of 9 is complementary, bal-

ancing, and derived. Obviously, if the analyst is more

concerned with ‘busy’ and ‘down’ states in the above

example, the probability assignments can become

p downð Þ ¼ 0:2; 0:3½ �, pðbusyÞ ¼ ½0:2; 0:5�, and pðidleÞ ¼
1� pðbusyÞ � pðdownÞ ¼ ½0:6; 0:2�. The differentiation

between proper and improper interval probabilities and

thus focal and non-focal events is to make sure LCC is

satisfied. All imprecise probability assignments should

satisfy certain conditions to meet rationality criteria. LCC

is similar to, but more restrictive than, the coherence

condition in Walley’s theory of coherent lower previsions.

See Wang (2010) for more information of generalized

interval probability.
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3 Proposed reliable kinetic Monte Carlo (R-KMC)

simulation

Without loss of generality, we use the vapor deposition

process in Fig. 1 to illustrate the R-KMC. The vapor

deposition process is characterized by several events such

as adsorption (with rate a1), intra-layer surface diffusion

(with rates a2,…, a5), inter-layer diffusion (with rate a6),

and desorption (with rate a7) associated with adatoms, as

well as others. Each of these rates is an interval, i.e. aj ¼
½aj; �aj� for all j. All boldface symbols in this paper are

intervals. Here, all interval rates are proper intervals with

aj� �aj for all j. If a null-event KMC algorithm without

differentiating different locations is applied, the imprecise

probability that event j is chosen to be the next event is

pj ¼ ½aj; �aj�=a0 where a0 is the upper bound of the sum of

all rates. When choosing which event to fire, we may select

either one or two events because of the imprecise proba-

bility. We call this multi-event algorithm.

Here a simplified example is used to illustrate the multi-

event algorithm. Suppose that there are three events A, B,

and C that may occur, which have the rates of a1 = [1,3],

a2 = [1,3] and a3 = [4,5] respectively. First, we sort the

rates based on the uncertainty levels, i.e. the widths of the

intervals as defined in Eq. (1), in an ascending order. Next,

the lower and upper bounds of intervals are ‘‘flipped’’ in an

alternating pattern. Now the sequence of rates is a03 = [4,

5], a01 = [3, 1], a02 = [1, 3]. Then, a null event N is

introduced, e.g. a0N = [1, 0]. In contrast to other events,

when a null event is selected to fire, there is no change

of the system’s state. The general principle of introducing

null events is to make sure that the interval sum

a0 = a03 ? a01 ? a02 ? a0N degenerates to a precise num-

ber (a0 = [9, 9] in this example). This is based on the LCC

mentioned in Sect. 2.5. An empirical cumulative distribu-

tion function (c.d.f.) then can be constructed from a03, a01,

a02, and a0N, as shown in Fig. 2. Based on the empirical

interval c.d.f., the events are chosen to fire by an inverse

transform method that is similar to the one in the traditional

KMC. That is, a random number u which is uniformly

distributed between 0 and 1 is generated. The evaluation of

the inverse c.d.f. is used to select the random sets that u

corresponds to. For instance, in Fig. 2, if u1 is generated,

the next event is {C}. If u2 is generated, the next events are

{A, B}. That is, a random set of events are chosen. The

probability that an event is selected is proportional to the

value of the associated rate in the inverse transform

method. That is, the probability that event A is selected is at

least a1=a0 and at most �a1=a0. The probabilities for other

events are similar. Notice that the goal of the sorting and

flipping procedure for the rates is to make the constructed

interval c.d.f.’s always have the same zig-zag pattern for

the lower and upper bounds of accumulated probabilities as

in Fig. 2, which is necessary to ensure that the lower and

upper probabilities of event selections exactly correspond

to the originally specified interval rates. A rigorous deri-

vation will be shown in Sect. 3.1.

Once a random set of events are fired, the time should be

advanced. In the traditional KMC, the time increment is

exponentially distributed with the rate
P

j aj and sampling

of time increment is based on the inverse function of

exponential c.d.f. In R-KMC, the time to fire a random set

of events is an interval. We choose the interval-valued

average time among all firing events, which are the earliest

and latest possible times that multiple events occur.

