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An Extended Kalman
Filtering Mechanism Based on
Generalized Interval Probability
Kalman filter has been widely applied for state identification in controllable systems. As a
special case of the hidden Markov model, it is based on the assumption of linear depend-
ency relationships and Gaussian noise. The classical Kalman filter does not differentiate
systematic error from random error associated with observations. In this paper, we pro-
pose an extended Kalman filtering mechanism based on generalized interval probability,
where state and observable variables are random intervals, and interval-valued Gaussian
distributions model the noises. The prediction and update procedures in the new mecha-
nism are derived. Two examples are used to illustrate the developed mechanism. It is shown
that the method is an efficient alternative to sensitivity analysis for assessing the effect of
systematic error. [DOI: 10.1115/1.4030465]
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1 Introduction
The Kalman filter [1] is a widely applied approach to analyze

time series problems. It iteratively produces a statistical estimate
of the underlying states in a dynamic system from a sequence of
inaccurate observable data. In the classical Kalman filter model, lin-
ear relationships are assumed to exist between hidden state variables
and the observable, as well as the time-dependency between state
variables, subject to Gaussian noise. Some extensions have been
proposed to relax these assumptions. For example, nonlinear filters
[2,3] deal with nonlinear system functions with the linear approxi-
mation in calculation. The Kalman–Bucy filter [4] extends the
discrete-time sequence to the continuous-time domain. The fixed
interval smoother [5–7] provides an optimum estimate of state var-
iables using a fixed interval. The set-valued Kalman filter [8,9] has
the filtering mechanism to handle uncertain initial values.

The classical Kalman filter and its extensions have been applied
to solving control problems, such as position localization [10–13],
robot control [14–16], predictive control [17–19], and others [20].
Additionally, they have also been used in other areas. For example,
they were used in navigation systems in combination with fuzzy
logic [21], tracking human body motion with quaternion input
[22], performance and fault diagnostics in combination with neural
network [23,24], fault detection for a hydraulic actuator circuit [25],
and macroeconomics [26,27].

In the aforementioned models, it is assumed that the full knowl-
edge of noise in the stochastic state evolutions and observations is
available, which follow Gaussian distributions with precise param-
eters. With this assumption, different sources of uncertainties and
errors, particularly systematic error versus random error, are not
considered. Random error, also known as irreducible uncertainty
and variability, is caused by unpredictable changes and random
fluctuations in the measuring instrument or external environment.
It is inherently irreducible. Systematic error, also known as reduc-
ible uncertainty and incertitude, is the unknown bias introduced by

an instrument or a human being. It is due to the lack of perfect
knowledge. Systematic error is always associated with experimental
data. It can be reduced or eliminated if its cause is identified. A
common method to reduce systematic error is through a careful
calibration of the measurement instruments. The classical Kalman
filter does not explicitly differentiate systematic error from random
error. The probability distributions used in the model only capture
the compounded effect of these two. The individual effect of reduc-
ing systematic error is not easily obtainable unless sensitivity analy-
sis is conducted.

In order to take systematic error into separate consideration,
in this paper, an extended Kalman filtering mechanism based on
generalized interval probability [28] is proposed. Generalized inter-
val probability is a combination of probability and a generalized
interval to quantify reducible and irreducible uncertainties simulta-
neously but with different forms. Here, interval values represent
systematic error, whereas probability measures capture random
error. Systematic error is typically estimated by the lower and upper
limits of instrument accuracy (instead of probability distribution).
Therefore, any measured quantity is inherently an interval value,
typically with the form of nominal value � accuracy. Without as-
suming any distribution between the lower and upper bounds, an
interval uses the least assumption in quantifying systematic error
because of the lack of knowledge.

The proposed mechanism is different from the Kalman filter
extensions mentioned previously. The most similar one is the set-
valued Kalman filter [8,9]. In this model, the initial value of the
system state is unknown but bounded within some region. The sys-
tem under uncertainty then evolves as a set of possible trajectories,
which are estimated by sampling the initial state value in the region
in combination with real-valued covariance. In our method, state
variables directly take the values of random intervals in system
evolution, instead of random numbers. In addition, the proba-
bility distributions associated with state variables in the set-valued
Kalman filter are all Gaussian. In our mechanism, they do not have
to be. The interval probability has both mean and variance as in-
tervals. The variations associated with the mean and variance are
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independent. The corresponding interval cumulative distribution
function (CDF) is regarded as a set of CDFs enclosed by the interval
bounds. The actual profile of the enclosed CDF could have any
shape other than Gaussian as long as it is enclosed by the interval
bounds. In other words, non-Gaussian processes have been consid-
ered in our interval probability approach.

Another uniqueness of our mechanism is the application of a
generalized interval [29–31]. Generalized interval is an algebraic
extension of the classical interval. The classical interval is defined
as a set of real numbers with lower and upper bounds. That is,
⟦x; x̄⟧∶ ¼ fx ∈ Rjx ≤ x ≤ x̄g. However, instead of a group, clas-
sical intervals form a semi-group based on the interval arithmetic,
which is designed to generate rigorous lower and upper bounds for
the worst cases. Thus, the algebraic property of interval arithmetic is
not quite intuitive. For instance, to find the solution x of equation
⟦1,100⟧þ x ¼ ⟦2,102⟧, x ¼ ⟦2,102⟧ − ⟦1,100⟧ ¼ ⟦ − 98,101⟧
based on classical intervals. However, x ¼ ⟦ − 98,101⟧ is not the
algebraic solution of the original equation. When plugged back into
the equation, it leads to ⟦1,100⟧þ ⟦ − 98,101⟧ ¼ ⟦ − 97,201⟧ ≠
⟦2,102⟧. Subtraction is not the inverse operation of addition.

