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Abstract

Machine learning is useful for analyzing and monitoring complex manufacturing processes. However, it has several limitations including the
curse-of-dimensionality and lack of training data. In this paper, we propose a quantum machine learning strategy to tackle these challenges.
Quantum support vector machine is applied to identify the states of machines in fused filament fabrication process based on acoustic emission
data. Quantum convolutional neural network is used to detect spatters in laser powder bed fusion process based on coaxial optical images. Our
results show that quantum machine learning can achieve the similar accuracy levels of predictions by classical machine learning counterparts, but
with exponentially fewer parameters.

© 2024 The Authors. Published by ELSEVIER Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the NAMRI/SME.

Keywords: Quantum Machine Learning; Quantum Support Vector Machine; Quantum Convolutional Neural Network; Fused Filament Fabrication; Laser Powder
Bed Fusion

1. Introduction

Data-driven methods, such as machine learning, are useful to
analyze and monitor complex manufacturing processes, where
it is very expensive to only rely on physics-based models for
predictions. Machine learning has been applied to monitor ad-
ditive manufacturing processes [21]. Methods such as support
vector machine (SVM) [28], hidden Markov model [29], convo-
lutional neural network (CNN) [6, 14], and dictionary learning
[17] have been applied.

However, machine learning has several limitations in manu-
facturing applications. First, machine learning for the predic-
tion of complex systems requires a large amount of training
data, whereas data collection in manufacturing is expensive.
Second, data collected in manufacturing processes are imbal-
anced. Manufacturing processes are typically performed in nor-
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mal conditions, and anomalies occur less frequently. The ac-
curacy of anomaly detection will be affected by the imbal-
anced training dataset. Third, manufacturing equipment de-
grades over time. New machine states need to be discovered
in real time. Therefore, machine learning models for classifica-
tion should have the capability of dynamic training and model
updates [30]. Fourth, machine learning suffers from the curse-
of-dimensionality. As the dimension of model inputs increases,
the required training data size increases exponentially. The lack
of training data will significantly reduce the accuracy of model
predictions.

In this paper, we propose a quantum machine learning strat-
egy to tackle the challenges of curse-of-dimensionality and
lack of training data. Quantum machine learning utilizes quan-
tum computer and classical computer simultaneously to process
data and perform predictions. Quantum computer takes advan-
tages of quantum mechanics phenomena of superposition and
entanglement to perform mass parallel computation [10, 8]. The
computation is based on quantum bits, or qubits. Quantum com-
puting can help solve complex problems such as large-scale op-
timization [27, 25, 13] and engineering simulations [24, 26].
Two quantum machine learning methods are used in this work,

2213-8463© 2024 The Authors. Published by ELSEVIER Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Peer-review under responsibility of the scientific committee of the NAMRI/SME.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


1416 E. Choi et al. / Manufacturing Letters 41 (2024) 1415–1422

including quantum support vector machine (QSVM) and quan-
tum convolutional neural network (QCNN). In QSVM, classi-
cal data are mapped to the quantum states in the Hilbert space
of qubits based on a quantum kernel. Then a hyperplane is es-
timated to divide the data into two classes. In QCNN, data are
similarly mapped to the quantum states. Quantum circuits are
constructed as convolutional layers to reduce the dimension of
Hilbert space. The quantum gates in the circuit are parameter-
ized. The parameters are trained with classical optimization al-
gorithms.

Here, we demonstrate the feasibility of quantum machine
learning approaches for manufacturing process monitoring.
Specifically, QSVM is applied to identify the states of machines
in fused filament fabrication (FFF) based on acoustic emission
(AE) data. QCNN is used to detect spatters in laser powder bed
fusion (LPBF) based on coaxial optical images. This is the first
research effort of its kind to utilize quantum machine learning in
manufacturing applications. Our results show that quantum ma-
chine learning can achieve the similar accuracy levels of predic-
tions by classical machine learning counterparts, but with expo-
nentially fewer parameters. Therefore, quantum machine learn-
ing has the great potential to tackle the curse-of-dimensionality
challenge.

