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Abstract. Di�erent representations of imprecise probabilities have been proposed, such as behav-
ioral theory, evidence theory, possibility theory, probability bound analysis, F-probabilities, fuzzy
probabilities, and clouds. These methods use interval-valued parameters to discribe probability
distributions such that uncertainty is distinguished from variability. In this paper, we proposed a
new form of imprecise probabilities based on generalized or modal intervals. Generalized intervals are
algebraically closed under Kaucher arithmetic, which provides a concise representation and calculus
structure as an extension of precise probabilities.

With the separation between proper and improper interval probabilities, focal and non-focal
events are di�erentiated based on the modalities and logical semantics of generalized interval prob-
abilities. Focal events have the semantics of critical, uncontrollable, speci�ed, etc. in probabilistic
analysis, whereas the corresponding non-focal events are complementary, controllable, and derived.

A generalized imprecise conditional probability is de�ned based on unconditional interval prob-
abilities such that the algebraic relation between conditional and marginal interval probabilities is
maintained. A Bayes' rule with generalized intervals (GIBR) is also proposed. The GIBR allows us
to interpret the logic relationship between interval prior and posterior probabilities.

Keywords: imprecise probablity, conditioning, updating, interval arithmetic, generalized interval

1. Introduction

Imprecise probability di�erentiates uncertainty from variability both qualitatively and quantita-
tively, which is to complement the traditional sensitivity analaysis in probablistic reasoning. There
have been several interval-based representations proposed in the past four decades and applied in
various engineering domains, such as sensor data fusion (Guede and Girardi, 1997; Elouedi et al.,
2004), reliability assessment (Kozine and Filimonov, 2000; Berleant and Zhang, 2004; Coolen, 2004),
reliability-based design optimization (Mourelatos and Zhou, 2006; Du et al., 2006), design decision
making under uncertainty (Nikolaidis et al., 2004; Aughenbaugh and Paredis, 2006). The core issue
is to characterize incomplete knowledge with lower and upper probability pairs so that we can
improve the robustness of decision making.

There are many representations of imprecise probabilities. For example, the Dempster-Shafer
evidence theory (Dempster, 1967; Shafer, 1976) characterizes uncertainties as discrete probability
masses associated with a power set of values. Belief-Plausibility pairs are used to measure likelihood.
The behavioral imprecise probability theory (Walley, 1991) models behavioral uncertainties with the
lower prevision (supremum acceptable buying price) and the upper prevision (in�mum acceptable
selling price). A random set (Molchanov, 2005) is a multi-valued mapping from the probability
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space to the value space. The possibility theory (Zadeh, 1978; Dubois and Prade, 1988) provides an
alternative to represent uncertainties with Necessity-Possibility pairs. Probability bound analysis
(Ferson et al., 2002) captures uncertain information with p-boxes which are pairs of lower and
upper probability distributions. F-probability (Weichselberger, 2000) incorporates intervals into
probability values which maintains Kolmogorov properties. Fuzzy probability (Möller and Beer,
2004) considers probability distributions with fuzzy parameters. A cloud (Neumaier, 2004) is a
fuzzy interval with an interval-valued membership, which is a combination of fuzzy sets, intervals,
and probability distributions.

These di�erent representations model the indeterminacy due to incomplete information very
well with di�erent forms. There are still challenges in practical issues such as assessment and
computation to derive inferences and conclusions (Walley, 1996). A simple algebraic structure is
important for applications in engineering and science. In this paper, we propose a new form of
imprecise probabilities based on generalized intervals. Unlike traditional set-based intervals, such as
the interval [0.1, 0.2] which represents a set of real values between 0.1 and 0.2, generalized or modal
intervals also allow the existence of the interval [0.2, 0.1]. With this extension, logic quanti�ers (∀
and ∃) can be integrated to provide the interpretation of intervals. Another advantage of generalized
interval is that it is closed under arithmetic operations (+,−,×,÷). This property simpli�es the set
structures.

We are interested to explore the potential of generalized interval to provide a connection between
imprecise and precise probability, as well as among di�erent representations of imprecise probability.
In this paper, we study the algebraic properties of imprecise probablities with a generalized interval
form and associated interpretation issues. In the remainder of the paper, Section 2 gives a brief
overview of generalized intervals. Section 3 presents the interval probability with the generalized
interval form. Section 4 describes the Bayes' rule based on generalized intervals.