In contrast, a generalized interval is defined as a pair of numbers
x∶ ¼ ½x; x̄� ∈ KR, which is no longer restricted to the ordered
bounds as x ≤ x̄. For example, both [1,2] (which is called proper)
and [2,1] (which is called improper) are valid generalized intervals.
By introducing the operation dual, generalized intervals form a
group, because x−dualðxÞ¼ ½x−x; x̄− x̄� ¼ 0, where dual½x; x̄�∶ ¼
½x̄; x�. By applying operator dual and Kaucher arithmetic [32] in the
calculation of the previous example, we receive x ¼ ½2,102�−
dual½1,100� ¼ ½1; 2�, which is the algebraic solution, as ⟦1,100⟧þ
⟦1; 2⟧ ¼ ⟦2,102⟧. Therefore, when solving inverse problems,
classical interval arithmetic tends to overestimate the ranges. A gen-
eralized interval does not have this issue with its unique algebraic
property.

In general, variables in classical interval arithmetic are treated as
independent ones, which causes overestimation of interval ranges.
For instance, x − x ¼ ⟦x; x̄⟧ − ⟦x; x̄⟧ ¼ ⟦x − x̄; x̄ − x⟧ ≠ 0 when
x ≠ x̄. Here, the computation of the worst case in this equation
is unnecessary. In engineering applications, when interval models
and interval arithmetic are adopted for uncertainty analysis, the rig-
orous bounds of the system outputs are desirable. However, because
of the nature of interval arithmetic, the rigorous bounds provided by
the classical intervals for the worst case are too wide to be useful in
many applications, which makes many practitioners hesitant to
apply interval analysis in their domains.

Two types of interval range estimations need to be differentiated.
One is completeness, which is the focus of the classical interval, and
the other is soundness. A complete interval estimation encloses all
possible solutions between the lower and upper bounds without
underestimation (as the worst-case scenario), whereas all solutions
enclosed in a sound interval estimation are true ones without any
overestimation. Complete and sound estimations are also known
as outer and inner estimations, respectively. Classical interval arith-
metic was developed to provide complete estimation, whereas
Kaucher arithmetic in a generalized interval gives sound estimation
if improper intervals are applied. An ideal situation is that an inter-
val estimation is both complete and sound. Unfortunately, classical
interval arithmetic guarantees completeness at the cost of sound-
ness. It pessimistically overestimates the true solution. Techniques
have been developed to alleviate the overestimation problem, such
as subpaving and Taylor series high-order enclosure. However, they
require costly computation in order to improve the soundness of
estimation. In contrast, a generalized interval is more efficient in
providing sound estimations [31].

A generalized interval based on Kaucher arithmetic does not al-
ways provide complete estimations. However, it can provide sound
estimates relatively efficiently. For instance, in the previous exam-
ple of solving inverse problem Aþ X ¼ B, the sound estimation of
X can be easily obtained as X ¼ B − dualA, which is not trivial if
the classical interval is used. In many applications, sound estimation

of output variations as a result of uncertain inputs provides more
information than complete but overly pessimistic bounds. Thus,
methods such as sensitivity analysis are more acceptable in these
applications than rigorous bounds in interval analysis. Although the
complete range estimation of possible outputs with respect to inputs
cannot be obtained using local sensitivity analysis, the analysis re-
sults still provide useful information to assess the effect of uncertain
inputs. The generalized interval approach can be regarded as an
efficient alternative to traditional sensitivity analysis that has the
property of soundness without overestimation.

In addition, generalized interval provides more semantic capa-
bilities than classical interval with its modality (proper or improper).
It can express the design intent of controllable and uncontrollable
for the interval variables by combining quantifiers ∀ and ∃. Both
generalized interval and classical interval describe a range of var-
iations with the interval width indicating the degree of uncertainty.
However, a generalized interval can also specify whether a variable
is controllable or uncontrollable by applying the modality. The as-
signment of a proper interval to an input variable, which has the
same format as the classical interval, implies that the value variation
of this variable is not controllable. That is, the variable can take any
value within its corresponding interval range and is out of our
control. In contrast, the assignment of an improper interval as the
input implies that the variable’s value can be selected by us to com-
pensate the uncertainty associated with other uncontrollable varia-
bles such that the final uncertainty of the output can be reduced
or able to meet a target range. Controllable variables modeled by
improper intervals have the physical meanings of “choice,”
“selected,” “flexible,” and “adjustable” in the application of control,
whereas uncontrollable variables modeled by proper intervals have
the meanings of “imposed,” “assigned,” “rigid,” and “unadjustable”
(see Refs. [29–31] for details of the unique algebraic and semantic
properties of a generalized interval).

