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The Fokker–Planck equation is widely used to describe the time evolution of stochastic

systems in drift-diffusion processes. Yet, it does not differentiate two types of

uncertainties: aleatory uncertainty that is inherent randomness and epistemic uncer-

tainty due to lack of perfect knowledge. In this paper, a generalized differential

Chapman–Kolmogorov equation based on a new generalized interval probability theory

is derived, where epistemic uncertainty is modeled by the generalized interval while

the aleatory one is by the probability measure. A generalized Fokker–Planck equation is

proposed to describe drift-diffusion processes under both uncertainties. A path integral

approach is developed to numerically solve the generalized Fokker–Planck equation.

The resulted interval-valued probability density functions rigorously bound the real-

valued ones computed from the classical path integral method. The method is

demonstrated by numerical examples.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The Fokker–Planck equation is a general probabilistic approach to describe the dynamics of various stochastic systems,
such as physical, chemical, biological and economical ones. It models the time evolution of the probability distribution in a
system under uncertainty, which describes generic drift-diffusion processes. However, it does not differentiate the two
types of uncertainties. Variability is the inherent randomness in the system because of fluctuation and perturbation.
Variability is also referred to as aleatory uncertainty, stochastic uncertainty, simulation uncertainty, and irreducible
uncertainty. In contrast, incertitude is due to lack of perfect knowledge or enough information about the system. It is also
known as epistemic uncertainty, reducible uncertainty, and model form uncertainty. The classical Fokker–Planck equation
models the two types of uncertainties together with one single probability distribution, which only captures the
accumulative effect.

The need to separately quantify the two types of uncertainties has been well-recognized (e.g. [1–4]). They need to be
represented explicitly if we want to increase the confidence of modeling or simulation results. Neglecting epistemic
uncertainty may lead to decisions that are not robust. Sensitivity analysis is a typical way to assess robustness, which is to
check how much deviation the analysis result may have if input distribution parameters or distribution types deviate away
from the ones used in the analysis. Second-order Monte Carlo sampling can also be applied where samples of model
parameters are drawn to assess different models and the effect of epistemic uncertainty can be revealed. Obviously,
considerable workload is required for both approaches. Mixing epistemic and aleatory uncertainties may increase costs of
risk management. If extra knowledge or information of the collected data is available, they can be further clustered into
ll rights reserved.
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smaller groups or intrinsic mathematical relationships can be identified so that variance can be reduced, which reflects
pure randomness more accurately for risk analysis.

In studying the dynamics of stochastic systems, it is desirable that aleatory and epistemic uncertainties are separately
quantified so that their respective effects can be easily computed, distinguished, and analyzed. In this paper, we propose
an efficient approach to quantify aleatory and epistemic uncertainties by interval probability in modeling drift-diffusion
processes. Instead of a precise value of probability P(E)¼p associated with an event E, a pair of lower and upper
probabilities PðEÞ ¼ ½p,p� are used to represent a set of possible values. The range of the interval ½p,p� captures the epistemic
uncertainty component. Interval probability thus differentiates incertitude from variability both qualitatively and
quantitatively in a concise form.

The general purpose of using interval probability or imprecise probability in analyzing system dynamics is to improve
the robustness of prediction in a generic and efficient way. In this paper, a generalized differential Chapman–Kolmogorov
equation under both uncertainty components based on a generalized interval probability is first derived. The generalized
interval probability provides a convenient calculus structure to estimate lower and upper bounds. Then a path integral
approach is developed to numerically solve the generalized Fokker–Planck equation, which is a special case of the
generalized differential Chapman–Kolmogorov equation. It is also demonstrated that the interval-valued probability
density function as the solution of the generalized Fokker–Planck equation by the proposed path integral method
rigorously bounds the real-valued one computed from the classical path integral method. Therefore, the generalized
Fokker–Planck equation can effectively quantify the epistemic uncertainty associated with parameters and model forms.

In the remainder of the paper, an overview of relevant work in imprecise probability and path integral methods to solve
the classical Fokker–Planck equation are given in Section 2. In Section 3, the generalized differential Chapman–
Kolmogorov equation is derived. Section 4 describes the proposed path integral approach to solve the generalized
Fokker–Planck equation. In Section 5, two numerical examples are used to demonstrate the new approach, which is able to
analyze system dynamics under both uncertainty components.

2. Background

2.1. Imprecise probability

Probability theory provides common ground to quantify uncertainty and so far is the most popular approach. It is based
on precise values of probability measures or moments. However, precise probability has limitations in representing
epistemic uncertainty. The most significant one is that it does not differentiate total ignorance from other probability
distributions. Total ignorance means that the analyst has zero knowledge about the system under study. Based on the
principle of maximum entropy, uniform distributions are usually applied in this case. A problem arises because
introducing a uniform or any particular form of a distribution has itself introduced extra information that is not justifiable
by the zero knowledge. Different possible values are equally likely in a uniform distribution, which is not guaranteed to be
true when we are totally ignorant. The principle of maximum entropy leads to the Bertrand-style paradoxes such as the
Van Fraasen’s cube factory [5]. Therefore, ‘‘Knowing the unknown’’ as modeled in precise probability does not represent
the total ignorance. In contrast, the interval probability P¼[0,1] does.

Another limitation of precise probability is representing indeterminacy and inconsistency in the context of subjective
probability. When people have limited ability to determine the precise values of their own subjective probabilities, precise
probability does not capture indeterminacy. Therefore Bayesians who insist on subjective probability still do sensitivity
analysis. Furthermore, when subjective probabilities from different people are inconsistent, a precise value does not
capture a range of opinions or estimations adequately without assuming some consensus on the precise values for a
collection of opinions. ‘‘Agreeing to disagree’’ is not the best way to indicate inconsistency.