In the traditional KMC where epistemic uncertainty

of input parameters is ignored, the samplings for event

selection and clock advancement are based on precise

probability with certitude. In R-KMC, the uncertainty

associated with the rates leads to the imprecise probability

that an event is likely to be chosen to fire. The details of

event selection and clock advancement in the multi-event

algorithm are described in the following subsections.

3.1 Event selection

For M possible reaction or transition events, each event is

characterized by an interval-valued rate or propensity

function aj (j ¼ 1; . . .;M). First, a1; a2; . . .; aM are sorted

based on the widths of the intervals in the ascending order

to að1Þ; að2Þ; . . .; aðMÞ, where widðað1ÞÞ �widðað2ÞÞ � � � �
�widðaðMÞÞ. Further, we define a *-sum, denoted by

P�
,

recursively as
X�J

j¼1
aðjÞ :¼ dual

X�J�1

j¼1
aðjÞ

� �
þ aðJÞ ðJ ¼ 2; . . .;MÞ

ð3Þ

with
P�J¼1

j¼1 aðjÞ ¼ að1Þ. The original intent of interval rates

or propensities to specify the lower and upper probabilities

is maintained during event selection, shown as follows.

Upper Bound
1

0

Lower 
Bound

A B C N

u2

u1

3
a

3
a

1
a1

a
2

a
2

a
N

a

0
a

Fig. 2 An illustration of random set sampling based on the empirical

interval c.d.f
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Based on operator ‘‘?’’ of the Kaucher interval arith-

metic, if widx�widy for any two intervals x and y that are not

improper (i.e. proper intervals or point-wise real numbers),

then dualxþ y is not improper and widðdualxþ yÞ�widy.

Therefore,

wid
X�J�1

j¼1
aðjÞ

� �
�widaðJ�1Þ �widaðJÞ ðJ ¼ 2; . . .;MÞ

ð4Þ

Figure 3 illustrates how the cumulative *-sum of the

sorted interval propensities is constructed. Because of Eq.

(4), the lower and upper bounds of
P�J

j¼1 aðjÞ are always

calculated from the upper and lower bounds of
P�J�1

j¼1 aðjÞ

respectively. At the top of the accumulative *-sum, a

null event is introduced with the propensity of

anull ¼ 0;wid
P�M

j¼1 aðjÞ
� �h i

. Then we define the real-

valued upper limit of propensity sum as

a0 ¼ dual
X�M

j¼1
aðjÞ

� �
þ 0;wid

X�M
j¼1

aðjÞ
� �h i

ð5Þ

Thus when a random fraction ua0 is generated, either

one or two events will be selected to fire, depending on

the random number u. If the projected line of ua0

simultaneously intersects with two propensities (J and

J ? 1 shown in Fig. 3), the corresponding two events will

be fired. This process ensures that the probability that event

J is selected is aðJÞ=a0; �aðJÞ=a0

� �
, which is the intent of

interval propensities. Therefore, the multi-event algorithm

based on the total propensity calculated by the *-sum as in

Eq. (5) faithfully chooses events according to their

corresponding minimum and maximum probabilities,

whereas a naı̈ve attempt of simple sum of the respective

lower and upper propensities does not. Again, the

introduction of null event is to satisfy LCC so that the

sum is up to a real value. When event M and the null event

are selected, only event M is fired whereas the null event

does not change the state of the system.

The pseudo-code of the multi-event algorithm is listed

in Table 1. In each iteration of R-KMC, the cumulative

*sum is updated first. With a random number generated,

the corresponding random set of events is selected.

These events then are fired and the system’s state is

updated.