As an illustrative example, a generalized interval can be applied
to capture the process-oriented semantics in manufacturing. A tol-
erance chain of dimensions is specified as La þ Lb ¼ Lc for an
assembly of parts A and B, which have the respective dimensions
of La ¼ ½50.78; 50.81� and Lb ¼ ½11.42; 11.43�. When parts A and
B are supplied by suppliers, La and Lb are uncontrollable in the
assembly line. The dimensions of the supplied parts can take
any possible values, respectively, from La and Lb. The resulting
Lc ¼ ½62.20; 62.24� is a complete estimation that considers all pos-
sible values of La þ Lb. The tolerance chain La þ Lb ¼ Lc with
proper La, Lb, and Lc has the following interpretation: for all pos-
sible values within ⟦50.78; 50.81⟧ and ⟦11.42; 11.43⟧, the dimen-
sion of final assembly must be in the range of ⟦62.20; 62.24⟧. When
part B is built in-house, the tolerance chain can be reformulated as
controllable with Lb ¼ ½11.43; 11.42� being an improper interval.
The manufacturer has the flexibility to select one out of many
in-house built parts to fit into the assembly in order to meet a spe-
cific target of overall tolerance. This process is known as selective
assembly. In other words, even though the tolerance of fabricated
part B remains the same as before, the selective assembly process
allows us to select individual parts with some degree of control so
that the accumulated tolerance is within the limit of Lc ¼ ½62.21;
62.23�. A different scenario is that part A is rigid, whereas part
B is made of flexible or compliant materials. As a result, the
dimension of part B becomes easily adjustable to fit into the target
overall tolerance of Lc. In either scenario, the uncertainty associated
with the assembly can be reduced by controlling the dimension of
part B. The tolerance chain with proper La, improper Lb, and proper
Lc has the following interpretation: for all possible values in
⟦50.78; 50.81⟧, there exists a value in ⟦11.42; 11.43⟧, such that
the dimension of final assembly meets the target range of
⟦62.21; 62.23⟧. When a variable is controllable, its value can be
selected from a range. However, when it is uncontrollable, its value
could be any within the range. Therefore, at the syntax level, a gen-
eralized interval is a pair of numbers which specify the range of
variation. At the semantics level, it describes the controllability.
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An improper interval as an input of a system implies that its value
can be selected or adjusted in order to compensate the uncertainty
associated with other uncontrollable variables, such that the final
uncertainty of output can be controlled within a given range.

In this paper, we propose an extended Kalman filtering mecha-
nism based on generalized interval probability, where state and
observable variables take the values of random intervals. The pre-
diction and update procedures of this new mechanism are derived.
With simple computation, the system dynamics subject to the un-
certainties associated with initial states, probability distributions,
and experimental measurement can be modeled. Therefore, this ap-
proach is an efficient alternative to sensitivity analysis. The new
approach is demonstrated by two examples. One is a simple exam-
ple of random constant estimation, and the other is dimensional
variation propagation in a multistage assembly line. The dimension
variation of a part or an assembly is its deviation from the specified
value in design. The deviation is due to the imperfection of the
manufacturing and assembly processes. Typically, the assembly line
is monitored by sensors in order to control the quality of product.
Yet, the imperfection of sensors also introduces uncertainty in the
control process. Here, a Kalman filter is used to model the dimen-
sional variation propagation in a multistage assembly line, where
the product flows through multiple stations in sequence.

The original contributions of the proposed method include the
simultaneous quantification of both systematic and random errors
in the Kalman filter. With the consideration of sensing and meas-
urement bias, the prediction of system states is more robust. Non-
Gaussian process can be incorporated in modeling the system
dynamics. In addition, the employment of a generalized interval
as an extension of the classical interval with the differentiation
between controllable and uncontrollable variables enables fine-
grained models of process control. The good algebraic property of
the generalized interval renders our mechanism an efficient alterna-
tive to traditional sensitivity analysis.

In the remainder of the paper, we first give some background
information pertinent to the Kalman filter, interval probability, gen-
eralized interval, and generalized interval probability in Sec. 2. The
extended Kalman filtering mechanism with prediction and update
steps is described in Sec. 3. The proposed mechanism is demon-
strated with two examples in Sec. 4.

2 Background

2.1 Kalman Filter. A linear discrete-time dynamic system is
described as

Xk ¼ AkXk−1 þ BkUk þ wk ð1Þ

Yk ¼ CkXk þ vk ð2Þ

where Xk ∈ Rn is the state variable at time k, Ak ∈ Rn×n is the state
matrix, Bk ∈ Rn×p is the control input matrix, Uk ∈ Rp is the con-
trol input, Ck ∈ Rm×n is the observation matrix, Yk ∈ Rm is the
observation, wk ∈ Rn is the system disturbance, and vk ∈ Rm is the
measurement error. Equation (1) is called the state equation, and
Eq. (2) is called the observation equation.

With the assumption of Gaussian distribution, the first- and
second-order statistical moments of Xk are used to characterize
its randomness, which are the mean state vector X�

k ¼ EfXkg
and covariance matrix VarðXkÞ ¼ EfðXk − X�

kÞðXk − X�
kÞTg. wk

and vk are defined as white noise with zero mean values and cova-
riances of VarðwkÞ and VarðvkÞ, respectively. They are uncorrelated
with the initial state vector X0, which is characterized by X�

0 and
VarðX0Þ.