Imprecise probability ½p,p� combines epistemic uncertainty (as an interval) with aleatory uncertainty (as probability
measure), which is regarded as a generalization of traditional probability. Gaining more knowledge can reduce the level of
imprecision and indeterminacy, i.e. the interval width. When p ¼ p, the degenerated interval probability becomes a
traditional precise one. Our proposed approach uses imprecise probabilities to quantify aleatory and epistemic
uncertainties separately. Many forms of imprecise probabilities have been developed. For example, the Dempster–
Shafer theory [6,7] characterizes evidence with discrete probability masses associated with a power set of values. The
theory of coherent lower previsions [1] models uncertainties with the lower and upper previsions with behavioral
interpretations. The possibility theory [8] represents uncertainties with Necessity–Possibility pairs. Probability bound
analysis [9] captures uncertain information with pairs of lower and upper distribution functions or p-boxes. F-probability
[10] incorporates intervals and represents an interval probability as a set of probabilities which maintain the Kolmogorov
properties. A random set [11] is a multi-valued mapping from the probability space to the value space. Fuzzy probability
[12] considers probability distributions with fuzzy parameters. A cloud [13] is a combination of fuzzy sets, intervals, and
probability distributions.

In the applications of interval probability, the interval bounds p and p can be solicited as the lowest and highest
subjective probabilities about a particular event from a domain expert, where probability represents the degree of belief.
One expert may hesitate to offer just a precise value of probability. Different experts could have different beliefs. In both
cases, the range of probabilities gives the interval bounds. When used in data analysis with frequency interpretation, the
Please cite this article as: Y. Wang, Generalized Fokker–Planck equation with generalized interval probability, Mech.
Syst. Signal Process. (2012), doi:10.1016/j.ymssp.2012.02.013

dx.doi.org/10.1016/j.ymssp.2012.02.013


Y. Wang / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]] 3
interval bounds can be confidence intervals that are calculated from data. For instance, the Kolmogorov–Smirnov
confidence band to enclose a cumulative distribution function can be used, where the width of the band captures the
epistemic component. If extra data are collected, the interval width can be reduced, and the confidence band converges
towards a precise distribution function.

One common problem of the above set-based imprecise probability theories is that the calculation is cumbersome.
Linear and nonlinear optimization methods are usually dependent upon to search lower and upper bounds of probabilities
during reasoning. Different from them, we recently proposed an imprecise probability with a generalized interval form
[14,15]. The probability values are generalized intervals. Generalized interval [16,17] is an extension of the set-based
classical interval [18] with better algebraic and semantic properties based on the Kaucher arithmetic [19]. A generalized
interval x :¼ ½x,x�ðx,x 2 RÞ. is a pair of numbers instead of a set. Therefore it is not constrained by xrx any more. [0.2,0.1] is
also a valid interval and called improper, while the traditional interval [0.1,0.2] is called proper. With such extension, the
probabilistic calculus structure defined in generalized interval probability is greatly simplified based on the algebraic
properties. At the same, it supports logic interpretation of numerical results, which also helps verify computation. See
more details of generalized interval and generalized interval probability in Appendix A.

2.2. Path integral methods to solve the classical Fokker–Planck equation

Various numerical methods to solve the classical Fokker–Planck equation have been developed, including Monte Carlo
[20], finite difference [21], spectral approximation [22,23], and path integral [24]. In particular, the path integral method
has been shown as a simple yet numerically efficient and accurate approach. Wehner and Wolfer [25] used a short-time
transition probability density matrix to approximate the evolution of drift-diffusion processes. Boundary condition [26]
and time-dependent parameters [27] were also demonstrated. To improve numerical efficiency and accuracy, Naess and
Johnsen [28] developed a B-spline interpolation approach where continuous probability density functions are approxi-
mated based upon limited discrete evaluations such that the error reduction speed is increased to O(t) with time step size
t. Di Paola and Santoro [29] extended the path integral approach for systems under Gaussian white noise perturbation as
in the classical Fokker–Planck equation to the Kolmogorov–Feller equation under Poisson white noise. Kougioumtzoglou
and Spanos [30] developed a variational formulation to improve the efficiency of path integral without the need of short-
time steps in nonlinear oscillation problems where diffusion coefficients are constants.

In this paper, a path integral method to solve the generalized Fokker–Planck equation under both aleatory and
epistemic uncertainties is proposed, where generalized interval probability density functions are estimated. A generalized
differential Chapman–Kolmogorov equation, which is more generic than the generalized Fokker–Planck equation, is first
derived in the next section.

3. Generalized differential Chapman–Kolmogorov equation with generalized interval probability

The differential Chapman–Kolmogorov equation is universally used to describe time evolution of probability
distributions. In this section, a generalized differential Chapman–Kolmogorov equation based on generalized interval is
derived such that the dynamics of generalized interval probability can be described.

Following the definition of interval derivative by Markov [47], the derivative of a generalized interval function
fðtÞ ¼ ½f ðtÞ,f ðtÞ� is defined as

dfðtÞ=dt :¼ lim
Dt-0
ðfðtþDtÞ�dualfðtÞÞ=Dt¼ ½ lim

Dt-0
ðf ðtþDtÞ�f ðtÞÞ=Dt, lim

Dt-0
ðf ðtþDtÞ�f ðtÞÞ=Dt�

where dual is defined as in Eq. (1.1) in Appendix A1. Note that all boldface symbols in this paper are generalized intervals.
We define the derivative of generalized interval probability p(x,t9y,t0) with respect to time t as follows. With state variables
x,y 2 Rn,

@

@t
pðx,t9y,t0Þ :¼ lim

Dt-0

1

Dt
pðx,tþDt9y,t0Þ�dualpðx,t9y,t0Þ
� �

ð1Þ

Because of the logic coherent constraint in generalized interval probability (see Appendix A2), we haveZ
dzpðz,tþDt9x,tÞ ¼ 1 ð2Þ

where state variable z 2 Rn. With the Markovian property, this leads to

pðx,tþDt9y,t0Þ ¼

Z
dzpðx,tþDt9z,tÞpðz,t9y,t0Þ ð3Þ

Replace the first term in Eq. (1) with Eq. (3) and multiply the second term by Eq. (2). Eq. (1) now becomes

@

@t
pðx,t9y,t0Þ ¼ lim

Dt-0

1

Dt

Z
dz½pðx,tþDt9z,tÞpðz,t9y,t0Þ�dualpðz,tþDt9x,tÞpðx,t9y,t0Þ�

� �
ð4Þ
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Consider two subdomains :x�z:re and :x�z:4e separately where e is small enough. Eq. (4) can be regarded as

@

@t
pðx,t9y,t0Þ ¼ I:x�z:r eþI:x�z:4 e

where I:x�z:r e is the right-side integral in Eq. (4) within the small neighborhood that captures continuous diffusion
processes, whereas I:x�z:4 e is the one outside the neighborhood that represents jump processes.