3.2 Clock advancement

In the classical SSA, the simulation clock is advanced by

the earliest time approach. That is, M events are assumed to

be independent, where the time between events Tj are

exponentially distributed, i.e. PðTj� sÞ ¼ 1� expð�ajsÞ
for j ¼ 1; . . .;M. The earliest time T ð1Þ ¼ minðT1; . . .; TMÞ
of any event occurs is also exponentially distributed, as

in PðT ð1Þ � sÞ ¼ 1� PðT 1ð Þ[ sÞ ¼ 1�
QM

j¼1 PðTj [ sÞ ¼

1� exp �
PM

j¼1 aj

� �
s

� �
, with the rate of

PM
j¼1 aj. There-

fore, the clock is advanced by the random variant

T ¼ � ln q=
PM

j¼1 aj, where q is a random number sampled

from the standard uniform distribution between 0 and 1.

In the multi-event algorithm, a random set of multiple

events are chosen and fired at a time. Uncertainties are

associated with the clock advancement for firing the ran-

dom set of events. That is, how much time is needed for

these random events to occur varies and includes both

components of epistemic and aleatory uncertainties. To

estimate the epistemic uncertainty component, we use an

interval approach. The worst and best scenarios need to be

given. The least time for the set of events to fire is when all

of them occur at the same time. Therefore, the lower bound

of clock advancement is

TL ¼ � ln q=
XM

j¼1
�aj: ð6Þ

The longest possible time for the set of events to fire is

when the events occur consecutively one by one. Suppose

that the respective rates of the firing sequence of n out of N

events from a random set are ½að1Þ; �að1Þ�; . . .; ½aðnÞ; �aðnÞ�.
In the worst-case scenario, the total elapsed time for

the sequence of n events is T ðnÞ ¼ Xð1Þ þ Xð2Þ þ � � � þ
XðnÞ, where inter-arrival times Xð1Þ;Xð2Þ; . . .;XðnÞ are

exponentially distributed with the respective rates of

a0; a1; . . .; an�1 where

a0 ¼
PN

i¼1 ai

a1 ¼
PN

i¼1 ai � að1Þ

. . .
an�1 ¼

PN
i¼1 ai �

Pn�1
j¼1 aðjÞ

8
>><

>>:
ð7Þ

The rates are changing because after each event is fired,

the earliest time for any of the left events to occur depends on

the number of events that are left. Then the c.d.f. of TðnÞ is

*      1

1

J

j

−

=∑ a

*

1

J

j =∑ a
Lower bound of a

Upper bound of a

J+1J J−1

*

1

M

j =∑ a

M null

a0 

0 

u×a0 

Fig. 3 The cumulative *sum to choose events randomly based on

interval propensities
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PðT ðnÞ � sÞ ¼ 1� PðTðnÞ[ sÞ

¼ 1�
Xn�1

j¼0

Aj expð�ajsÞ
ð8Þ

where Aj ¼
Qn�1

i¼0
i 6¼j

ai

ai�aj
. Instead of sampling based on Eq.

(8), it is easier to sample each of XðjÞ’s as exponential

distributions and the sum of the samples will be a sample of

T ðnÞ. Therefore, the upper bound of clock advancement is

TU ¼ � ln q
Xn�1

j¼0

1=aj

" #

ð9Þ

where q is the same random number as in Eq. (6) and aj’s

are defined as in Eq. (7).

With the interval time increment ½TL; TU �, the current

system time ½tL; tU � in the simulation clock as an interval is

updated to ½tL þ TL; tU þ TU �. The purpose of keeping track

of an interval time is to estimate the best-case and worst-

case scenarios that how fast a system evolves. The interval

clock indirectly provides an estimation of lower and upper

bounds of system states, which forms the basis of R-KMC

to accommodate the uncertain simulation parameters, par-

ticularly transition rates.

4 Implementation and demonstration

The proposed R-KMC based on random set sampling is

implemented in C?? and integrated with SPPARKS

(2009), which is an open-source KMC toolbox developed

at the Sandia National Laboratories. We demonstrate

R-KMC by two examples, an E. coli reaction network and

the microbial fuel cell (MFC) simulation.

4.1 E. coli reaction network

The R-KMC is first demonstrated by the classical model of

the E. coli reaction network from Kierzek (2002), as shown

in Fig. 4, with real-valued reaction rates. In R-KMC, the

rates are intervals because of uncertainties involved. With

the interval rates, interval propensities and probabilities are

calculated. Within each iteration, a random set of reaction

events are selected based on the algorithm in Sect. 3.1. The

interval time advancement is sampled based on the method

in Sect. 3.2.