The distribution of Xk for this system can be determined by
the classical Kalman filter with two steps. In the prediction
step, the mean and variance of the state vector at time k are
calculated as

X̂−
k ¼ AkX̂k−1 þ BkUk

VarðX̂−
k Þ ¼ AkVarðX̂k−1ÞAT

k þ VarðwkÞ ð3Þ
and are updated during the update step as

X̂k ¼ X̂−
k þ Kk½Yk − CkX̂

−
k �

VarðX̂kÞ ¼ VarðX̂−
k Þ − KkCkVarðX̂−

k Þ ð4Þ
where − denotes the predicted state value based on the previous
one, ^denotes the updated state value given the current observation,
and Kk ¼ VarðX̂−

k ÞCT
k ½CkVarðX̂−

k ÞCT
k þ VarðvkÞ�−1 is the so-called

Kalman gain, which reaches the optimum with the minimum error
covariance.

2.2 Interval Probability. Interval probability or imprecise
probability quantify variability and incertitude simultaneously.
Many representations of imprecise probability have been devel-
oped. For example, the Dempster–Shafer evidence theory [33,34]
uses a belief–plausibility pair to characterize the possibilities in
support of and against a hypothesis. The coherent lower prevision
theory [35] models the belief and disbelief via the lower and upper
previsions. The interval probability arithmetic [36] was proposed
to compute the lower and upper bounds for a range of probability
measures by applying interval arithmetic. Probability bound
analysis [37,38] specifies interval probability as a pair of cumu-
lative distribution functions for uncertain variables. F-probability
[39] models interval probability with a set of classical probability
measures that satisfy the three axioms of Kolmogorov. A cloud
[40] is an interval-valued membership function in a fuzzy set that
specifies the probability measures. Generalized interval probabil-
ity [41,42] uses a generalized interval [43] to define imprecise
probability that has a similar algebraic structure as the classical
probability.

The samples drawn from an interval probability distribution
are random intervals. There are several ways to define and com-
pute the mean and variance for random intervals. Körner [44]
found that the variance of a random compact convex set is the
sum of the variance of its Steiner point and the variance of a cen-
tered random set via an L2 metric in the corresponding space of
the support functions. Thus, the variance of the interval data is
obtained by averaging the sum of the variances of its lower
and upper bounds. Based on the variance definition in [44],
Sun [45] proposed a hierarchical normal model to represent ran-
dom intervals and estimate the mean and variance parametrically.
Other researchers treat the computation of the variance of random
intervals as an optimization problem, and the variance of random
intervals specifies the lower and upper bounds of the variance for
the random values sampled from the random intervals. Therefore,
the lower and upper bounds of variance can be computed sepa-
rately. Ferson et al. [37] proposed an approach to compute the
lower bound of variance in a quadratic time, whereas the upper
bound is much more complex in an NP-hard time. Gang et al. [46]
showed that the computing of lower and upper bounds of variance
in some practical case can be both finished in linear time by ap-
plying some constraint techniques.

2.3 Generalized Interval. A generalized interval
[29,30,32,43,47] is an algebraic and semantic extension of the
classical interval [48]. An operator Δ maps a generalized interval
x to a classical interval, defined as

½x; x̄�Δ ¼
�
⟦x; x̄⟧; if x ≤ x̄
⟦x̄; x⟧; if x ≥ x̄

ð5Þ

x is proper when x ≤ x̄ and denoted as x ∈ IR. x is improper
when x ≥ x̄ and denoted as x ∈ IR. The pointwise interval x with
x ¼ x̄ can be either proper or improper. The property of proper or
improper is referred to as the modality of the interval. Operators pro
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and imp return proper and improper intervals, respectively, and are
defined as

pro∶ ¼ ½minðx; x̄Þ;maxðx; x̄Þ� ð6Þ

imp∶ ¼ ½maxðx; x̄Þ;minðx; x̄Þ� ð7Þ
The relationship between proper and improper intervals is estab-

lished by an operator dual, defined as dualð½x; x̄�Þ∶ ¼ ½x̄; x�. Func-
tions inf and sup return the lower and upper bounds of x,
respectively, i.e., x: inf ¼ x and x: sup ¼ x̄. For two generalized
intervals x ¼ ½x; x̄� and y ¼ ½y; ȳ�, x ¼ y if and only if x ¼ y
and x̄ ¼ ȳ.

The arithmetic for generalized interval is called Kaucher
arithmetic [32], which coincides with the classical interval arith-
metic when only proper intervals are involved. Inclusion monoto-
nicity is a property of Kaucher arithmetic and is expressed as

y1 ⊆ x1; y2 ⊆ x2 ⇒ y1 · y2 ⊆ x1 · x2 ð8Þ
where ·∈ fþ;−;×; ÷g, x1, y1, x2, and y2 are generalized intervals.
It also states that if Fðy1; : : : ; ynÞ is an interval extension of func-
tion f which only involves the operations ·∈ fþ;−;×;÷g, then we
have

Fðy1; : : : ; ynÞ ⊆ Fðx1; : : : ;xnÞ ð9Þ
if yi ⊆ xi for i ¼ 1; : : : ; n.