In the remainder of the paper, quantum computing and quan-
tum machine learning are introduced in Section 2. The QSVM
method for FFF machine diagnosis is described in Section 3.
The QCNN method for spatter detection in LPBF is presented
in Section 4. The results and the comparisons with classical ma-
chine learning methods are discussed in Section 5. Section 6
provides conclusions.

2. Background

In this section, quantum computing and quantum machine
learning are introduced. The basic concepts of quantum com-
puting, superposition and entanglement are introduced in Sec-
tion 2.1. The fundamentals of QSVM and QCNN are intro-
duced in Section 2.2.

2.1. Quantum Computing

Superposition is the phenomenon that the state of a qubit can
be represented as a linear combination of computational basis
states. In contrast to a classical bit, where the state is either 0 or
1, a qubit has a state defined as

|ψ⟩ = α|0⟩ + β|1⟩, (1)

where |0⟩ and |1⟩ are computational basis states, and α and β are
complex-valued amplitudes.

Entanglement is the phenomenon where the state of one
qubit is not independent of another qubit. In other words, a state
of the entangled qubit is correlated with another one. Entangle-
ment allows quantum systems to process an exponentially large
amount of information at once. For instance, the most general
form of a two qubit state can be written as

|ψ⟩ = α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩, (2)

where α, β, γ, and δ are the amplitudes of basis states |00⟩, |01⟩,
|10⟩, and |11⟩, respectively. When a two-qubit system can be
factored into two uncoupled one-qubit systems, then the two
qubits are not entangled. In this case, the amplitudes satisfy the
requirement of αδ = βγ. In contrast, the amplitudes of the en-
tangled system are four independent complex numbers.

An n-qubit quantum computer encodes information in the
2n-dimensional Hilbert space. The dimension of the Hilbert
space increases exponentially as the number of qubits increases.
Therefore, quantum computer has the potential to speed up
computation exponentially. In a quantum computer, a quantum
circuit is constructed to manipulate the state of the quantum sys-
tem. Similar to electrical circuits, quantum circuits consist of
wires and unitary quantum gates. Each wire represents a qubit
which contains information about the system. The amplitudes
of the system’s state change as the wires pass through each
quantum gate. Mathematically, a quantum circuit is defined as

|ψ⟩ = UM · · ·U2U1|ψ0⟩, (3)

where each Ui (i = 1, 2, . . . ,M) is a unitary operator. |ψ0⟩ is
the initial state, and |ψ⟩ is the final state. After Ui’s are per-
formed sequentially, a measurement operator is applied at the
end, which collapses the system’s superposition state into a
computational basis state.

There are several types of quantum gates which perform dif-
ferent operations in quantum circuits. One gate is the Hadamard
gate, which is defined as

H =
1
√

2

[
1 1
1 −1

]
. (4)

If the initial state of a qubit is |0⟩, the Hadamard gate transforms
the state into the equal superposition state (|0⟩+ |1⟩)/

√
2. In the

Bloch sphere, which geometrically represents the state space of
a qubit, the Hadamard gate performs a π-rotation about the axis
in the (x+z)/

√
2 direction. Another gate is the Pauli gate which

performs a π-rotation about an axis in the Bloch sphere. The
Pauli-X, Pauli-Y, and Pauli-Z gates rotate the qubit by an angle
π about the x-, y-, and z-axes, respectively. The three Pauli gates
are defined as

PX =

[
0 1
1 0,

]
, PY =

[
0 −i
i 0

]
, PZ =

[
1 0
0 −1

]
. (5)

Any operator consists of a combination of universal quantum
gates. One type of universal gates are rotation gates, RX(θ),
RY (θ), and RZ(θ), which correspond to rotations about x-, y-,
and z-axes on the Bloch sphere, defined as
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RX(θ) =
[

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

]
, (6)

RY (θ) =
[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
, (7)

and

RZ(θ) =
[
e−iθ/2 0

0 eiθ/2

]
, (8)

respectively. Another type of universal gates is the CNOT gate,
defined as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (9)

The CNOT gate operates on two qubits simultaneously. If the
control qubit is 1, the target qubit will flip from 0 to 1 or 1 to 0.