At t ¼ 0, the initial counts of species are one for PLac, 35

for RNAP, and 350 for Ribosome. All others are zeros.

Based on the nominal values of rates in Fig. 4, interval rates

are used. We chose interval rates for ±1 and ±10 % of the

nominal values in the respective experiments and compare

the results with that from the traditional KMC. For instance,

the rates of the reaction PLacRNAP ? TrLacZ1 at the

right-bottom corner of Fig. 4 become [0.99, 1.01] and [0.9,

1.1] respectively. For each of the three scenarios (original

real-valued rates, ±1 % interval rates, and ±10 % interval

rates), a sample size of 20 is used. Figure 5 compares the

sample average values of some species over time, including

product, Ribosome, dgrLacY, and LacZ. In the charts, red

curves represent the average values in the real case. Blue

dotted and dash curves are the lower and upper bounds of

those for the ±1 % interval case. For the lower-bound

curves, the upper-bound time increment DtU is used in the

plot, whereas the DtL is used for the upper-bound curves.

Similarly, green dotted and dash curves are the lower and

upper bounds of those for the ±10 % interval case. It is

observed that the ±10 % interval case enclose the real case

better than the ±1 % interval case.

4.2 Microbial fuel cell (MFC)

The MFC is a type of fuel cell that converts the chemical

energy contained in organic matter to electricity using

microorganisms (bacteria) as a biocatalyst from organic

waste and renewable biomass. A MFC typically consists of

two chambers, an anaerobic anode chamber and an aerobic

cathode chamber separated by a proton exchange membrane

(PEM). For scaling up the MFC technology to the com-

mercial scale, fine-grained multi-physics simulation of

Table 1 The pseudo-code of the multi-event algorithm in each

R-KMC iteration
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electrochemical processes for the entire fuel cell system is

necessary for better understanding of the system. Here we

demonstrate the R-KMC mechanism by a simplified exam-

ple of MFC reaction networks adopted from Refs. (Picioreanu

et al. 2010; Zeng et al. 2010) as in Table 2, where the esti-

mated rates used in the R-KMC simulation are also listed. The

first nine reactions (R1–R9) occur in the anode chamber

whereas the last four (R10–R13) in the cathode chamber. Two

example outputs are shown in Fig. 6. The engineering design

procedure involves the optimization of geometries or chemi-

cal compositions of electrode, PEM, reduction-oxidization

mediator, etc for desirable rates.

5 Weak convergence

The random set based R-KMC can be viewed as a gener-

alization of the traditional KMC. In this section, we show

that the multi-event algorithm in R-KMC converges to the

traditional SSA in KMC smoothly with respect to both

distributions and expected values as the widths of interval

transition rates reduce towards zeros, when epistemic

uncertainty vanishes.

Suppose that a system consisting of N species S1;f
S2; . . .; SNg has the state variable X ¼ ðX1; . . .;XNÞ 2 Z

N
þ

where Zþ ¼ N [ f0g is the set of nonnegative integers.

There are a total of M reaction channels Rj’s (j ¼ 1; . . .;M),

each of which is characterized by an interval-valued pro-

pensity function ajðxÞ given the current state X ¼ x, where

aj : ZN
þ ! R

2
þ, and its state change vector vj ¼ ðvj1; . . .;

vjNÞ. From the sum of propensity function a0ðxÞ defined in

Eq. (5), the probability of firing Rj is P Tj ¼ minðT1; . . .;
�

TMÞÞ ¼ aj=a0; �aj=a0

� �
.

As a special case of the generalized Chapman–Kol-

mogorov equation [Eq. (22) in ‘‘Appendix’’], the interval

master equation that describes the evolution of the distri-

bution of the system states is

d

dt
pðx; tjx0; t0Þ ¼

XM

j¼1

Wjðx� vjÞpðx� vj; tjx0; t0Þ

�dual
XM

j¼1

WjðxÞpðx; tjx0; t0Þ
" # ð10Þ

where pðx; tjx0; t0Þ is the probability of XðtÞ ¼ x given the

initial distribution Xðt0Þ ¼ x0, and WjðxÞ ¼ ajðxÞ=a0ðxÞ is

the transition rate. Because aj’s are interval propensities, the

solution of Eq. (10) is a set of probability evolution paths.