2. Generalized Interval

Modal interval analysis (MIA) (Gardenes et al., 2001; Markov, 2001; Shary, 2002; Popova, 2001;
Armengol et al., 2001) is an algebraic and semantic extension of interval analysis (IA) (Moore,
1966). Unlike the classical interval analysis which identi�es an interval by a set of real numbers, MIA
identi�es the intervals by the set of predicates which is ful�lled by the real numbers. A generalized
interval is not restricted to ordered bounds. A modal interval or generalized interval x := [x, x] ∈ KR
is called proper when x ≤ x and improper when x ≥ x. The set of proper intervals is denoted by
IR = {[x, x] | x ≤ x}, and the set of improper interval is IR = {[x, x] | x ≥ x}. Operations are
de�ned in Kaucher arithmetic (Kaucher, 1980).

Given a generalized interval x = [x, x] ∈ KR, two operators pro and imp return proper and
improper values respectively, de�ned as

prox := [min(x, x),max(x, x)] (1)

impx := [max(x, x),min(x, x)] (2)

The relationship between proper and improper intervals is established with the operator dual :
dualx := [x, x] (3)
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Table I. The major di�erences between MIA and the tranditional IA

Classical Interval Analysis Modal Interval Analysis

Validity [3, 2] is an invalid or empty interval Both [3, 2] and [3, 2] are valid inter-
vals

Semantics richness [2, 3] + [2, 4] = [4, 7] is the only
valid relation for +, and it only
means�stack-up� and worst-case�.
−,×,÷ are similar.

[2, 3] + [2, 4] = [4, 7],
[2, 3] + [4, 2] = [6, 5],
[3, 2] + [2, 4] = [5, 6],
[3, 2] + [4, 2] = [7, 4]
are all valid, and each has a di�erent
meaning. −,×,÷ are similar.

Completeness of arithmetic a + x = b, but x 6= b− a.
[2, 3] + [2, 4] = [4, 7], but
[2, 4] 6= [4, 7]− [2, 3]
a× x = b, but x 6= b÷ a.
[2, 3]× [3, 4] = [6, 12], but
[3, 4] 6= [6, 12]÷ [2, 3]
x− x 6= 0
[2, 3]− [2, 3] = [−1, 1] 6= 0

a + x = b, and x = b− duala.
[2, 3] + [2, 4] = [4, 7], and
[2, 4] = [4, 7]− [3, 2]
a× x = b, and x = b÷ duala.
[2, 3]× [3, 4] = [6, 12], and
[3, 4] = [6, 12]÷ [3, 2]
x− dualx = 0
[2, 3]− [3, 2] = 0

For example, a = [−1, 1] and b = [1,−1] are both valid intervals. While a is a proper interval, b
is an improper one. The relation between a and b can be established by a = dualb. The inclusion
relation between generalized intervals x = [x, x] and y = [y, y] is de�ned as

[x, x] ⊆ [y, y] ⇐⇒ x ≥ y ∧ x ≤ y
[x, x] ⊇ [y, y] ⇐⇒ x ≤ y ∧ x ≥ y (4)

The less-than-or-equal-to and greater-than-or-equal-to relations are de�ned as
[x, x] ≤ [y, y] ⇐⇒ x ≤ y ∧ x ≤ y
[x, x] ≥ [y, y] ⇐⇒ x ≥ y ∧ x ≥ y (5)

Table I lists the major di�erences between MIA and IA. MIA o�ers better algebraic properties
and more semantic capabilities.

For a solution set S ⊂ Rn of the interval system f(x) = 0 where x ∈ IRn, an inner estimation
xin of the solution set S is an interval vector that is guaranteed to be included in the solution set,
and an outer estimation xout of S is an interval vector that is guaranteed to include the solution
set. Not only for outer range estimations, generalized intervals are also convenient for inner range
estimations (Kupriyanova, 1995; Kreinovich et al., 1996; Goldsztejn, 2005).

Another uniqueness of generalized intervals is the modal semantic extension. Unlike IA which
identi�es an interval by a set of real numbers only, MIA identi�es an interval by a set of predicates
which is ful�lled by real numbers. Given a set of closed intervals of real numbers in R, and the set
of logical existential (∃) and universal (∀) quanti�ers, each generalized interval has an associated
quanti�er. The semantics of x ∈ KR is denoted by (Qxx ∈ prox) where Qx ∈ {∃,∀}. An interval
x ∈ KR is called existential if Qx = ∃. Otherwise, it is called universal if Qx = ∀. If a real relation
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z = f(x1, . . . , xn) is extended to the interval relation z = f(x1, . . . ,xn), the interval relation z is
interpretable if there is a semantic relation

(Qx1x1 ∈ prox1) · · · (Qxnxn ∈ proxn) (Qzz ∈ proz) (z = f(x1, . . . , xn)) (6)

In this paper, we propose an interval probability representation that incorporates the generalized
interval in imprecise probability. The aim is to take the advantage of its algebraic closure so that
the structure of interval probability can be simpli�ed. At the same time, the interpretation of
probablistic properties can be integrated with the logic relations in the structure.