Within the small neighborhood :x�z:re, let x�z¼h and define f(x,h):¼p(xþh,tþDt9x,t)p(x,t9y,t0). Then

p(z,tþDt9x,t)p(x,t9y,t0)¼f(x,�h) and p(x,tþDt9z,t)p(z,t9y,t0)¼p(x,tþDt9x�h,t)p(x�h,t9y,t0)¼f(x�h,h). Apply the Taylor alike

expansion fðx�h,hÞ ¼ fðx,hÞ�dual
Pn

i ¼ 1 @f=@xihiþ
1
2

P
i

P
j@

2f=@xi@xjhihjþOðe3Þ, where @fðx,hÞ=@xi :¼ limDxi-0ffðxþDxi,hÞ�

dualfðx,hÞg=Dxi and similarly

@2fðx,hÞ

@xi@xj
:¼ lim

Dxi-0

Dxj-0

fðxþDxiþDxj,hÞ�dualfðxþDxi,hÞ�dualfðxþDxj,hÞþfðx,hÞ
� �

=DxiDxj:

Then

I:x�z:r e ¼ lim
Dt-0

1

Dt

Z
:x�z:r e

dz½pðx,tþDt9z,tÞpðz,t9y,t0Þ�dualpðz,tþDt9x,tÞpðx,t9y,t0Þ�

( )

¼ lim
Dt-0

1

Dt

Z
:h:r e

dh fðx�h,hÞ�dualfðx,�hÞ
� �( )

¼ lim
Dt-0

1

Dt

Z
:h:r e

dh fðx,hÞ�dual
Xn

i ¼ 1

@f

@xi
hiþ

1

2

Xn

i ¼ 1

Xn

j ¼ 1

@2f

@xi@xj
hihj�dualfðx,�hÞþOðe3Þ

2
4

3
5

8<
:

9=
;

¼ lim
Dt-0

1

Dt

Z
:h:re

dhfðx,hÞ�dual

Z
:h:r e

dhfðx,�hÞ

" #
�dual lim

Dt-0

1

Dt

Z
:h:re

dh
Xn

i ¼ 1

@f

@xi
hi

þ
1

2
lim
Dt-0

1

Dt

Z
:h:r e

dh
Xn

i ¼ 1

Xn

j ¼ 1

@2f

@xi@xj
hihjþ lim

Dt-0

1

Dt
Oðe4Þ

¼�dual
Xn

i ¼ 1

lim
Dt-0

1

Dt

Z
:h:r e

dh
@f

@xi
hi

" #
þ

1

2

Xn

i ¼ 1

Xn

j ¼ 1

lim
Dt-0

1

Dt

Z
:h:re

dh
@2f

@xi@xj
hihj

" #
þ lim

Dt-0

1

Dt
Oðe4Þ

since
R
:h:r edxfðx,hÞ ¼

R
:h:r edxfðx,�hÞ. Furthermore,

1

Dt

Z
:h:r e

dh
@f

@xi
hi ¼

@

@xi

1

Dt

Z
:h:r e

hif dh

" #
¼

@

@xi
pðx,t9y,t0Þ

1

Dt

Z
:h:r e

hi dhpðxþh,tþDt9x,tÞ

" #
,

and similarly

1

Dt

Z
:h:r e

dh
@2f

@xi@xj
hihj ¼

@2

@xi@xj
pðx,t9y,t0Þ

1

Dt

Z
:h:r e

hihj dhpðxþh,tþDt9x,tÞ

" #
:

In addition, limDt-0Oðe4Þ=Dt¼ limDt-0Oðe3Þ=1¼ Oðe3Þ

We define

Aiðx,tÞ :¼ lim
Dt-0

1

Dt

Z
:h:r e

hi dhpðxþh,tþDt9x,tÞ ð5Þ

Bijðx,tÞ :¼ lim
Dt-0

1

Dt

Z
:h:re

hihj dhpðxþh,tþDt
��x,tÞ ð6Þ

If X(t)¼(x1(t),y,xn(t)) represents the state of the system at time t, then
R
:h:r ehi dhpðxþh,tþDt9x,tÞ ¼ E½xiðtþDtÞ�

xiðtÞ9XðtÞ� is the expected state value change in the ith direction. Therefore, Eq. (5) is interpreted as the state value change

rate along one direction, known as the drift vector. Similarly,
R
:h:rehihj dhpðxþh,tþDt9x,tÞ ¼ E½ðxiðtþDtÞ� xiðtÞÞðxjðtþDtÞ

�xjðtÞÞ9XðtÞ�. Eq. (6) is the combined area change rate in two directions, known as the diffusion matrix.