In the multi-event algorithm in Sect. 3, the probability

density function of time between Rj is fired at the current

state x and next Rj is

f jðx; tÞ ¼WjðxÞ � a0ðxÞ expð�a0ðxÞtÞ
¼ ajðxÞ expð�a0ðxÞtÞ

ð11Þ

which converges to the one in the traditional SSA algo-

rithm as the widths of the interval propensities aj’s reduce

to zeros.

A different view of the system is the interval-valued

state variable with precise time. The path-wise represen-

tation of the Poisson process with the integral form is

XðtÞ ¼ x0 þ
XM

j¼1

Pj

Z t

0

ajðsÞds

� 	

vj ð12Þ

where PjðtÞ ¼ Pj

R t

0
ajðsÞds

� �
is a generalized Poisson or

counting process of the number of events to fire Rj and

PLac

RNAP

PLacRNAP 

TrLacZ1 

RbsLacZ

TrLacZ2 TrLacY1

TrLacY2

RbsLacY

Ribosome

RbsRibosomeLacZ

RbsRibosomeLacY 

TrRbsLacZ
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LacY 

LacZ

dgrLacZ

dgrRbsLacZ 
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10 

1 
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0.3
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Fig. 4 The reaction channels of LacZ and LacY proteins in E. coli (Kierzek 2002)
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R t
0

ajðsÞds is the mean firing rate of time t. XðtÞ is a random

interval with discrete integer values at time t. The

expectation is

E XðtÞð Þ ¼ x0þ
XM

j¼1

vj

Z t

0

ajðsÞds

¼ x0þ
XM

j¼1

vj

Z t

0

ajðsÞds;x0þ
XM

j¼1

vj

Z t

0

�ajðsÞds

" #

ð13Þ

Therefore, when ajðtÞ ¼ �ajðtÞ for all t, PjðtÞ’s are

degenerated to regular Poisson processes in the traditional

KMC, and the expected state values in R-KMC are the same

as the ones in KMC.

The reliable KMC is to improve the robustness of the

simulation given input uncertainties. During simulation, the

imprecise rates in input are converted to imprecise times to

reach certain states in output. We propose that the robust-

ness is measured by the probability of time enclosure as

Pe ¼ P X�1ðxÞ�X�1ðxÞ�X
�1ðxÞ

� �
ð14Þ

for a particular state x, where random variables X�1ð�Þ,
X�1ð�Þ, and X

�1ð�Þ are the times that state x is first reached

Fig. 5 Comparisons of the

numbers of species over time in

the E. coli reaction network

between the traditional KMC

and R-KMC simulations, where

interval reaction rates are ±1

and ±10 %

Table 2 The reactions of a two-chamber microbial fuel cell used in the R-KMC model

Number of sites involved Reaction/transition event Rate constant

R1: water dissociation H2O $ OH- ? H? 101

R2: carbonic acid dissociation CO2 ? H2O $ HCO3
- ? H? 101

R3: acetic acid dissociation AcH $ Ac- ? H? 101

R4: reduced thionine first dissociation MH3
? $ MH2 ? H? 101

R5: reduced thionine second dissociation MH4
2? $ MH3

? ? H? 101

R6: acetate with oxidized mediator Ac- ? MH? ? NH4
? ? H2O ? XAc ? MH3

? ? HCO3
- ? H? 101

R7: oxidation double protonated mediator MH4
2? ? MH? ? 3H? ? 2e- 101

R8: oxidation single protonated mediator MH3
? ? MH? ? 2H? ? 2e- 101

R9: oxidation neutral mediator MH2 ? MH? ? H? ? 2e- 101

R10: proton diffusion through PEM H? ? H_? 10-2

R11: electron transport from anode to cathode e- ? e_- 10-2

R12: reduction of oxygen with current generated 2H_? ? 1/2O2_ ? 2e_- ? H2O_ 105

R13: reduction of oxygen with current generated O2_ ? 4e_- ? 2H2O_ ? 4OH_- 103

Reliable kinetic Monte Carlo simulation based on random set sampling
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for the lower-bound, real-valued, and upper-bound sce-

narios respectively. The probabilistic measure in Eq. (14)

indicates that the predicted time interval by R-KMC does

not necessarily always enclose the time predicted by KMC.