3. Imprecise Probability based on Generalized Intervals

Given a sample space Ω and a σ-algebraA of random events over Ω, we de�ne the generalized interval
probability p : A 7→ [0, 1]× [0, 1] which obeys the axioms of Kolmogorov: (1) p(Ω) = [1, 1] = 1; (2)
0 ≤ p(E) ≤ 1 (∀E ∈ A); and (3) for any countable mutually disjoint events Ei ∩ Ej = ∅ (i 6= j),
p(

⋃n
i=1Ei) =

∑n
i=1 p(Ei). This implies p(∅) = 0. We also de�ne

p(E1 ∪ E2) := p(E1) + p(E2)− dualp(E1 ∩ E2) (7)

When the probabilities of E1 and E2 are measurable and become precise, Eq.(7) has the same form
as the traditional precise probabilities. The lower and upper probabilities in the generalized interval
form do not have the traditional meanings of lower and upper envelopes. Rather, they provide the
algebraic closure. From Eq.(7), we have

p(E1 ∪ E2) + p(E1 ∩ E2) = p(E1) + p(E2) (8)

which also indicates the generalized interval probabilities are 2-monotone (and 2-alternating) in the
sense of Choquet's capacities. But the relation of Eq.(8) is stronger than 2-monotonicity.

Let (Ω,A) be the probability space and P a non-empty set of probability distribution on that
space. The lower and upper probability envelopes are usually de�ned as

P∗(E) = inf
P∈P

P (E)

P ∗(E) = sup
P∈P

P (E)

Not every probability envelope is 2-monotone. However, 2-monotone closed-form representations
are more applicable because it may be di�cult to track probability envelopes during manipulations.
Therefore it is of our interest that a simple algebraic structure can provide such practical advantages
for broader applications.

Furthermore, we have
p(E1 ∪ E2) ≤ p(E1) + p(E2) (∀E1, E2 ∈ A) (9)

in the new interval representation, since p(E1 ∩ E2) ≥ 0. Note that Eq.(9) is di�erent from the
relation de�ned in the Dempster-Shafer structure or F-probability. Here it has the same form as the
precise probability except for the newly de�ned inequality (≤,≥) relations for generalized intervals.
Both lower and upper probabilities are subadditive. Similar to the precise probability, the equality
of Eq.(9) occurs when p(E1 ∩ E2) = 0.
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We also de�ne the probability of the complement of event E as
p(Ec) := 1− dualp(E) (10)

which is equivalent to
p(Ec) := 1− p(E) (11)

p(Ec) := 1− p(E) (12)

The de�nitions in Eq.(11) and Eq.(12) are equivalent to the other forms of interval probabilities.
The calculation based on generalized intervals as in Eq.(10) can be more concise.

p(E) + p(Ec) = 1 (∀E ∈ A) (13)

In general, for a mutually disjoint event partition
⋃n

i=1Ei = Ω, we have
n∑

i=1

p(Ei) = 1 (14)

This requirement is more restrictive than the traditional coherence constraint (Walley, 1991). Sup-
pose p(Ei) ∈ IR (for i = 1, . . . , k) and p(Ei) ∈ IR (for i = k + 1, . . . , n). If the range of an interval
probability is de�ned as

p′(E) := prop(E) (15)

Eq.(14) can be interpreted as

∀p1 ∈ p′(E1), . . . ,∀pk ∈ p′(Ek), ∃pk+1 ∈ p′(Ek+1), . . . ,∃pn ∈ p′(En),
n∑

i=1

pi = 1 (16)

based on the interpretability principles of MIA (Gardenes et al., 2001). Therefore, we call Eq.(14)
the logic coherence constraint.

The values of interval probabilities are between 0 and 1. As a result, the interval probabilities
p1, p2, and p3 have the following algebraic properties:

p1 ≤ p2 ⇔ p1 + p3 ≤ p2 + p3

p1 ⊆ p2 ⇔ p1 + p3 ⊆ p2 + p3

p1 ≤ p2 ⇔ p1p3 ≤ p2p3

p1 ⊆ p2 ⇔ p1p3 ⊆ p2p3

3.1. Focal and Non-Focal Events

We di�erentiate two types of events. An event E is a focal event if its associated semantics is
universal (Qp(E) = ∀). Otherwise it is a non-focal event if the semantics is existential (Qp(E) = ∃).
A focal event is an event of interest in the probabilistic analysis. The uncertainties associated with
focal events are critical for the analysis of a system. In contrast, the uncertainties associated with
non-focal events are �complementary� and �balancing�. The corresponding non-focal event is not
the focus of the assessment. The quanti�ed uncertainties of non-focal events are derived from those
of the corresponding focal events. For instance, in risk assessment, the high-consequence event of
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interest is the target and focus of study, such as the event of a hurricane landfall at U.S. coastline
or the event of a structural failure at the half of a bridge's life expectancy, whereas the event of
the hurricane landfall at Mexican coastline and the event of the structral failure when the bridge is
twice as old as it was designed for may become non-focal.