2.4 Generalized Interval Probability. Generalized interval
probability [42,49] is defined as p∶A → 0; 1 × 0; 1 given a sample
space Ω and a σ-algebra A of random events over Ω, which obeys
the Kolmogorov axioms: (1) pðΩÞ ¼ ½1; 1�; (2) ½0; 0� ≤ pðEÞ ≤
½1; 1�ð∀E ∈ AÞ; and (3) for any countable mutually disjoint events
Ei ∩ Ej ¼ Φði ≠ jÞ, pð∪n

i¼1 EiÞ ¼
P

n
i¼1 pðEiÞ. An interval-

valued probability p ¼ ½p; p̄� ∈ KR is a generalized interval with-
out the restriction of p ≤ p̄, and it implies pðϕÞ ¼ ½0; 0�.

The interval-valued probability distribution function can be
represented in a similar way with the traditional one but with
interval-valued mean and variance. For example, an interval-valued
Gaussian distribution can be denoted as Nðx�;VarðxÞÞ, where x�
is the mean value and VarðxÞ is the variance.

Figure 1 shows four cases of interval-valued Gaussian distribu-
tions. Figure 1(a) shows the CDF when the parameters are precise
(i.e., point-wise interval parameters), which is equivalent to the

traditional Gaussian distribution. The CDFs with either interval-
valued mean or variance are shown in Figs. 1(b) and 1(c), respec-
tively, in which the curve with a dashed line is the precise one
originally in Fig. 1(a) and are bounded by the interval CDF. The
most general case is the one with both interval-valued mean and
variance as in Fig. 1(d). Its lower and upper CDFs, indicated as
the curves with solid lines, are piecewise functions, described by

Fðx̄Þ ¼

8>>><
>>>:

1

2

�
1þ erf

�
x − x�ffiffiffi
2

p
Varðx̄Þ

��
; when x ≤ x�

1

2

�
1þ erf

�
x − x�ffiffiffi
2

p
VarðxÞ

��
; when x > x�

FðxÞ ¼

8>>><
>>>:

1

2

�
1þ erf

�
x − x̄�ffiffiffi
2

p
VarðxÞ

��
; when x ≤ x̄�

1

2

�
1þ erf

�
x − x̄�ffiffiffi
2

p
Varðx̄Þ

��
; when x > x̄�

ð10Þ

where x� and x̄� are the lower and upper bounds of x�; VarðxÞ and
Varðx̄Þ are the lower and upper bounds of VarðxÞ; and the error
function is given as

erfðxÞ ¼ 2=
ffiffiffi
π

p Z
x

0

e−t2 dt

Note that the lower and upper CDFs of an interval Gaussian dis-
tribution enclose a set of distributions. These distributions are not
necessarily Gaussian. Any distribution with arbitrary CDF is thus
considered as long as the CDF is enclosed by the interval CDF.
When the distribution type for an interval random variable is not
specified, we only consider its mean and variance and denote it
as x ∼ Nðx�;VarðxÞÞ. Therefore, the notation Nðx�;VarðxÞÞ used
here does not assume a Gaussian distribution in the physical pro-
cess. Rather, a set of possible distributions that are enclosed by the
two Gaussian bounds are modeled.

Given a statistical distribution with interval parameters, the in-
verse transform can be used to calculate the lower and upper bounds
of the interval random variables. For the distributions in Fig. 1,
given a probability value F ∈ ½0; 1�, the lower and upper bounds
of an interval random variable are calculated as

0 x
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Fig. 1 Cumulative distribution functions of Gaussian distribution with precise and imprecise
parameters: (a) x∼�0.5;1�, (b) x∼��0.2;0.8�;1�, (c) x∼�0.5;�0.8;1.2��, and (d) x∼��0.2;0.8�;�0.8;1.2��
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xi ¼ x� þ
ffiffiffi
2

p
VarðxlÞerf−1ð2F − 1Þ

x̄i ¼ x̄� þ
ffiffiffi
2

p
VarðxuÞerf−1ð2F − 1Þð∀ i ∈ ½1; n�Þ ð11Þ

where

VarðxlÞ ¼
�
VarðxÞ; i ≤ n=2
Varðx̄Þ; i > n=2

; VarðxuÞ ¼
�
Varðx̄Þ; i ≤ n=2
VarðxÞ; i > n=2

3 Extended Kalman Filter Based on Generalized
Interval Probability

In the proposed extended Kalman filter, measurement error vk ∈
KRm and system disturbance wk ∈ KRn are described as interval-
valued probability distributions, which capture both systematic and
random errors. Uk ∈ KRn is an interval-valued vector that defines
the lower and upper limits of controllable inputs. Xk ∈ KRn and
Yk ∈ KRm are interval-valued vectors for the state variable and
observable, respectively. Then, the state-space model in Eqs. (2)
and (3) can be reformulated as

Xk ¼ AkXk−1 þ BkUk þ wk ð12Þ

Yk ¼ CkXk þ vk ð13Þ

where Kaucher arithmetic [32] is applied in the calculation. Before
the state vector in interval-valued state space model (Eqs. (12) and
(13)) is estimated, several basic definitions for the interval-valued
probability must be defined first.