Despite the potential speed up of quantum computing, its
scalability is currently limited by the hardware implementation.
The performance of noisy intermediate-scale quantum (NISQ)
devices is limited on two aspects [20]. First, NISQ devices are
prone to decoherence, where quantum states are lost due to in-
teractions with their surroundings. As a result, quantum algo-
rithms cannot be executed for a long period of time. Second,
the number of available qubits is limited. With these limitations,
quantum algorithms are currently infeasible to solve large-scale
problems. In addition, similar to classical computer, error cor-
rection mechanisms must be included in quantum computer to
improve the reliability. However, due to the limited number of
qubits, quantum error correction techniques are difficult to im-
plement in NISQ devices.

2.2. Quantum Machine Learning

Quantum machine learning refers to the machine learning
methods that are based on quantum computer, such as quan-
tum kernels and variational quantum algorithms [5]. The gen-
eral framework of variational quantum algorithms is illustrated
in Fig. 1. Classical data x are first preprocessed and mapped
to quantum states through quantum kernel V(x) and stored in
a quantum register. Quantum operations, which are parameter-
ized with rotational angles θ and denoted as U(θ), are applied
to the register. The measurements then give us the distribution
of cost function values. Classical optimizers are used to train
the parameters to minimize the cost function

f (x; θ) = ⟨B̂⟩ = ⟨0|V†(x)U†(θ)B̂U(θ)V(x) |0⟩ , (10)

where the n-qubit register is usually initialized as |0⟩ = |0⟩⊗n.
U† is the complex conjugate of U. The cost function is the
expectation value of a pre-defined observable B̂ for a specific
problem.

Figure 1. Quantum machine learning with variational quantum circuit, where
parameters θ are trained to minimize cost function f (x; θ).

The parameterized quantum circuit is also referred to as
quantum neural network. The training of quantum neural net-
work is to find the optimal rotation angles θ so that the chance of
obtaining the best prediction after measurement is maximized.
To reduce the number of qubits in the circuit, QCNN was also
proposed [7]. QCNN is illustrated with a simple example in Fig.
2. After the quantum feature mapping, the information is en-
coded with 8 qubits. In the convolutional layer, the qubits form
a ring and the neighboring qubits on the ring are entangled. In
the pooling layer, the number of qubits is reduced by half so that
the dimension of the feature space is reduced. The convolution
and pooling processes can be applied recursively until only one
qubit remains as a binary output.

Figure 2. QCNN structure of 8 qubits with convolutional layers.

Another important category of quantum machine learning
methods is QSVM. In QSVM, quantum feature map function
V(x) maps the classical data into the 2n-dimensional Hilbert
space with n qubits. Quantum kernel is defined to quantify the
difference between data points x and x′, as

K(x, x′) = | ⟨V(x)|V(x′)⟩|2. (11)

For hybrid QSVM, quantum kernel is used in the classical
SVM to find the optimal hyperplane for classification. The ex-
ponentially high-dimensional feature space after quantum fea-
ture mapping is necessary to achieve quantum advantage of
data encoding, which can improve the classification accuracy
of SVM [11].

Other quantum machine learning algorithms have also been
developed, such as quantum decision tree [9], quantum cluster-
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ing [12], quantum Born machines [2], and quantum reinforce-
ment learning [15]. Quantum machine learning methods have
been utilized in various applications, including facial expres-
sion classification [22], cybersecurity [23], quantum phase de-
tection [16], disease diagnosis [1], drug development [3], and
seismic damage detection [4]. This study is the first attempt to
use quantum machine learning for manufacturing applications.

3. Quantum Support Vector Machine for FFF Anomaly De-
tection

Here, QSVM is applied to anomaly detection, where the FFF
machine states are identified based on AE sensor data.