In the interpretation in Eq.(16), the interval probability of a focal event Ei is proper (p(Ei) ∈ IR),
and the interval probability of a non-focal event Ej is existential (p(Ej) ∈ IR). Focal events have the
semantics of critical, uncontrollable, speci�ed in probabilistic analysis, whereas the corresponding
non-focal events are complementary, controllable, and derived. The complement of a focal event is
a non-focal event. For a set of mutually disjoint events, there is at least one non-focal event because
of Eq.(14).

Two relations between events are de�ned. Event E1 is said to be less likely (or more likely) to
occur than event E2, E1 � E2 (or E1 � E2), de�ned as

E1 � E2 ⇐⇒ p(E1) ≤ p(E2)
E1 � E2 ⇐⇒ p(E1) ≥ p(E2) (17)

Event E1 is said to be less focused (or more focused) than event E2, denoted as E1 v E2 (or
E1 w E2), de�ned as

E1 v E2 ⇐⇒ p(E1) ⊆ p(E2)
E1 w E2 ⇐⇒ p(E1) ⊇ p(E2) (18)

LEMMA 3.1. E1 ⊆ E2 ⇒ E1 � E2.

Proof. E1 ⊆ E2 ⇒ p(E2) = p(E1∪(E2−E1)) = p(E1)+p(E2−E1)−dualp(E1∩(E2−E1)) ≥ p(E1).

LEMMA 3.2. If E1 ∩ E3 = ∅ and E2 ∩ E3 = ∅, E1 � E2 ⇔ E1 ∪ E3 � E2 ∪ E3, E1 v E2 ⇔
E1 ∪ E3 v E2 ∪ E3.

Proof.
E1 � E2 ⇔ p(E1) ≤ p(E2) ⇔ p(E1) + p(E3) ≤ p(E2) + p(E3) ⇔ p(E1 ∪ E3) ≤ p(E2 ∪ E3) ⇔
E1 ∪ E3 � E2 ∪ E3.
E1 v E2 ⇔ p(E1) ⊆ p(E2) ⇔ p(E1) + p(E3) ⊆ p(E2) + p(E3) ⇔ p(E1 ∪ E3) ⊆ p(E2 ∪ E3) ⇔
E1 ∪ E3 v E2 ∪ E3.

LEMMA 3.3. If E1 and E3 are independent, and also E2 and E3 are independent, E1 � E2 ⇔
E1 ∩ E3 � E2 ∩ E3, E1 v E2 ⇔ E1 ∩ E3 v E2 ∩ E3.

Proof.
E1 � E2 ⇔ p(E1) ≤ p(E2)⇔ p(E1)p(E3) ≤ p(E2)p(E3)⇔ p(E1∩E3) ≤ p(E2∩E3)⇔ E1∩E3 �
E2 ∩ E3.
E1 v E2 ⇔ p(E1) ⊆ p(E2)⇔ p(E1)p(E3) ⊆ p(E2)p(E3)⇔ p(E1∩E3) ⊆ p(E2∩E3)⇔ E1∩E3 v
E2 ∩ E3.

LEMMA 3.4. Suppose E ∪ Ec = Ω and p(E) ∈ IR. (1) p(E) ≤ p(Ec) if p(E) ≤ 0.5; (2) p(E) ≥
p(Ec) if p(E) ≥ 0.5; (3) p(E) ⊇ p(Ec) if p(E) ≤ 0.5 and p(E) ≥ 0.5.
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Figure 1. inf-sup diagrams for di�erent relations between p(E) and p(Ec) when p(E) ∈ IR

Proof. (1) Because p(E) ∈ IR, p(Ec) ∈ IR, and p(E) + p(Ec) = 1, it is easy to see p(E) ≤ p(Ec)
and p(E) ≤ p(Ec) if p(E) ≤ 0.5. (2) can be veri�ed similarly. (3) If p(E) ≤ 0.5 and p(E) ≥ 0.5,
then p(Ec) ≥ 0.5 and p(Ec) ≤ 0.5. Thus p(E) ≤ p(Ec) and p(E) ≥ p(Ec).
Remark. As illustrated in Fig. 1 (a-c) respectively, a focal event E is less likely to occur than its
complement if p(E) ≤ 0.5; E is more likely to occur than its complement if p(E) ≥ 0.5; otherwise,
E is more focused than its complement. When E is a non-focal event, its complement Ec is a focal
event. The relationships between p(E) and p(Ec) are just opposite.