DEFINITION 1. The expected value for a set of random
intervals x ∈ KR is defined as x� ¼ EðxÞ∶ ¼ ½EðxÞ;Eðx̄Þ� ¼�
1
n

P
n
i¼1 xi;

1
n

P
n
i¼1 x̄i

�
.

DEFINITION 2. Suppose a random interval x with expected value
x�; the variance of x is defined as a 2 × 1 vector, which is

VarðxÞ ¼
�

VarxxðxÞ
VarxdualxðxÞ

�
¼
�
E½ðx − dualx�Þðx − dualx�Þ�
E½ðx − dualx�Þðdualx − x�Þ�

�
ð14Þ

THEOREM 1. VarxxðxÞ ¼ ½VarðxÞ;Varðx̄Þ�, i.e., it measures the
respective variances of lower and upper bounds of x.

Proof. Because x� ¼ EðxÞ, E½ðx−dualx�Þ2� ¼Ef½ðx−EðxÞÞ;
ðx̄−Eðx̄ÞÞ�2g¼ ½Eðx−EðxÞÞ2;Eðx̄−Eðx̄ÞÞ2�.
Thus, VarxxðxÞ ¼ ½VarðxÞ;Varðx̄Þ�.

THEOREM 2. VarxdualxðxÞ ¼ Covðx; x̄Þ, i.e., it measures the
covariance between the lower and upper bounds of x.

Proof. Because x−dualx� ¼ ½x−EðxÞ; x̄−Eðx̄Þ�, dualx−x� ¼
dualðx−dualx�Þ, Efðx − dualx�Þðdualx − x�Þg ¼ Ef½x − EðxÞ;
x̄ − Eðx̄Þ�½x̄ − Eðx̄Þ; x − EðxÞ�g. Considering with measurement
error in practice, random interval-valued data x measured by the
same tool should have the same systematic error when human
bias is ignored. Thus, there only exists x⩾x� or x⩽x�, and 0 ∈=
½x − EðxÞ; x̄ − Eðx̄Þ�. Then Ef½x− EðxÞ; x̄− Eðx̄Þ�½x̄− Eðx̄Þ;
x− EðxÞ�g ¼ ½Efðx− EðxÞÞðx̄− Eðx̄ÞÞg;Efðx− EðxÞÞðx̄− Eðx̄ÞÞg�
based on Kaucher arithmetic. Therefore, VarxdualxðxÞ ¼ Covðx; x̄Þ.

COROLLARY 1. VarxdualxðxÞ ⊆ VarxxðxÞ when VarxxðxÞ ∈ IR.
Proof. When VarxxðxÞ ∈ IR, x − dualx� in E½ðx − dualx�Þ2�

should be proper too based on Kaucher arithmetic. Then, dualx −
x� is improper, and dualx − x� ⊆ x − dualx�. Because of the
inclusion property, ðx − dualx�Þðdualx − x�Þ ⊆ ðx − dualx�Þ2.
Therefore, VarxdualxðxÞ ⊆ VarxxðxÞ.

DEFINITION 3. [50,28]: Let FðxÞ ¼ ½FðxÞ; F̄ðxÞ� be a general-
ized interval function. The first derivative of FðxÞ with respect to
x ∈ ½x; x̄�Δ is defined as

dFðxÞ
dx

∶ ¼ lim
Δx→0

FðxþΔxÞ − dualFðxÞ
Δx

¼
�

lim
Δx→0−

FðxþΔxÞ − FðxÞ
Δx

; lim
Δx→0þ

F̄ðxþΔxÞ − F̄ðxÞ
Δx

	
ð15Þ

The property dðdualFðxÞÞ=dx ¼ dualðdFðxÞ=dxÞ holds for
dFðxÞ=dx.

DEFINITION 4. Let x and y be two random intervals, and x� and
y� be their respective expected values. x and y are called uncorre-
lated if 0 ∈ E½ðx − dualx�Þðy − dualy�Þ�Δ.

DEFINITION 5. Let A and B be two interval-valued matrices.
If ðAÞij ¼ ðBÞji, where i ¼ 1; : : : ; n and j ¼ 1; : : : ;m, B is the
transpose matrix of A, denoted as B ¼ AT.

DEFINITION 6. An n × n interval-valued matrix A is invertible if
there exists an n × n interval-valued matrix B such that In ⊆ AB,
where In is an n × n identity matrix and the multiplication between
A and B is based on Kaucher arithmetic. B is called the inverse of
A, denoted as A−1.

The mean and variance for the interval-valued state space model
in Eqs. (12) and (13) can be estimated as follows. Suppose that the
initial state vector X0 is associated with an interval probability dis-
tribution with interval meanX�

0 and interval variance VarðX0Þ, and
so does the noise, vk with zero mean and VarðvkÞ, wk with zero
mean and VarðwkÞ, where Varðx0Þ, VarðvkÞ, and VarðwkÞ are de-
fined as in Definition 2, and vk andXk are uncorrelated as defined in
Definition 4. The expected value of Xk based on the previous state
Xk−1 is computed by

X�
k ¼ E½AkXk−1 þ BkUk þ wk� ¼ AkX�

k−1 þ BkU�
k ð16Þ

Substituting Eqs. (12) and (16) into Eq. (14), the error covari-
ance of the state vector VarðXkÞ is calculated as

VarðXkÞ ¼
 

VarxxðXkÞ
VarxdualxðXkÞ

!