For instance, with the selected number of runs in the E. coli

example, the first-passage time when the amount of

Ribosome reaches 325 in KMC is not enclosed by the one

in R-KMC, as shown in Fig. 5b. Similarly in Fig. 6a, the

amount of H2O for the first transient period at the begin-

ning of MFC simulation is not enclosed.

The probability of the first-passage time to reach certain

state can be estimated, since all three time variables follow

the Erlang distribution with c.d.f.’s as

PðX�1
i ð�Þ � tÞ ¼ 1�

Xni�1

k¼0

e�a0tða0tÞk=k!

X�1
i ¼ X�1;X�1;X

�1
; ni ¼ n; n; �n

� �

where n, n, and �n are the minimal, real-valued, and maxi-

mal numbers of events that occur.

6 Concluding remarks

In this paper, we propose an R-KMC mechanism based on

random-set sampling to improve the simulation robustness

where uncertainty associated with transition rates and

probabilities in simulation is considered. The new R-KMC

mechanism considers a range of possible state updates for

each simulation step based on a proposed multi-event

algorithm. The multi-event algorithm uses generalized

intervals and strictly follows the semantics of interval

probability so that the sampling process is a generalization

of the SSA. The system can be viewed either as interval-

valued state variables with precise time, or as precise state

with interval-valued time. The convergence of the multi-

event algorithm towards the traditional SSA in KMC is

demonstrated.

For simple chemical reactions, the uncertainty effect is

captured by an interval system time, which indicates the

earliest and latest possible times required for the system

reach a possible state, as demonstrated by the examples.

For more complex systems where complete chemical and

physical processes at different locations need to be kept

track of, the uncertainty effect can be similarly captured as

the earliest and latest times that a number of certain species

at a particularly location is observed.

In this paper, only the worst- and best-case of time

advancement is considered in the multi-event algorithm.

Future work will include the extension to incorporate gen-

eralized intervals so that interval uncertainty of time can be

reduced to zeros by calculating with improper intervals. For

instance, when measurements are taken at certain time, they

can serve as a reference point and precise numbers of spe-

cies are given without interval uncertainty. This generalizes

the procedure of R-KMC simulation and validation.

Appendix: Derivation of the generalized Chapman–

Kolmogorov equation

Following the definition of interval derivative by Markov

(1979), the derivative of a generalized interval function

fðtÞ ¼ f ðtÞ; �f ðtÞ
h i

is defined as

dfðtÞ=dt :¼ lim
Dt!0

fðt þ DtÞ � dualfðtÞð Þ=Dt

¼ lim
Dt!0

f ðt þ DtÞ � f ðtÞ
Dt

; lim
Dt!0

�f ðt þ DtÞ � �f ðtÞ
Dt


 �

where dual is defined as in Eq. (2). Note that all boldface

symbols in this paper are generalized intervals. We define the

derivative of generalized interval probability pðx; tjy; t0Þ with

respect to time t as follows. With state variables x; y 2 Rn,

o

ot
pðx; tjy; t0Þ :¼ lim

Dt!0

1

Dt

pðx; t þ Dtjy; t0Þ
�dualpðx; tjy; t0Þ

( )