For three events Ei(i = 1, 2, 3),

p(E1 ∪ E2 ∪ E3) = p(E1) + p(E2) + p(E3)− dualp(E1 ∩ E2)
−dualp(E2 ∩ E3)− dualp(E1 ∩ E3) + p(E1 ∩ E2 ∩ E3)

In general, for A ⊆ Ω,

p(A) =
∑
S⊆A

(−dual)|A|−|S|p(S) (19)

3.2. Conditional Interval Probabilities

There have been several conditioning schemes proposed based on the Demspter-Shafer structures
(Smets, 1991; Fagin and Halpern, 1991; Ja�ray, 1992; Dubois and Prade, 1994; Chrisman, 1995; Ku-
lasekere et al., 2004). Di�erent from the coherent provision or F-probability theory, we de�ne con-
ditional generalized interval probabilities based on marginal probabilities. The conditional interval
probability p(E|C) for ∀E,C ∈ A is de�ned as

p(E|C) :=
p(E ∩ C)
dualp(C)

=

[
p(E ∩ C)
p(C)

,
p(E ∩ C)
p(C)

]
(20)

when p(C) > 0.

REC 2008 - Y. Wang



8 Y. Wang

Not only does the de�nition in Eq.(20) ensure the algebraic closure of the interval probability
calculus, but also it is a generalization of the canonical conditional probability in F-probabilities. Dif-
ferent from the Dempster's rule of conditioning or geometric conditioning, this conditional structure
maintains the algebraic relation between marginal and conditional probabilities. Further,

p(C|C) = 1

.
The available logic interpretations of the conditional interval probabilities are as follows.

− when p(E ∩ C) ∈ IR, p(C) ∈ IR, and p(E|C) ∈ IR

∀pE∩C ∈ p′(E ∩ C),∀pC ∈ p′(C), ∃pE|C ∈ p′(E|C), pE|C =
pE∩C

pC
(21)

or
∀pE|C ∈ p′(E|C), ∃pE∩C ∈ p′(E ∩ C), ∃pC ∈ p′(C), pE|C =

pE∩C

pC
(22)

− when p(E ∩ C) ∈ IR, p(C) ∈ IR, and p(E|C) ∈ IR

∀pE∩C ∈ p′(E ∩ C),∃pC ∈ p′(C), ∃pE|C ∈ p′(E|C), pE|C =
pE∩C

pC
(23)

or
∀pE|C ∈ p′(E|C), ∀pC ∈ p′(C),∃pE∩C ∈ p′(E ∩ C), pE|C =

pE∩C

pC
(24)

− when p(E ∩ C) ∈ IR, p(C) ∈ IR, and p(E|C) ∈ IR

∀pE∩C ∈ p′(E ∩ C),∀pE|C ∈ p′(E|C),∃pC ∈ p′(C), pE|C =
pE∩C

pC
(25)

or
∀pC ∈ p′(C), ∃pE∩C ∈ p′(E ∩ C), ∃pE|C ∈ p′(E|C), pE|C =

pE∩C

pC
(26)

The logic interpretations of interval conditional probabilities build the connection between point
measurements and probability sets. Therefore, we may use them to check if a range estimation is a
tight envelope. We use the Example 3.1 in (Weichselberger, 2000) to illustrate.

EXAMPLE 3.1. Given the following probabilities in the sample space Ω = E1 ∪ E2 ∪ E3,

p′(E1) = [0.10, 0.25] p′(E2 ∪ E3) = [0.75, 0.90]
p′(E2) = [0.20, 0.40] p′(E1 ∪ E3) = [0.60, 0.80]
p′(E3) = [0.40, 0.60] p′(E1 ∪ E2) = [0.40, 0.60]

A partition of Ω is
C = {C1, C2} where C1 = E1 ∪ E2 and C2 = E3

p(C1) = [0.40, 0.60] p(C2) = [0.60, 0.40]
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Suppose p(E1) = [0.10, 0.25] and p(C1) = [0.60, 0.40], we have

p(E1|C1) =
[0.10, 0.25]
[0.40, 0.60]

= [0.1666, 0.6250]

The interpretation of

∀pE1 ∈ [0.10, 0.25], ∀pC1 ∈ [0.40, 0.60],∃pE1|C1
∈ [0.1666, 0.6250], pE1|C1

=
pE1

pC1

indicates that the range estimation p(E1|C1) = [0.1666, 0.6250] is complete in the sense that it
considers all possible occurences of p(E1) and p(C1). However, the range estimation is not necessarily
a tight envelope.