¼
 
E½AkðXk−1 − dualX�

k−1ÞðXk−1 − dualX�
k−1ÞTAT

k �
E½AkðXk−1 − dualX�

k−1ÞðdualXk−1 −X�
k−1ÞTAT

k �

!

þ
 

E½wkwT
k �

E½wkdualwT
k �

!

¼
 

AkVarxxðXk−1ÞAT
k þ VarwwðwkÞ

AkVarxdualxðXk−1ÞAT
k þ VarwdualwðwkÞ

!

¼ AkVarðXk−1ÞAT
k þ VarðwkÞ ð17Þ

Therefore, the estimated Xk in the prediction step will be

X̂−
k ¼ AkX̂k−1 þ BkUk

VarðX̂−
k Þ ¼ AkVarðX̂k−1ÞAT

k þ VarðwkÞ ð18Þ

If the observation Y is described byX via a linear relationship in
Eq. (13),X can be approximated by Y in the reverse linear relation,
such as X̂ ¼ aY þ b [51].

The difference between the approximation X̂ and the true value
X can be quantified by a mean squared error, defined as follows.

DEFINITION 7. Let X be an n × 1 interval vectors, and X̂ be its
estimation. The estimation error is given by e ¼ v − dualX̂, and its
mean squared error is given by the trace of the error covariance
matrix as

J ¼ trfEfðX − dualX̂ÞðX − dualX̂ÞTgg ð19Þ
The trace of an interval matrix A has the property that

trðdualAÞ ¼ dualðtrðAÞÞ. As a linear map, trðAÞ ¼ trðATÞ,
trðAþ BÞ ¼ trðAÞ þ trðBÞ, and trðABTÞ ¼ trðBATÞ.
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Substituting X̂ ¼ aY þ b into Eq. (19), we have

J ¼ trfEfðX − dualX�ÞðX − dualX�ÞTg
− EfðX − dualX�ÞðdualðaYÞ þ dualb −X�ÞTg
− EfðdualðaYÞ þ dualb −X�ÞðX − dualX�ÞTg
þ EfðdualðaYÞ þ dualb −X�ÞðdualðaYÞ þ dualb −X�ÞTg

ð20Þ

in which each term will be analyzed separately. The terms from left
to right at the right-hand side of Eq. (20) are denoted by T1–T4,
respectively, as

T1 ¼ trðVarxxðXÞÞ
T2 ¼ trfVarx·dualyðXYÞ · aT þ EfðX − dualX�Þ

× ða · dualY� þ dualb −X�ÞTgg
T3 ¼ trfa · Vardualy·xðXYÞT þ Efða · dualY� þ dualb −X�Þ

× ðX − dualX�ÞTgg
T4 ¼ trfdualðaVaryyðYÞaTÞ þ a · ðdualY�Y�TÞ · aT

þ ðdualb −X�Þðdualb −X�ÞT þ a · dualY�ðdualb −X�ÞT
þ ðdualb −X�Þ · dualY�T · aT

þ Efduala · ðdualY − Y�Þða · dualY� þ dualb −X�ÞTg
þ Efða · dualY� þ dualb −X�ÞðdualY − Y�ÞT · dualaTgg

ð21Þ

in which trfVarxdualyðXYÞ · aTg ¼ trfaT · ðVarx·dualyðXYÞÞg, and
Vardualy·xðXYÞ ¼ VarxdualyðXYÞT. Because of the linear relation-
ship in Eq. (13), we have

VaryyðYÞ ¼ E½ðY − dualY�ÞðY − dualY�ÞT�
¼ CVarxxðXÞCT þ VarvvðvÞ ð22Þ

and

VarxdualyðXYÞ ¼ E½ðX − dualX�ÞðdualY − Y�ÞT�
¼ Varx·dualxðXÞCT ð23Þ

Considering the properties of trace of interval matrices, and
substituting Eq. (21) into Eq. (20), we have

J ¼ trfVarxxðXÞ þ dualðaVaryyðYÞaTÞ
þ a · dualðY�Y�TÞ · aT þ ðdualb −X�Þðdualb −X�ÞT
þ 2a · dualY�ðdualb −X�ÞT − 2a · Varx·dualyðXYÞg ð24Þ

where VaryyðYÞ and Varx·dualyðXYÞ are computed by Eqs. (22)
and (23).

DEFINITION 8. Let a generalized interval function F be continu-
ous in the domain defined by a closed interval x. The second-order
derivative of FðxÞ ¼ ½fðxÞ; f̄ðxÞ� with respect to x is defined as
F 0 0ðxÞ ¼ ½f 0 0ðxÞ; f̄ 0 0ðxÞ� if f 0 0ðxÞ and f̄ 0 0ðxÞ exist.

DEFINITION 9. For a generalized interval function F, if F 0ðx0Þ ¼
0 and proðF 0 0ðx0ÞÞ > 0 are for an x0 ∈ xΔ, we say FðxÞ contains
the minimum values of F.