ð15Þ

Because of the logic coherent constraint in generalized

interval probability, we have

Fig. 6 Comparisons of the numbers of species over time in the MFC

reaction network between the traditional KMC and R-KMC simula-

tions, where interval reaction rate is ±10 %
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Z

dzpðz; t þ Dtjx; tÞ ¼ 1 ð16Þ

where state variable z 2 Rn. With the Markovian property,

this leads to

pðx; t þ Dtjy; t0Þ ¼
Z

dzpðx; t þ Dtjz; tÞpðz; tjy; t0Þ ð17Þ

Replace the first term in Eq. (15) with Eq. (17) and

multiply the second term by Eq. (16). Eq. (15) now becomes

o

ot
pðx; tjy; t0Þ

¼ lim
Dt!0

1

Dt

Z

dz
pðx; t þ Dtjz; tÞpðz; tjy; t0Þ

�dualpðz; t þ Dtjx; tÞpðx; tjy; t0Þ

" #( )

ð18Þ

Consider two subdomains x� zk k� e and x� zk k[ e
separately where e is small enough. Eq. (18) can be regarded as

o

ot
pðx; tjy; t0Þ ¼ I x�zk k� e þ I x�zk k[ e

where I x�zk k� e is the right-side integral in Eq. (18) within

the small neighborhood that captures continuous diffusion

processes, whereas I x�zk k[ e is the one outside the neigh-

borhood that represents jump processes.

Within the small neighborhood x� zk k� e, let x� z ¼ h

and define fðx; hÞ :¼ pðxþ h; t þ Dtjx; tÞpðx; tjy; t0Þ. Then

pðz; t þ Dtjx; tÞpðx; tjy; t0Þ ¼ fðx;�hÞ

and

pðx; t þ Dtjz; tÞpðz; tjy; t0Þ
¼ pðx; t þ Dtjx� h; tÞpðx� h; tjy; t0Þ ¼ fðx� h; hÞ:

Apply the Taylor alike expansion

fðx� h; hÞ ¼ fðx; hÞ � dual
Xn

i¼1

of=oxihi

þ 1

2

X

i

X

j

o2f=oxioxjhihj þ Oðe3Þ

where

ofðx; hÞ=oxi :¼ lim
Dxi!0

fðxþ Dxi; hÞ � dualfðx; hÞ
Dxi

� 

and similarly.

o2fðx; hÞ
oxioxj

:¼

lim
Dxi ! 0
Dxj ! 0

fðxþ Dxi þ Dxj; hÞ � dualfðxþ Dxi; hÞ
�dualfðxþ Dxj; hÞ þ fðx; hÞ

DxiDxj

8
>><

>>:

9
>>=

>>;

Then
I x�zk k� e

¼ lim
Dt!0

1

Dt

Z

x�zk k� e

dz
pðx; tþDtjz; tÞpðz; tjy; t0Þ

�dualpðz; tþDtjx; tÞpðx; tjy; t0Þ

" #
8
><

>:

9
>=

>;

¼ lim
Dt!0

1

Dt

Z

hk k� e

dh fðx� h;hÞ � dualfðx;�hÞ½ �

8
><

>:

9
>=

>;