On the other hand, if p(E1) = [0.25, 0.10] and p(C1) = [0.40, 0.60], we have

p(E1|C1) =
[0.25, 0.10]
[0.60, 0.40]

= [0.6250, 0.1666]

The interpretation of

∀pE1|C1
∈ [0.1666, 0.6250],∃pE1 ∈ [0.10, 0.25],∃pC1 ∈ [0.40, 0.60], pE1|C1

=
pE1

pC1

indicates that the range estimation [0.1666, 0.6250] is also sound in the sense that the range estima-
tion is a tight envelope.

Suppose p(E1) = [0.25, 0.10], p(E2) = [0.20, 0.40], and p(C1) = [0.60, 0.40], we have

p(E1|C1) =
[0.25, 0.10]
[0.40, 0.60]

= [0.4166, 0.25]

p(E2|C1) =
[0.20, 0.40]
[0.40, 0.60]

= [0.3333, 1.0]

The interpretations are

∀pE1|C1
∈ [0.25, 0.4166],∀pC1 ∈ [0.40, 0.60],∃pE1 ∈ [0.10, 0.25], pE1|C1

=
pE1

pC1

∀pE2 ∈ [0.20, 0.40],∀pC1 ∈ [0.40, 0.60], ∃pE2|C1
∈ [0.3333, 1.0], pE2|C1

=
pE2

pC1

respectively. Combining the two, we can have the interpretation of

∀pE2 ∈ [0.20, 0.40], ∀pC1 ∈ [0.40, 0.60],∀pE1|C1
∈ [0.25, 0.4166],

∃pE1 ∈ [0.10, 0.25]∃pE2|C1
∈ [0.3333, 1.0],

pE1|C1
= pE1

pC1
, pE2|C1

= pE2
pC1

If events A and B are independent, then

p(A|B) =
p(A)p(B)
dualp(B)

= p(A) (27)

For a mutually disjoint event partition
⋃n

i=1Ei = Ω, we have

REC 2008 - Y. Wang



10 Y. Wang

p(A) =
n∑

i=1

p(A|Ei)p(Ei) (28)

LEMMA 3.5. If B ∩ C = ∅, (1) p(A|C) ⊆ p(A|B) ⇔ p(A|B ∪ C) ⊆ p(A|B). (2) p(A|B ∪ C) ⊇
p(A|B) ⇔ p(A|C) ⊇ p(A|B) .

Proof. (1) p(A|C) ⊆ p(A|B) ⇔ p(A ∩ C)/dualp(C) ⊆ p(A|B) ⇔ p(A ∩ C) ⊆ p(A|B)p(C) ⇔
p(A|B)p(B)+p(A∩C) ⊆ p(A|B)p(B)+p(A|B)p(C)⇔ p(A∩B)+p(A∩C) ⊆ p(A|B)p(B∪C)⇔
p (A ∩ (B ∪ C)) ⊆ p(A|B)p(B ∪C) ⇔ p (A ∩ (B ∪ C)) /dualp(B ∪C) ⊆ p(A|B) ⇔ p(A|B ∪C) ⊆
p(A|B). (2) can be veri�ed similarly.
Remark. The interpretation of the relationship (1) is that if there are two pieces of evidence (B and
C), and one (C) may provide more precise estimation about a focal event (A) than the other (B)
may, then the new estimation of probability about the focal event (A) based on the disjunctively
combined evidence can be more precise than the one based on only one of them (B), even though
the two pieces of information are contradictory to each other. The other direction of the reasoning
is that if the precision of the focal event estimation with the newly introduced evidence (C) is
improved, the new evidence (C) must be more informative than the old one (B) although these two
are controdictory.
Remark. The interpretation of the relationship (2) is that if the estimation about a focal event (A)
becomes more precise if some new evidence (B) excludes some possibilities (C) from the original
evidence (B ∪ C), then the estimation of probability about the focal event (A) based on the new
evidence (B) must be more precise than the one based on the excluded one (C) along. The other
direction of the reasoning is that if the precision of the focal event estimation with a contradictory
evidence (C) is not improved compared to the old one with another evidence (B), then the new
evidence (B ∪ C) does not improve the estimation of the focal event (A).

4. Bayes' Rule with Generalized Intervals

The Bayes' rule with generalized intervals (GIBR) is de�ned as

p(Ei|A) =
p(A|Ei)p(Ei)∑n

j=1 dualp(A|Ej)dualp(Ej)
(29)

where Ei(i = 1, . . . , n) are mutually disjoint event partitions of Ω and
∑n

j=1 p(Ej) = 1. The lower
and upper probabilities are calculated as

[
p(Ei|A), p(Ei|A)

]
=

[
p(A|Ei)p(Ei)∑n

j=1 p(A|Ej)p(Ej)
,

p(A|Ei)p(Ei)∑n
j=1 p(A|Ej)p(Ej)

]
(30)

We can see Eq.(29) is algebraically consistent with the conditional de�nition in Eq.(20), with∑n
j=1 dualp(A|Ej)dualp(Ej) =

∑n
j=1 dual [p(A|Ej)p(Ej)] = dual

∑n
j=1 p(A ∩ Ej) = dualp(A).