We now have

I:x�z:r e ¼�dual
Xn

i ¼ 1

@

@xi
Aiðx,tÞpðx,t9y,t0Þ
� �

þ
1

2

Xn

i ¼ 1

Xn

j ¼ 1

@

@xi@xj
Bijðx,tÞpðx,t9y,t0Þ
� �

þOðe3Þ

for the diffusion process.
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For the jump process

I:x�z:4 e ¼ lim
Dt-0

1

Dt

Z
:x�z:4 e

dz½pðx,tþDt9z,tÞpðz,t9y,t0Þ�dualpðz,tþDt9x,tÞpðx,t9y,t0Þ�

( )

¼

Z
:x�z:4 e

dz lim
Dt-0

1

Dt
pðx,tþDt9z,tÞ
� �

pðz,t9y,t0Þ

	 

�dual

Z
:x�z:4 e

dz lim
Dt-0

1

Dt
pðz,tþDt9x,tÞ
� �

pðx,t9y,t0Þ

	 


We define

Wðy9x,tÞ :¼ lim
Dt-0

1

Dt
pðy,tþDt9x,tÞ
� �

ð7Þ

as the rate of transition from x to y. Then

I:x�z:4 e ¼

Z
:x�z:4 e

dz½Wðx9z,tÞpðz,t9y,t0Þ��dual

Z
:x�z:4 e

dz½Wðz9x,tÞpðx,t9y,t0Þ�

As e-0, the subdomain :x�z:4e becomes the complete domain.
Therefore, with the consideration of both :x�z:re and :x�z:4e, the generalized differential Chapman–Kolmogorov

equation is

@

@t
pðx,t9y,t0Þ ¼ �dual

Xn

i ¼ 1

@

@xi
Aiðx,tÞpðx,t9y,t0Þ
� �

þ
1

2

Xn

i ¼ 1

Xn

j ¼ 1

@2

@xi@xj
Bijðx,tÞpðx,t9y,t0Þ
� �

þ

Z
dzWðx9z,tÞpðz,t9y,t0Þ�dual

Z
dzWðz9x,tÞpðx,t9y,t0Þ ð8Þ

When the drift vector and diffusion matrix in Eq. (8) are zeros, it is called interval master equation that models jump
processes. When the rates of transition W(x9z,t) and W(z9x,t) in Eq. (8) are zeros, it is called generalized Fokker–Planck

equation that models drift-diffusion processes. Again, all equations have been generalized to differentiate epistemic and
aleatory uncertainties, where interval-valued probabilities and coefficients replace those corresponding real-valued ones.

4. Path integral to solve generalized Fokker–Planck equation

Here a path integral approach is proposed to solve the generalized Fokker–Planck equation. The algorithm is described
in Section 4.1. In Section 4.2, the bounds computed by the algorithm are analyzed based on the principles of
interpretability [16] in generalized interval. Generalized interval provides more semantic power to help verify complete-
ness and soundness of range estimations by logic interpretations. A complete range estimation of possible values includes
all possible occurrences without underestimation. A sound range estimation does not include impossible occurrences
without overestimation.

4.1. The proposed path integral method

The generalized Fokker–Planck equation based on generalized interval probability is

@

@t
pðx,t9y,t0Þ ¼ �dual

Xn

i ¼ 1

@

@xi
Aiðx,tÞpðx,t9y,t0Þ
� �

þ
1

2

Xn

i ¼ 1

Xn

j ¼ 1

@2

@xi@xj
Bijðx,tÞpðx,t9y,t0Þ
� �

ð9Þ

where A is a vector of interval-valued drift rates and B is a matrix of interval-valued diffusion coefficients. The interval
values represent the epistemic uncertainty associated with the parameters. Following the derivation of Risken [31], we can
have the short-time transition probability density as

pðx0,tþt9x,tÞpexp �
1

2t
½x0�x�Aðx,tÞt�T B�1

ðx,tÞ x0�x�Aðx,tÞt½ �

� �
ð10Þ

where B�1 is the inverse matrix of B. Eq. (10) is used in the path integral approach to numerically solve Eq. (9). Let the
initial probability distribution at time t0 be q(x,t0) and the discrete time intervals tk¼t0þkt for k¼1,2,y. The distributions
at time t¼tk is calculated by

qðx,tkÞ ¼

Z
Rn

dyk�1pðx,tk9yk�1,tk�1Þ

Z
Rn

dyk�2pðyk�1,tk�19yk�2,tk�2Þ � � �

Z
Rn

dy0pðy1,t19y0,t0Þqðy0,t0Þ ð11Þ

The numerical implementation is based on matrices. Suppose that the number of states N is finite. The initial
probability distribution is an N�1 interval vector Q(t0). The short-time transition probability density is an N�N interval
matrix P(t) calculated by Eq. (10). Its element Pij(t) represents the probability of transition from state j to state i at time t.
Then the distribution at time t¼tk is

Q ðtkÞ ¼ Pðtk�1ÞPðtk�2Þ � � �Pðt0ÞQ ðt0Þ ð12Þ
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Notice that each column of P(t) should sum up to 1, which is required by the logic coherence constraint. That is, if the
transition rate is calculated by Eq. (10) as

P0ijðtÞ ¼ exp �
1

2t ½xi�xj�Aðxj,tÞt�T B�1
ðxj,tÞ xi�xj�Aðxj,tÞt

� �� �
ð13Þ

then the normalized transition probability density is

PijðtÞ ¼ P0ijðtÞ=dual
XN

l ¼ 1

P0ljðtÞ ð14Þ

Notice that Eq. (12) holds because the multiplication distributivity of three probability intervals p1, p2, and p3

(0rp1,p2,p3r1) exists [32–34]. That is,

ðp1þp2Þp3 ¼ p1p3þp2p3 ð15Þ

4.2. Interpretation and verification

Suppose that all elements in interval drift vectors Aðx,tÞ 2 IRn and diffusion matrices Bðx,tÞ 2 IRn�n are proper. We may
find inverse matrices B�1

ðx,tÞ 2 IRn�n with all elements in B�1(x,t) are also proper such that BUdualB�1
¼ I. This can be

achieved by solving interval linear equations BUX¼ I where I is the identity matrix. Various numerical methods have been
developed (e.g. [35–38]). Based on the principles of interpretation [16], BUdualB�1

¼ I can be interpreted as

8B 2 ½B,B�W,(C 2 ½B�1,B
�1
�W,BUC ¼ I ð16Þ

where ½B,B�W and ½B�1,B
�1
�W represent the respective sets of matrices corresponding to B and B�1. The operator W

converts a generalized interval to the classical set-based interval as defined in Eq. (1.4) in Appendix A1. Similarly, Eq. (13)
is interpreted as