3.1. FFF Machine States

The AE sensor data for FFF machine states are obtained
from Wu et al. [28]. The four conditions or states of 3D printer
include ‘Normal’, ‘Run-out-of-Material’, ‘Semi-Blocked’ (the
extruder is semi-blocked), and ‘Blocked’ (the extruder is com-
pletely blocked). The data were collected by attaching an AE
sensor to a 3D printer. Each anomaly condition was intention-
ally introduced and the corresponding datasets were collected.
Three important attributes are identified from the raw AE sen-
sor data, including ABS-Energy, RMS, and AE counts. ABS-
Energy of an AE hit is the absolute energy calculated as the
integration of the output voltage within an AE hit, which in-
dicates its strength. RMS is the root mean square of the AE
signal. AE counts are the numbers of pulses over a certain
threshold. All the AE sensor data are given as time-series data
points. A time window of 500 ms is used to calculate the
mean and the standard deviation of each attribute. A total of
six features, which include the means and standard deviations
of the three attributes, are used for the demonstration. Fig. 3
shows the mean and standard deviation of each time window
for all four states and three attributes. For instance, Fig. 3a to
Fig. 3d show the RMS of the four states, respectively. Both
mean and standard deviation are plotted in the figure, where
the center lines are mean values and shaded regions are stan-
dard deviations. The signals for the ‘Blocked’ state have larger
mean values than those for the ‘Normal’ state. The ones for the
‘Run-out-of-Material’ state have larger standard deviations than
those for the ‘Normal’ state. The total numbers of data points
for the ‘Normal’, ‘Semi-Blocked’, ‘Blocked’, and ‘Run-out-of-
Material’ are 302, 371, 221, and 130, respectively. 75% of the
data points are used for training, and the remaining 25% are the
test data. All the features are min-max normalized.

Fig. 4 shows the distributions of four states for the three at-
tributes. For RMS and ABS-Energy in Fig. 4a and Fig. 4b, the
data for the ‘Normal’ and ‘Semi-Blocked’ states overlap. For
AE counts in Fig. 4c, there are overlaps among the ‘Normal’,
‘Semi-Blocked’, and ‘Blocked’ states.

3.2. Quantum Support Vector Machine

We use the quantum feature map proposed by Havlı́ček
et al. [11], which is implemented with ZZfeaturemap in Qiskit.

Fig. 5 shows the two-qubit ZZfeaturemap, which consists of
Hadamard gate H, phase gate P, and CNOT gate. ϕ is a classical
mapping function such that ϕ(x) = x and ϕ(x, y) = (π−x)(π−y).
In this implementation, the number of qubits is equal to the
number of features. Two cases are demonstrated. For the first
case, four features are used, which include the means and stan-
dard deviations of RMS and ABS-Energy. Four qubits are used
to encode the four features. For the second case, all six features
in the data are used. Two additional qubits are utilized to encode
the mean and standard deviation of AE counts. The quantum
kernel in Eq. (11) is calculated with the quantum feature map.
QSVM is then trained with the quantum kernel. The classifica-
tion accuracy of QSVM is compared with those of two classical
SVMs. One classical SVM is trained with the linear kernel, and
the other is trained with the radial basis function (RBF) kernel.
The same SVM model was used for both QSVM and SVM,
where each method involves a different feature mapping kernel.

4. Quantum Convolutional Neural Network for LPBF
Monitoring

As the second quantum machine learning method, QCNN
is used to identify the spatters in LPBF process based on the
optical images captured by a co-axial high-speed camera.

4.1. LPBF Melt Pool Monitoring Dataset

The dataset includes the images of LPBF melt pool captured
by the high-speed camera at 1,000 frames per second [18]. Each
frame was manually labeled as either ‘Spatter’ or ‘No Spatter’
by an expert. As shown in Fig. 6, images of 20 × 20 pixels
focused on the melt pool are cropped from the original 128×48
pixels, and then resized to 4 × 2 pixels in order to encode them
with 8 qubits. The training and test data were randomly sampled
from the original data to prevent class imbalance. The training
dataset consists of 100 images for each class, whereas the test
dataset contains 50 images for each class.