When n = 2, p(E) + p(Ec) = 1. Let p(Ec) ∈ IR. Eq.(29) becomes
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p(E|A) =
p(A|E)p(E)

p(A|E)p(E) + p(A|Ec)p(Ec)
=

p(A ∩ E)
p(A ∩ E) + p(A ∩ Ec)

(31)

p(E|A) =
p(A|E)p(E)

p(A|E)p(E) + p(A|Ec)p(Ec)
=

p(A ∩ E)
p(A ∩ E) + p(A ∩ Ec)

(32)

When p(A∩E) ∈ IR and p(A∩Ec) ∈ IR, the relation is equivalent to the well-known 2-monotone
tight envelope (Fagin and Halpern, 1991; de Campos et al., 1990; Wasserman and Kadan, 1990;
Ja�ray, 1992; Chrisman, 1995), given as:

P∗(E|A) =
P∗(A ∩ E)

P∗(A ∩ E) + P ∗(A ∩ Ec)
(33)

P ∗(E|A) =
P ∗(A ∩ E)

P ∗(A ∩ E) + P∗(A ∩ Ec)
(34)

where P∗ and P ∗ are the lower and upper probability bounds de�ned in the traditional interval
probabilities. Here P ∗(A∩Ec) = p(A∩Ec) and P∗(A∩Ec) = p(A∩Ec) are the estimations of the
lower and upper probability envelopes.

LEMMA 4.1. p(A|E) ⊆ p(A|Ec) ⇔ p(E|A) ⊆ p(E). p(A|E) ⊇ p(A|Ec) ⇔ p(E|A) ⊇ p(E).

Proof. p(A|E) ⊆ p(A|Ec) ⇔ p(A ∩ E)/dualp(E) ⊆ p(A ∩ Ec)/dualp(Ec) ⇔ p(A ∩ E)p(Ec) ⊆
p(A ∩ Ec)p(E) ⇔ p(A ∩ E)p(Ec) ≥ p(A ∩ Ec)p(E) and p(A ∩ E)p(Ec) ≤ p(A ∩ Ec)p(E) ⇔
p(A∩E)

[
1− p(E)

]
≥ p(A∩Ec)p(E) and p(A∩E) [1− p(E)] ≤ p(A∩Ec)p(E)⇔p(A∩E) ≥ p(A∩

E)p(E)+p(A∩Ec)p(E) and p(A∩E) ≤ p(A∩E)p(E)+p(A∩Ec)p(E)⇔ p(A∩E) ⊆ p(A∩E)p(E)+
p(A∩Ec)p(E)⇔ p(A∩E) ⊆ [p(A ∩ E) + p(A ∩ Ec)] p(E)⇔ p(A∩E)/dual [p(A ∩ E) + p(A ∩ Ec)] ⊆
p(E) ⇔ p(E|A) ⊆ p(E).

The proof of p(A|E) ⊇ p(A|Ec) ⇔ p(E|A) ⊇ p(E) is similar.
Remark. When the likelyhood functions p(A|E) and p(A|Ec) as well as prior and posterior probabil-
ities are proper intervals, we can interpret the above relation as follows. If the likelyhood estimation
of event A given E occurs is more accurate than that of event A given event E does not occur, then
the extra information A can reduce the ambiguity of the prior estimation.

LEMMA 4.2. p(A|E) ≥ p(A|Ec) ⇔ p(E|A) ≥ p(E). p(A|E) ≤ p(A|Ec) ⇔ p(E|A) ≤ p(E).

Proof. The proof is similar to the previous Lemma.
Remark. If the occurance of event E increases the likelyhood estimation of event A compared to
the one without the occurance of event E, then the extra information A will increase the probability
of knowing that event E occurs.

LEMMA 4.3. p(A|E) = p(A|Ec) ⇔ p(E|A) = p(E).

Proof. From either of the above two lemmas, p(A|E) = p(A|Ec) ⇔ p(A|E) ⊇ p(A|Ec) and
p(A|E) ⊆ p(A|Ec) ⇔ p(E|A) ⊇ p(E) and p(E|A) ⊆ p(E) ⇔ p(E|A) = p(E). Or p(A|E) =
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p(A|Ec) ⇔ p(A|E) ≥ p(A|Ec) and p(A|E) ≤ p(A|Ec) ⇔ p(E|A) ≥ p(E) and p(E|A) ≤ p(E) ⇔
p(E|A) = p(E).
Remark. The extra information A does not add much value to the assessment of event E if we have
very similar likelyhood ratios, p(A|E) and p(A|Ec).