¼ lim
Dt!0

1

Dt

Z

hk k� e

dh

fðx;hÞ � dual
Xn

i¼1

of

oxi
hi

þ1

2

Xn

i¼1

Xn

j¼1

o2f

oxioxj
hihj

�dualfðx;�hÞ þOðe3Þ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

¼ lim
Dt!0

1

Dt

Z

hk k� e

dhfðx;hÞ � dual

Z

hk k� e

dhfðx;�hÞ

2

6
4

3

7
5

� dual lim
Dt!0

1

Dt

Z

hk k� e

dh
Xn

i¼1

of

oxi
hi

þ 1

2
lim
Dt!0

1

Dt

Z

hk k� e

dh
Xn

i¼1

Xn

j¼1

o2f

oxioxj
hihj

þ lim
Dt!0

1

Dt
Oðe4Þ

¼ �dual
Xn

i¼1

lim
Dt!0

1

Dt

Z

hk k� e

dh
of

oxi
hi

2

6
4

3

7
5

þ 1

2

Xn

i¼1

Xn

j¼1

lim
Dt!0

1

Dt

Z

hk k� e

dh
o2f

oxioxj
hihj

2

6
4

3

7
5

þ lim
Dt!0

1

Dt
Oðe4Þ

since
R

hk k� e dhfðx;hÞ ¼
R

hk k� e dhfðx;�hÞ. Furthermore,

1

Dt

Z

hk k� e

dh
of

oxi
hi

¼ o

oxi

1

Dt

Z

hk k� e

hifdh

2

6
4

3

7
5

¼ o

oxi
pðx; tjy; t0Þ 1

Dt

Z

hk k� e

hidhpðxþ h; t þ Dtjx; tÞ

2

6
4

3

7
5
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Similarly,

1

Dt

Z

hk k� e

dh
o2f

oxioxj
hihj

¼ o2

oxioxj
pðx; tjy; t0Þ 1

Dt

Z

hk k� e

hihjdhpðxþ h; t þ Dtjx; tÞ

2

6
4

3

7
5

In addition, limDt!0 O e4ð Þ=Dt¼ limDt!0 Oðe3Þ=1¼ Oðe3Þ
We define

Aiðx; tÞ :¼ lim
Dt!0

1

Dt

Z

hk k� e

hidhpðxþ h; t þ Dtjx; tÞ ð19Þ

Bijðx; tÞ :¼ lim
Dt!0

1

Dt

Z

hk k� e

hihjdhpðxþ h; t þ Dtjx; tÞ ð20Þ

If XðtÞ ¼ ðx1ðtÞ; . . .; xnðtÞÞ represents the state of the

system at time t, then

Z

hk k� e

hidhpðxþ h; t þ Dtjx; tÞ

¼ E xiðt þ DtÞ � xiðtÞjXðtÞ½ �

is the expected state value change in the ith direction.

Therefore, Eq. (19) is interpreted as the state value change

rate along one direction, known as the drift vector.

Similarly,

Z

hk k� e

hihjdhpðxþ h; t þ Dtjx; tÞ

¼ E ðxiðt þ DtÞ � xiðtÞÞðxjðt þ DtÞ � xjðtÞÞjXðtÞ
� �

:

Equation (20) is the combined area change rate in two

directions, known as the diffusion matrix.

We now have

I x�zk k� e

¼ �dual
Xn

i¼1

o

oxi
Aiðx; tÞpðx; tjy; t0Þ½ �

þ 1

2

Xn

i¼1

Xn

j¼1

o

oxioxj
Bijðx; tÞpðx; tjy; t0Þ
� �

þ Oðe3Þ

for the diffusion process.

For the jump process

I x�zk k[ e

¼ lim
Dt!0

1

Dt

Z

x�zk k[ e

dz
pðx; tþDtjz; tÞpðz; tjy; t0Þ

�dualpðz; tþDtjx; tÞpðx; tjy; t0Þ

" #
8
><

>:

9
>=

>;

¼
Z

x�zk k[e

dz lim
Dt!0

1

Dt
pðx; tþDtjz; tÞf gpðz; tjy; t0Þ


 �

� dual

Z

x�zk k[ e

dz lim
Dt!0

1

Dt
pðz; tþDtjx; tÞf gpðx; tjy; t0Þ


 �

We define

Wðyjx; tÞ :¼ lim
Dt!0

1

Dt
pðy; t þ Dtjx; tÞf g ð21Þ

as the rate of transition from x to y. Then

I x�zk k[ e ¼
Z

x�zk k[ e

dz Wðxjz; tÞpðz; tjy; t0Þ½ �

� dual

Z

x�zk k[ e

dz Wðzjx; tÞpðx; tjy; t0Þ½ �

As e! 0, the subdomain x� zk k[ e becomes the

complete domain.

Therefore, with the consideration of both x� zk k� e
and x� zk k[ e, the generalized differential Chapman–

Kolmogorov equation is

o

ot
pðx; tjy; t0Þ

¼ �dual
Xn

i¼1

o

oxi
Aiðx; tÞpðx; tjy; t0Þ½ �

þ 1

2

Xn

i¼1

Xn

j¼1

o2

oxioxj
Bijðx; tÞpðx; tjy; t0Þ
� �

þ
Z

dzWðxjz; tÞpðz; tjy; t0Þ

� dual

Z

dzWðzjx; tÞpðx; tjy; t0Þ ð22Þ
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