4.2. Quantum Convolutional Neural Network

The quantum circuit of QCNN is shown in Fig. 7. QCNN
starts with Hadamard gates, as shown in Fig. 7a, to map the ba-
sis states into equal superposition. Subsequently, Pauli-Z gate,
as shown in Eq. (5), is applied. The feature mapping circuit in
Fig. 7a is performed on two qubits. The gates are applied twice.

After data are encoded with feature mapping, convolution
and pooling layers are iteratively applied to the qubits. The con-
volution and pooling layers are constructed with two-qubit uni-
tary gates to reduce the number of parameters and training time.
To obtain the best predictions, the parameters are optimized so
that the loss function is minimized.

Quantum convolution circuit consists of rotation gates and
CNOT gates, as shown in Fig. 7b. Rotation gates include RY (θ)
and RZ(θ), which are shown in Eqs. (7) and (8), respectively.
The CNOT gate, as shown in Eq. (9), entangles qubits so that
fewer qubits are used to maintain information about features.



E. Choi et al. / Manufacturing Letters 41 (2024) 1415–1422 1419

Figure 3. Time series data for different FFF machine states. Center lines are the means of 500 ms time window data and shaded regions are standard deviations. Each
column corresponds to a different attribute: (a-d) RMS, (e-h) ABS-Energy, (i-l) AE Counts. Each row corresponds to a different state: (a),(e),(i) Normal, (b),(f),(j)
Semi-Blocked, (c),(g),(k) Blocked, (d),(h),(l) Run-out-of-Material.

Figure 4. Distributions of features for different FFF machine states. (a) RMS, (b) ABS-Energy, (c) AE counts.

Quantum pooling circuit is used, as shown in Fig. 7c, to re-
duce the number of qubits in QCNN while maintaining infor-
mation, similar to conventional CNN [7]. In quantum machine
learning, it is essential to reduce the computational cost. The

information in two qubits can be combined and encoded with
one qubit. In the end, QCNN leaves only one qubit for binary
classification problems. More qubits can be used for multi-class
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Figure 5. Two qubit ZZfeature map circuit.

Figure 6. Images for spatter detection in laser powder bed fusion process. Im-
ages of 20 × 20 pixels focused on the melt pool are cropped from the original
128 × 48 pixels, and then resized to 4 × 2 pixels for (a-c) ‘Spatter’ and (d-f) ‘No
Spatter’. Red boxes were added on top of the images to visualize the cropped
regions.

classification. The convolution layers of QCNN structure are il-
lustrated in Fig. 2.

The QCNN was trained for 100 epochs to optimize the pa-
rameters of the variational quantum circuit. Constrained opti-
mization by linear approximation (COBYLA) optimizer [19]
was used. To compare the performance, conventional neural
network (NN) was trained with the same dataset. The image
data are converted into 1D vectors for both QCNN and NN.
QCNN has three convolution and pooling layers, whereas NN
has three hidden linear layers. The number of nodes in each hid-
den layer of NN is set to 8, 6, and 1 so that NN has the same
number of parameters as QCNN. Different learning rates for
NN were investigated and the best one was chosen. In addition,
the numbers of nodes and layers of NN were varied to further
optimize its performance.

5. Results and Discussion

The proposed quantum machine learning methods were ap-
plied to detect anomalies in FFF and LPBF processes. The re-
sults are shown and compared in this section.

5.1. Results of Quantum Support Vector Machine

The results of QSVM are shown in Table 1. When four fea-
tures are used, classical SVM with RBF kernel shows the best
classification performance of 85.9% accuracy. QSVM has a
comparable performance of 85.7% accuracy. When six features
are used, QSVM shows 89.5% accuracy, outperforming both
classical SVMs with accuracies of 84.0% and 86.7% for linear
and RBF kernels, respectively.