8A 2 ½A,A�W,8C 2 ½B�1,B
�1
�W,(p0ij 2 ½P

0
ij,P
0

ij�
W,p0ij ¼ exp �

1

2t ½xi�xj�At�T C xi�xj�At
� �� �

ð17Þ

Because of the monotonicity of the exponential function, P0ij in Eq. (13) is proper given that A and B�1 are proper.
Nevertheless, Pij calculated by Eq. (14) can be either proper or improper. If P 0ij=

P
lP
0
ljoP

0

ij=
P

lP
0
lj, Pij is proper. Otherwise, it

is improper. Within column j, improper Pij’s occur where their values are relatively large.
When Pij 2 IR, Eq. (14) is interpreted as

8p0ij 2 ½P
0
ij,P
0

ij�
W,(pij 2 ½Pij,Pij�

W, (sj 2
XN

l ¼ 1

P 0lj,
XN

l ¼ 1

P
0

lj

" #W
, pij ¼ p0ij=sj ð18Þ

Combining Eqs. (16)–(18), we have the overall interpretation

8A 2 ½A,A�W,8B 2 ½B,B�W,(pij 2 ½Pij,Pij�
W, (C 2 ½B�1,B

�1
�W,(p0ij 2 ½P

0
ij,P
0

ij�
W,(sj 2

XN

l ¼ 1

P 0lj,
XN

l ¼ 1

P
0

lj

" #W
,

pij ¼ exp �
1

2t ½xi�xj�At�T C xi�xj�At
� �� �.

sj ð19Þ

where the existential quantifier (() associated with ½Pij,Pij� indicates the completeness of the estimation of Pij’s in Eq. (14),
which are usually associated with small probability values.

When Pij 2 IR, Eq. (14) is interpreted as

8p0ij 2 ½P
0
ij,P
0

ij�
W,8pij 2 ½Pij,Pij�

W,(sj 2
XN

l ¼ 1

P 0lj,
XN

l ¼ 1

P
0

lj

" #W
,pij ¼ p0ij=sj ð20Þ

Combining Eqs. (16), (17) and (20), we have

8A 2 ½A,A�W,8B 2 ½B,B�W,8pij 2 ½Pij,Pij�
W, (C 2 ½B�1,B

�1
�W,(p0ij 2 ½P

0
ij,P
0

ij�
W,(sj 2

XN

l ¼ 1

P 0ij,
XN

l ¼ 1

P
0

ij

" #W
,

pij ¼ exp �
1

2t ½xi�xj�At�T C xi�xj�At
� �� �.

sj ð21Þ

where the universal quantifier (8) associated with ½Pij,Pij� indicates the soundness of the estimation of Pij’s in Eq. (14),
which are typically associated with large probability values. Eqs. (19) and (21) provide the interpretations of the short-
time transition probability density during computation in each iteration.
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Theorem 1. (Markov Logic Coherence Constraint). Given an interval matrix P 2 KRn�n and an interval vector Q 2 KRn with

their respective elements pij (i¼1,y,n; j¼1,y,n) and qi (i¼1,y,n) as generalized intervals, if
Pn

i ¼ 1 pij ¼ 1 (8j¼1,y,n) andPn
i ¼ 1 qi ¼ 1 , then the elements of T¼PUQ denoted as ti (i¼1,y,n) also satisfy

Pn
i ¼ 1 ti ¼ 1.

Proof.Xn

i ¼ 1

ti ¼
Xn

i ¼ 1

Xn

j ¼ 1

pijUqj

2
4

3
5¼Xn

j ¼ 1

Xn

i ¼ 1

pijUqj

" #
¼
Xn

j ¼ 1

qj

Xn

i ¼ 1

pij

" #
¼
Xn

j ¼ 1

½qjU1� ¼ 1

Remark. Theorem 1 shows that the logic coherence constraint is automatically satisfied during the state transition based
on generalized interval probability.

If the system reaches the steady state, there is an equilibrium distribution P of the possible states satisfying

P¼ PUP ð22Þ

The elements pi (i¼1,y,n) of P and pij (i¼1,y,n; j¼1,y,n) of P are divided into two categories, proper and improper.
Let P denote the set of indices for those proper interval elements, i.e. pi 2 IR ði 2 PÞ and pij 2 IR ðij 2 PÞ, and I
the set of indices for those improper interval elements, i.e. pi 2 IR ði 2 I Þ and pij 2 IR ðij 2 I Þ. Eq. (22) can then be
re-arranged as

PP
PI

" #
¼

Pð1Þ Pð2Þ

Pð3Þ Pð4Þ

" #
U

PP
PI

" #
ð23Þ

Let PðiÞP and PðiÞI be the respective proper and improper components of P(i) (i¼1 to 4). The first set of equations
PP ¼ Pð1ÞUPPþPð2ÞUPI can be interpreted as

8Pð1ÞI 2 Pð1ÞWI I ,8Pð2ÞI 2 Pð2ÞWI ,8pI 2 PW
I ,(Pð1ÞP 2 Pð1ÞWP ,(Pð2ÞP 2 Pð2ÞWP ,(pP 2 PW

P ,Pð1ÞUpPþPð2ÞUpI ¼ pP ð24Þ

The second set of equations Pð3ÞUPPþPð4ÞUPI ¼PI can be interpreted as

8Pð3ÞP 2 Pð3ÞWP ,8Pð4ÞP 2 Pð4ÞWP ,8pP 2 PW
P ,(Pð3ÞI 2 Pð3ÞWI ,(Pð4ÞI 2 Pð4ÞWI ,(pI 2 PW

I ,Pð3ÞUpPþPð4ÞUpI ¼ pI ð25Þ

The combination of Eqs. (24) and (25) leads to the interpretation of Eq. (23) or Eq. (22) as

8Pð1ÞI 2 Pð1ÞWI ,8Pð2ÞI 2 Pð2ÞWI ,8Pð3ÞP 2 Pð3ÞWP ,8Pð4ÞP 2 Pð4ÞWP ,(Pð1ÞP 2 Pð1ÞWP ,(Pð2ÞP 2 Pð2ÞWP ,(Pð3ÞI 2 Pð3ÞWI ,(Pð4ÞI 2 Pð4ÞWI ,(p 2 PW

PUp¼ p ð26Þ

The existential quantifiers associated with the elements of P in Eq. (26) indicate the controllable stability of the
equilibrium distribution in the steady state. If there are uncontrollable deviations associated with transition probabilities

Pð1ÞI , Pð2ÞI , Pð3ÞP , and Pð4ÞP , we should be able to choose Pð1ÞP , Pð2ÞP , Pð3ÞI , and Pð4ÞI such that the steady state is maintained. Therefore,

Eq. (26) provides the logic basis to maintain the stability of the system subject to incomplete knowledge of states and state
transitions, which can improve the robustness of the dynamic control in stochastic systems.