One of the common issues associated with the Bayes' rule based on the traditional set-based inter-
vals is the loss of information during belief updating. The general bounds of posterior probabilities
obtained depend on the sequence in which updates are performed (Pearl, 1990; Chrisman, 1995).
That is, the posterior lower and upper bounds obtained by applying a series of evidences sequencially
may disagree with the bounds obtained by conditioning the prior with all of the evidences in a
single step. The belief updating based on Eq.(29) is sequence-independent because p(E|A) can be
calculated incrementally, given as follows.

LEMMA 4.4. p(E|A ∩B) = p(E ∩B|A)/dualp(B|A) for ∀A,B,E ∈ A.

Proof. p(E|A ∩ B) = p(E ∩ A ∩ B)/dualp(A ∩ B) = [p(E ∩B|A)p(A)] /dual [p(B|A)p(A)] =
p(E ∩B|A)/dualp(B|A).
At the same time, p(E) can be calculated incrementally based on

p(A ∩B) = p(B|A)p(A)

The above sequence-independent property is due to the algebraic closure of the conditional proba-
bility de�ned in Eq.(20).

4.1. Logic Interpretation

Some examples of logic interpretations for the relationships between prior and posterior interval
probabilities in Eq.(29) are as follows.

− when p(A|Ei) ∈ IR, p(Ei) ∈ IR, p(A|Ej) ∈ IR (j = 1, . . . , n, j 6= i), p(Ej1) ∈ IR (j1 =
1, . . . , k, j1 6= i), p(Ej2) ∈ IR (j2 = k + 1, . . . , n, j2 6= i) and p(Ei|A) ∈ IR

∀j 6=ipA|Ej
∈ p′(A|Ej),∀j1 6=ipEj1 ∈ p′(Ej1),

∃pA|Ei
∈ p′(A|Ei),∃pEi ∈ p′(Ei), ∃j2 6=ipEj2 ∈ p′(Ej2), ∃pEi|A ∈ p′(Ei|A),

pEi|A =
pA|Ei

pEi∑n

j=1
pA|Ej

pEj

(35)

− when p(A|Ei) ∈ IR, p(Ei) ∈ IR, p(A|Ej) ∈ IR (j = 1, . . . , n, j 6= i), p(Ej) ∈ IR (j =
1, . . . , n, j 6= i), and p(Ei|A) ∈ IR

∀j 6=ipA|Ej
∈ p′(A|Ej),∀j 6=ipEj ∈ p′(Ej), ∀pEi|A ∈ p′(Ei|A),

∃pA|Ei
∈ p′(A|Ei),∃pEi ∈ p′(Ei),

pEi|A =
pA|Ei

pEi∑n

j=1
pA|Ej

pEj

(36)

Notice that because both p(A|Ei) and dualp(A|Ei) occur in Eq.(29), the associated logic inter-
pretation about p(A|Ei) is always existential. This indicates that the completeness of the posterior
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probability p(Ei|A) cannot be checked by the interpretation itself. Yet the soundness of the posterior
probability estimation can be checked by some interpretations such as the one in Eq.(36).

5. Concluding Remarks

In this paper, we presented a new form of imprecise probability based on generalized intervals.
Generalized intervals allow the coexistence of proper and proper intervals. This enables the algebraic
closure of arithmetic operations. We di�erentiate focal events from non-focal events by the modalities
and semantics of interval probabilities. An event is focal when the semantics associated with its
interval probability is universal, whereas it is non-focal when the semantics is existential. This
di�erentiation allows us to have a simple and uni�ed representation based on a logic coherence
constraint, which is a stronger restriction than the regular 2-monotoniciy. This stronger requirement
appears to be the cost we pay for the algebraic closure.

New rules of conditioning and updating are de�ned with generalized intervals. The new condi-
tional probabilities ensure the algebraic relation with marginal interval probabilities. It is also shown
that the new Bayes' updating rule is a generalization of the 2-monotone tight envelope updating rule
under the new representation. This enables sequence-independent updating. Generalized intervals
also allow us to interpret the algebraic relations among intervals in terms of the �rst-order logic.
This helps us to understand the relationship between individual measurements and probability sets
as well as to check completeness and soundness of bounds.

In summary, the algebraic closure of the new form provides some advantages for a simpler
probability calculus, which is helpful in engineering and computer science practices. Future work
may include the study of interpretation with the new form for assessment guidance. That is, we
need to understand the algebraic conclusions better and take appropriate actions. Even though
the computation is simpli�ed, the completeness of lower and upper envelope estimations based on
generalized intervals is not clear in general. We need to study how generalized intervals may under-
estimate envelopes. We also need to investigate the di�erence between the new and the traditional
interval forms because of the logic coherence constraint.
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