Overall, classification accuracy is improved as the number
of features increases. It is also observed that the accuracy of

QSVM increases by 3.8% from the four-feature to six-feature
case. This improvement is significantly larger than those of
classical SVMs, which are 0.4% and 0.8% for the linear and
RBF kernels, respectively. The results suggest that mapping
data into exponentially high-dimensional Hilbert space results
in more accurate classification. As the dimensionality of data
increases, the QSVM becomes more advantageous in finding
the optimal hyperplane for classification.

Table 1. Classification accuracies (%) of FFF machine states with different ker-
nels.

# of features Kernels

Linear RBF Quantum

4 83.6 85.9 85.7
6 84.0 86.7 89.5

5.2. Results of Quantum Convolutional Neural Network

The loss function values of QCNN during the training are
plotted in Fig. 8. Overall, the loss was gradually reduced during
the training, although some fluctuations are observed. The fluc-
tuations are mostly caused by the probabilistic nature of mea-
surements and single batch training. The predictions of QCNN
are shown in Fig. 9. The color scale represents the intensities of
the pixels. Convolution layers are used to extract information
from images such as contours and brightness. 63 parameters are
used for QCNN to classify the images as either ‘Spatter’ or ‘No
Spatter’. Fig. 9a and Fig. 9b show two instances of ‘Spatter’,
and Fig. 9c and Fig. 9d show two instances of ‘No Spatter’.

Table 2 shows the classification accuracies of QCNN and
three NNs, where each NN is trained with a different number
of parameters. The accuracy of QCNN is compared with the
best accuracies of NNs, which resulted from a learning rate of
10−5. With 8 qubits, QCNN results in both higher training and
test accuracies than classical NN with 63 parameters. Further-
more, only the NN with 5,553 parameters outperforms QCNN.
This suggests that QCNN can achieve the similar accuracy of
classical NN but with exponentially fewer parameters.

Table 2. Comparisions of accuracies for QCNN and three NNs with different
number of parameters.

# of Parameters Train Accuracy Test Accuracy

QCNN 63 75.0 64.6

63 60.1 59.2
NN 1,361 74.3 63.6

5,553 78.6 69.0

5.3. Discussion

The architecture of QCNN can be represented as an n-level
binary tree structure, where each node consists of two convo-
lution circuits and one pooling circuit. Each convolution circuit
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Figure 7. Quantum circuits for QCNN (a) Quantum Zfeature map for two qubits. (b) Quantum convolutional layer detects features between qubits. (c) Quantum
pooling layer reduces dimensionality of the QCNN.

Figure 8. The loss function value of the quantum convolutional neural network
during the training.

Figure 9. Quantum convolutional neural network predictions. Grayscale images
were visualized with color scale. (a),(b) ‘Spatter’ and (c),(d) ‘No Spatter’ were
predicted by QCNN.

and pooling circuit has three rotation angles as the parameters.
The number of nodes in the binary tree is N − 1, where N = 2n

is the number of qubits. Hence, the total number of parame-
ters in QCNN is 9(N − 1), which is in the linear order O(N).
In contrast, the space complexity of neural network is typically
O(Nn), where N is the size of inputs and n is the depth of layers.
Thus, QCNN is exponentially more efficient than NN, which is
also demonstrated in our results.

All data-driven models, including quantum machine learn-
ing, are data-specific and difficult for extrapolation. Yet the ma-
jor challenge in machine learning for manufacturing applica-
tions is overfitting of parameters caused by the lack of training
data. Our results show that the exponentially fewer parameters
in QCNN and exponentially higher-dimensional feature space
in QSVM can potentially overcome the overfitting issue.

In quantum machine learning, information is encoded in
quantum states. Retrieving the information requires repeated
samplings or measurements. In QSVM, the quantum kernel
in Eq. (11) is estimated with the sampling complexity of
O(ϵ−2T 2), where ϵ is the sampling error and T is the training
dataset size [11]. In QCNN, with E epochs of training, the sam-
pling complexity isO(ϵ−2T E). Sampling complexity is a unique
characteristic of quantum algorithms, in addition to time and
space complexities that need to be considered as in classical
algorithms.