5. Demonstrative examples

The generalized interval with Kaucher arithmetic and the proposed path integral algorithm to solve the generalized
Fokker–Planck equation in Section 4 are implemented in INTLAB [39], which is a MATLAB package for the classical set-
based interval analysis. Here, it is demonstrated by two examples. The first example is a bi-stable stochastic resonance
system. The second one is a Van der Pol oscillator.

5.1. Bi-stable stochastic resonance

The bi-stable stochastic resonance phenomenon is a nonlinear response of a system with sinusoidal inputs
simultaneously subject to noises, where the system oscillates between two states. The phenomenon has been observed
in systems such as neural tissue and rotational machinery. It can be described by stochastic differential equations, such as
the following one [40,41]:

dx=dt¼ c1x�c2x3þa0 sinð2pf 0tÞþNðtÞ ð27Þ

where state x changes along time t, c1 and c2 are coefficients, a0 and f0 are the amplitude and modulation frequency of the
periodic input respectively, and the noise NðtÞ ¼

ffiffiffiffiffiffi
2B
p

xðtÞ has the intensity of B with EðNðtÞ,NðtþsÞÞ ¼ 2BdðsÞ, d(U) is the Dirac
delta function, and x(t) is a zero-mean, unit variance Gaussian white noise. Instead of directly solving Eq. (27) to find the
point-wise paths in system evolution, we solve the equivalent Fokker–Planck equation

@

@t
pðx,tÞ ¼ �

@

@x
ðApðx,tÞÞþ

@2

@x2
ðBpðx,tÞÞ ð28Þ
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where A¼ c1x�c2x3þa0 sinð2pf 0tÞ, to find the complete distribution evolution of the system. In this example, we use
the parameter values c1¼c2¼1, a0¼1, f0¼0.01, and B¼0.31 [41]. First we solved the real-valued case of Eq. (28) with
the classical path-integral method [31]. Then by choosing the interval drift coefficient A¼[A�0.1,Aþ0.1] and interval
diffusion coefficient B¼[B�0.031,Bþ0.031], we solved the generalized version of Eq. (28) using the proposed path
integral method. The results are plotted in Fig. 1, with the initial distribution at t¼0 as expððx�mÞ2=2s2Þ=ð

ffiffiffiffiffiffi
2p
p

sÞ
where m¼1.0 and s¼0.02 in both cases. The figure shows that the distribution of states evolves along time. The system
oscillates between two distinctive states where it has the highest probabilities to stay. The time step used in computation
is t¼0.2.

A zoom-in view of the result as shown in Fig. 2 provides a closer look. It can be seen that the lower (solid line)
and upper (dotted line) bounds of probability densities as the solution of the generalized Fokker–Planck equa-
tion accurately enclose the solution in the real-valued case (dots) solved by the classical path integral method.
Therefore, it serves our purpose of reliable simulation where the interval-valued solution rigorously bounds the real-
valued solution.

Notice that the widths of the interval probability densities at the most probable states (the peaks) are generally larger
than those at other states. They are also improper intervals. However, they do not overestimate the ranges, according to
the interpretation in Eq. (21). For the less probable states, the probability densities are proper intervals and they are
narrower. They do not underestimate the ranges either, according to the interpretation in Eq. (19). Therefore, the interval
probability densities provide rigorous bounds.
Fig. 1. The solution of the Fokker–Planck equation for the bi-stable stochastic resonance system by the path integral method.

Fig. 2. A zoom-in view of the solution in Fig. 1 where interval-valued solution rigorously bounds the real-valued solution.
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5.2. Van der Pol oscillator

The Van der Pol oscillator is a non-conservative oscillator with nonlinear damping. The system dynamics with the white
noise excitation can be described by [42]

@

@t
pðx1,x2,tÞ ¼ �

@

@x1
ðg1ðx1,x2Þpðx1,x2,tÞÞ�

@

@x2
ðg2ðx1,x2Þpðx1,x2,tÞÞþD

@2

@x2
2

pðx1,x2,tÞ ð29Þ

where the position x1 and velocity x2 represent the system’s state that evolves along the time t. Functions g1(x1,x2)¼x2 and
g2ðx1,x2Þ ¼ 2zo0ð1�ex2

1Þx2�o2
0x1 define the drifting coefficients, where the damping is determined by the scalar

parameters z, o0, and e. D is an excitation constant.
Here we demonstrate the proposed path integral method to solve the two-dimensional Van der Pol oscillator problem.

In this example, the oscillator parameters are given by z¼0.05, o0¼1, e¼1, and D¼0.1. The drift vector is

A¼ ½ g1ðx1,x2Þ g2ðx1,x2Þ �
T and the diffusion matrix used here is

B¼
D 0

0 Dx2
2

" #

Fig. 3 shows the path integral solution of the Van der Pol oscillator problem. The initial distribution is Gaussian as
expððx1�m1Þ

2=2s2
1Þexpððx2�m2Þ

2=2s2
2Þ=ð2ps1s2Þ with precise parameters m1¼2, m2¼5, s1¼1/3, and s2¼1/3. During the

path integral computation, the drift and diffusion coefficients were set to be 710% of the nominal ones. Fig. 3 plots the
probability density functions of the nominal, lower-bound, and upper-bound cases with iso-contour lines in the discrete
state space with 9�11 states. The nominal density functions computed from the classical path integral method are
bounded by the lower- and upper-bound density functions computed from the new path integral of the generalized
Fokker–Planck equation. By t¼1.0, the system reaches the steady state.