6. Conclusion

This paper demonstrates the feasibility of quantum machine
learning in manufacturing applications. QSVM was applied to
identify FFF machine states based on AE sensor data. QSVM
is a hybrid strategy which combines quantum kernel with clas-
sical SVM. The results show that quantum kernel is more ef-
fective than classical kernels to map data to high-dimensional
feature space. When data are mapped to the exponentially high-
dimensional Hilbert space, the optimal hyperplane for classifi-
cation can be found more easily.

QCNN was used to detect spatters in LPBF process. For an
N-qubit circuit, QCNN requires O(N) parameters. Compared
to classical neural networks, QCNN can provide the same level
of prediction accuracy, but with exponentially fewer parame-
ters. Fewer parameters can prevent overfitting and the training
is less costly with a smaller training dataset. Fewer parameters
will also lead to better convergence during the training. The re-
sults in this study show the quantum advantage of QCNN over
classical neural networks.

Although current quantum computers are limited in the num-
ber of qubits and stability, our small-scale demonstrations show
that quantum computing has the great potential to tackle the
curse-of-dimensionality challenge in solving large-scale prob-
lems in manufacturing and other applications. Developing new
models and algorithms for application-specific problems also
helps overcome the scalability limitation. For instance, quan-
tum machine learning tailored for small and imbalanced train-
ing datasets can provide the flexibility for manufacturing appli-
cations. The capability of dynamic learning for evolving manu-
facturing systems is also attractive. The predictions of quantum
neural networks are probabilistic. Improving the sampling ef-
ficiency for predictions is beneficial. The hybrid quantum ma-
chine learning approaches rely on classical optimizers for train-
ing. Efficient global optimization algorithms will allow us to
build and train better models.



1422 E. Choi et al. / Manufacturing Letters 41 (2024) 1415–1422

Acknowledgements

Authors would like to thank Dr. Dehao Liu for providing the
data of laser powder bed fusion in this study.

References

[1] Abdulsalam, G., Meshoul, S., Shaiba, H., 2023. Explainable heart disease
prediction using ensemble-quantum machine learning approach. Intelligent
Automation & Soft Computing 36, 761–779.

[2] Benedetti, M., Coyle, B., Fiorentini, M., Lubasch, M., Rosenkranz, M.,
2021. Variational inference with a quantum computer. Physical Review
Applied 16, 044057.

[3] Bhatia, A.S., Saggi, M.K., Kais, S., 2023. Quantum machine learning pre-
dicting adme-tox properties in drug discovery. Journal of Chemical Infor-
mation and Modeling 63, 6476–6486.

[4] Bhatta, S., Dang, J., 2024. Multiclass seismic damage detection of build-
ings using quantum convolutional neural network. Computer-Aided Civil
and Infrastructure Engineering 39, 406–423.

[5] Cerezo, M., Verdon, G., Huang, H.Y., Cincio, L., Coles, P.J., 2022. Chal-
lenges and opportunities in quantum machine learning. Nature Computa-
tional Science 2, 567–576.

[6] Choi, E., An, K., Kang, K.T., 2022. Deep-learning-based microfluidic
droplet classification for multijet monitoring. ACS Applied Materials &
Interfaces 14, 15576–15586.

[7] Cong, I., Choi, S., Lukin, M.D., 2019. Quantum convolutional neural net-
works. Nature Physics 15, 1273–1278.

[8] Deutsch, D., 1985. Quantum theory, the church–turing principle and the
universal quantum computer. Proceedings of the Royal Society of London.
A. Mathematical and Physical Sciences 400, 97–117.

[9] Farhi, E., Gutmann, S., 1998. Quantum computation and decision trees.
Physical Review A 58, 915.

[10] Feynman, R.P., 1982. Simulating physics with computers. Int. j. Theor.
phys 21.
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