Again, because of the interpretability advantage provided by Eqs. (21) and (19) respectively, the interval probability
densities at the most probable states for each iteration do not overestimate the extent of epistemic uncertainty, nor do those at
the less probable states underestimate the ranges. After the system reaches the steady state, the interval densities are complete
prediction of the epistemic uncertainty effect without under estimation because of the interpretation in Eq. (26).

In both of the numerical examples, epistemic uncertain is captured by the interval-valued drift and diffusion
coefficients. During the computation of distribution evolution, the effects of two uncertainty types are quantified
separately. The envelope defined by the lower and upper density functions provides a range of possibilities simultaneously
for uncertain model forms and parameters without introducing heavy computational overhead as in sensitivity analysis or
second-order Monte Carlo sampling. The resulted bounds computed from the generalized Fokker–Planck equation also
inherently provide the confidence of completeness or soundness of the range estimation for epistemic uncertainty. This
confidence is not available from the other two approaches in assessing the classical Fokker–Planck equation without
extensive and time-consuming samplings of possible model parameter combinations.
6. Concluding remarks

In this paper, we derived a generalized differential Chapman–Kolmogorov equation that describes the time evolution of
generalized interval probability under aleatory and epistemic uncertainties, where probability values are generalized
intervals. A generalized Fokker–Planck equation is proposed to describe the system dynamics where drift and diffusion
coefficients as well as probability densities are generalized intervals. A path integral approach is developed to numerically
solve the equation. The Kaucher interval arithmetic provides a convenient calculus structure and significantly simplifies
the computation. The logic interpretation of generalized interval helps verify the completeness and soundness of interval
probabilities for each step of simulation. This offers a rigorous approach to represent and estimate epistemic uncertainty
during its propagation in computation, where both input uncertainty because of measurement errors and model
uncertainty because of approximation and numerical treatment can be quantified. The resulted interval probability
densities rigorously bound the real-valued nominal ones computed from the classical path integral method. The interval
probabilities thus provide the extra information of how sensitive the estimated distributions are with respect to the
uncertain input parameters.

The result of the path integral computation and the associated computational cost are dependent on both the number
of states and the time step. Different choices of the two can lead to different results of interval probability densities and
steady states. In the future work, we need to study the effects of time step size and the number of states in order to find the
conditions such that the numerical solutions with intervals converge to analytical solutions of real values as the interval
widths reduce towards zeros. This will assist both the sensitivity analysis of drift-diffusion coefficients with respect to
output distributions and the numerical stability assessment. In addition, the computational efficiency of the path integral
method needs improvement. Most of the time for computing the short-time transition probability density matrix is spent
on the inverse of the diffusion coefficient matrix. More efficient numerical algorithms to compute the inverse of interval
matrices are desirable.
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Fig. 3. The path integral solution of the Van der Pol oscillator problem. (a) t¼0, (b) t¼0.125, (c) t¼0.25, (d) t¼0.375, (e) t¼0.5, (f) t¼0.625, (g) t¼0.75 and

(h) t¼1.0.
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Appendix

A1. Generalized interval

Here, only the most relevant concepts and notations of generalized interval are introduced. More background
information can be found in [43–46]. Compared to the semi-group formed by the classical set-based intervals, generalized
intervals form a group. This property significantly simplifies the computational structure. The set of generalized intervals is
denoted by KR¼ f½x,x�9x,x 2 Rg. The set of proper intervals is IR¼ f½x,x�9xrxg, and the set of improper intervals is
IR ¼ f½x,x�9xZxg. The relationship between proper and improper intervals is established with the operator dual as

dual½x,x� :¼ ½x,x� ð1:1Þ

The less than or equal to partial order relationship between two generalized intervals is defined as

½x,x�r ½y,y�3xry4xry ð1:2Þ

The inclusion relationship is defined as

½x,x�D ½y,y�3yrx4xry ð1:3Þ

In this paper, we denote the classical set-based interval as ½x,x� :¼ fx 2 R9xrxrxg. The relationship between
generalized interval and classical interval is established with the operator W defined as

½x,x�W :¼ ½minðx,xÞ,maxðx,xÞ� ð1:4Þ

Generalized interval provides more semantic power to help verify completeness and soundness of range estimations by
logic interpretations. The four examples in Table 1 illustrate the interpretations for operator ‘‘þ ’’, where the range
estimation ½z,z� ¼ ½4,7� in the 1st row is complete. The estimation ½z,z� ¼ ½7,4� in the 4th row is sound. � ,� ,/ have the similar
semantic properties.

Based on the generalized interval, the new form of imprecise probability resembles the classical precise probability, as
introduced next.

A2. Generalized interval probability
Definition 1. Given a sample space O and a s-algebra A of random events over O, the generalized interval probability

p 2 KR is defined as p : A-½0,1� � ½0,1� which obeys the axioms of Kolmogorov: (1) p(O)¼[1,1]; (2)
½0,0�rpðEÞr ½1,1� ð8E 2 AÞ; and (3) for any countable mutually disjoint events Ei\Ej¼| (iaj), pð[n

i ¼ 1EiÞ ¼
Pn

i ¼ 1 pðEiÞ.
Here ‘‘r ’’ is defined as in Eq. (1.2).

Definition 2. The probability of union is defined as pðAÞ :¼
P

SDAð�dualÞ9A9�9S9pðSÞ for ADO.

Two examples of union are

pðE1 [ E2Þ ¼ pðE1ÞþpðE2Þ�dualpðE1 \ E2Þ

and

pðE1 [ E2 [ E3Þ ¼ pðE1ÞþpðE2ÞþpðE3Þ�dualpðE1 \ E2Þ�dualpðE2 \ E3Þ�dualpðE1 \ E3ÞþpðE1 \ E2 \ E3Þ

The most important property of the generalized interval probability is the logic coherence constraint (LCC): That is, for a
mutually disjoint event partition [n

i ¼ 1Ei ¼O,
Pn

i ¼ 1 pðEiÞ ¼ 1. If the sample space is continuous and the integral of a
continuous interval function fðxÞ ¼ ½f ðxÞ,f ðxÞ� is defined as

R
fðxÞdx :¼ ½

R
f ðxÞdx,

R
f ðxÞdx� [47], the LCC is

R
dx p(x)¼1. The LCC

ensures that generalized interval probability is logically coherent with precise probability. For instance, given that
p(down)¼[0.2,0.3], p(idle)¼[0.3,0.5], p(working)¼[0.5,0.2] for a system’s working status, we can interpret it as

ð8p1 2 ½0:2,0:3�Þð8p2 2 ½0:3,0:5�Þð(p3 2 ½0:2,0:5�Þðp1þp2þp3 ¼ 1Þ

Accordingly, we differentiate non-focal events (‘‘working’’ in this example) from focal events (‘‘down’’, ‘‘idle’’) based on
the respective logic quantifiers in the interpretation. An event E is focal if the associated semantics for p(E) is universal.
Table 1
Illustrations of the semantic extension of generalized interval.

Algebraic relation: ½x ,x�þ½y ,y� ¼ ½z ,z� Corresponding logic interpretation Quantifier of ½z ,z� Range estimation of ½z ,z�

[2,3]þ[2,4]¼[4,7] 8x 2 12,3U
� �

8y 2 12,4U
� �

(z 2 14,7U
� �

xþy¼ zð Þ ( [4,7] is complete

[2,3]þ[4,2]¼[6,5] 8x 2 12,3U
� �

8z 2 15,6U
� �

(y 2 12,4U
� �

xþy¼ zð Þ 8 [5,6] is sound

[3,2]þ[2,4]¼[5,6] 8y 2 12,4U
� �

(x 2 12,3U
� �

(z 2 15,6U
� �

ðxþy¼ zÞ ( [5,6] is complete

[3,2]þ[4,2]¼[7,4] 8z 2 14,7U
� �

(x 2 12,3U
� �

(y 2 12,4U
� �

xþy¼ zð Þ 8 [4,7] is sound
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Otherwise, it is non-focal if the associated semantics is existential. While the epistemic uncertainty associated with focal
events is critical to the analyst, the one associated with non-focal events is not.

The concepts of conditional probability and independence are essential for the classical probability theory. With them,
we can decompose a complex problem into simpler and manageable components. Similarly, they are critical for imprecise
probabilities. Different from all other forms of imprecise probabilities, which are based on convex probability sets, our
conditional probability is defined directly from marginal probability.

Definition 3. If p(C)40, the conditional probability p(E9C) for all E,C 2 A is defined as

pðE9CÞ :¼
pðE \ CÞ

dualpðCÞ
¼

pðE \ CÞ

pðCÞ
,
pðE \ CÞ

pðCÞ

" #
ð2:1Þ

Thanks to the unique algebraic properties of generalized intervals, this definition can greatly simplify computation in
applications. Only algebraic computation is necessary.

Definition 4. For A,B,C 2 A, A is said to be conditionally independent with B on C if and only if

pðA \ B9CÞ ¼ pðA9CÞpðB9CÞ ð2:2Þ

Definition 5. For A,B 2 A, A is said to be independent with B if and only if

pðA \ BÞ ¼ pðAÞpðBÞ ð2:3Þ

The independence in Definition 5 is a special case of conditional independence in Definition 4, where C is the complete
sample space O. The conditional independence in Definition 4 also has a second form, as shown in Theorem A.1.

Theorem A.1. For A,B,C 2 A, p(A\B9C)¼p(A9C)p(B9C)3p(A9B\C)¼p(A9C).

Proof.
pðA \ B9CÞ ¼ pðA9CÞpðB9CÞ3pðA \ B \ CÞ=dualpðCÞ ¼ pðA9CÞUpðB \ CÞ=dualpðCÞ

3pðA \ B \ CÞ=dualpðB \ CÞ ¼ pðA9CÞ3pðA9B \ CÞ ¼ pðA9CÞ: &

Corollary A.2. For A,B,C,D 2 A and A\D¼|, the conditional independence between A and B given C and between A and D given

C infers the independence between A[D and B given C.

Proof.
pðA [ D9B \ CÞ ¼ pððA [ DÞ \ B \ CÞ=dualpðB \ CÞ ¼ ½pðA \ B \ CÞþpðD \ B \ CÞ�=dualpðB \ CÞ

¼ pðA \ B \ CÞ=dualpðB \ CÞþpðD \ B \ CÞ=dualpðB \ CÞ

¼ pðA9B \ CÞþpðD9B \ CÞ ¼ pðA9CÞþpðD9CÞ ¼ pðA [ D9CÞ &

The most intuitive meaning of ‘‘independence’’ is that an independence relationship satisfies several graphoid properties. It
has been shown that generalized interval probability with the defined independence is graphoid [48]. With X, Y, Z, W as
sets of disjoint random variables and ‘‘?’’ denoting independence, the conditional independence in Definition 3 satisfies all
of the following graphoid properties:
P
S

(G1) Symmetry: X ? Y9Z ) Y ? X9Z
(G2) Decomposition: X ? ðW ,YÞ9Z ) X ? Y9Z
(G3) Composition: X ? Y9Z

� �
4 X ?W9Z
� �

) X ? W ,Yð Þ9Z
(G4) Contraction: ðX ? Y9ZÞ4ðX ?W9ðY ,ZÞÞ ) X ? ðW ,YÞ9Z
(G5) Reduction: ðX ? Y9ZÞ4ðX ? ðW ,YÞ9ZÞ ) X ?W9ðY ,ZÞ
(G6) Weak union: X ? ðW ,YÞ9Z ) X ?W9ðY ,ZÞ
(G7) Redundancy: X ? Y9X
(G8) Intersection: ðX ?W9ðY ,ZÞÞ4ðX ? Y9ðW ,ZÞÞ ) X ? ðW ,YÞ9Z
The stochastic independence in precise probability is semi-graphoid satisfying symmetry, decomposition, weak union,
and contraction. When the probability distributions are strictly positive, intersection is also satisfied. Then, it becomes
graphoid.
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