Here, we assume X̂ and Y are positively correlated, and the sys-
tem bias b is assumed to be small such that dualb −X� ≥ 0; then
Jða;bÞ and J̄ða;bÞ will be

Jða;bÞ ¼ trfVarxxðXÞ: infþa: sup · VaryyðYÞ: sup · a:supT

þ a: inf · Y�: sup · Y�:supT · a:infT

þ ðb: sup−X�: supÞðb: sup−X�: supÞT
þ 2a: inf · Y�: sup · ðb: sup−X�: supÞT
− 2a: sup · Varx·dualyðXYÞ: supg ð25Þ

J̄ða;bÞ ¼ trfVarxxðXÞ: supþa: inf · VaryyðYÞ: inf · a:infT
þ a: sup · Y�: inf · Y�:infT · a: sup

þ ðb: inf −X�: infÞðb: inf −X�: infÞT
þ 2a: sup · Y�: inf · ðb: inf −X�: infÞT
− 2a: inf · Varx·dualyðXYÞ: infg ð26Þ

Take the first-derivative of Jða;bÞ and J̄ða;bÞ in Eqs. (25) and
(26) with respect to b and a, respectively, and let them be equal to
zero. That is,

∂Jða;bÞ
∂b ¼ 0;

∂J̄ða;bÞ
∂b̄ ¼ 0

∂Jða;bÞ
∂b̄ ¼ 2ðb: sup−X�: supÞ þ 2a: inf · Y�: sup ¼ 0;

∂J̄ða;bÞ
∂b ¼ 2ðb: inf −X�: infÞ þ 2a: sup · Y�: inf ¼ 0

∂Jða;bÞ
∂a ¼ 2a: inf · Y�: sup · Y�: supT

þ 2Y�: sup · ðb: sup−X�: supÞT ¼ 0

∂J̄ða;bÞ
∂ā ¼ 2a: sup · Y�: inf · Y�: infT

þ 2Y�: inf · ðb: inf −X�: infÞT ¼ 0

∂Jða;bÞ
∂ā ¼ 2a: sup · VaryyðYÞ: sup−2Varx·dualyðXYÞ: sup ¼ 0

∂J̄ða;bÞ
∂a ¼ 2a: inf VaryyðYÞ: inf −2Varx·dualyðXYÞ: inf ¼ 0 ð27Þ

which leads to

b: inf ¼ X�: inf −a: sup · Y�: inf

b: sup ¼ X�: sup−a: inf · Y�: sup

a: inf ¼ Varx·dualyðXYÞ: inf · VaryyðYÞ: inf−1
a: sup ¼ Varx·dualyðXYÞ: sup · VaryyðYÞ: sup−1 ð28Þ

Therefore,

b ¼ X� − a · dualY�

a ¼ Varx·dualyðXYÞ · dualðVaryyðYÞ−1Þ ð29Þ

and,

X̂ðYÞ ¼ X� þ Varxdualy·ðXYÞ · dualðVaryyðYÞ−1ÞðY − dualY�Þ
ð30Þ

where VaryyðYÞ and VarxdualyðXYÞ are computed by Eqs. (22)
and (23).

Based on Definition 2, the error covariance of X̂ estimated by Y
is formulated as
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VarðX̂Þ ¼
�

VarxxðX̂Þ
Varx·dualxðX̂Þ

�

¼
�
EfðX − dualX̂ÞðX − dualX̂ÞTg
EfðX − dualX̂ÞðdualX − X̂ÞTg

�
ð31Þ

Substituting Eqs. (22), (23), and (30) into Eq. (31), we have

VarxxðX̂Þ¼VarxxðXÞ−dualðK ·C ·Varx·dualxðXÞÞ
−Varx·dualxðXÞ ·CT · dualKT

þdualK ·C · dualVarxxðXÞ ·CT · dualKTVarxdualxðX̂Þ
¼Varx·dualx−VarxxðXÞ ·CT ·KT

−dualðK ·C ·VarxxðXÞÞ
þdualK ·C · dualVarx·dualxðXÞ ·CT ·KT ð32Þ

where

K ¼ Varx·dualxðXÞ · CTdual½C · VarxxðXÞ · CT þ VarvvðvÞ�−1
ð33Þ

The first terms in Eq. (32), VarxxðXÞ and Varx·dualxðXÞ, re-
present the priori covariances in Eq. (18) in the prediction step,
and the rest of the terms represents the uncertainty reduction be-
cause of the measurement. Thus, combining the priori values in
the prediction step with the one updated by current observer in
Eqs. (30)–(32), X̂k will be obtained as

X̂k ¼ X̂−
k þ Kk · ðYk − dualðCkX̂

−
k ÞÞ

VarðX̂kÞ ¼
 

VarxxðX̂kÞ
Varx·dualxðX̂kÞ

!
ð34Þ

where

Kk ¼ Varx·dualxðX̂−
k Þ · CT

k

· dualðCk · VarxxðX̂−
k Þ · CT

k þ VarvvðvkÞÞ−1

VarxxðX̂kÞ ¼ VarxxðX̂−
k Þ − dualðKk · Ck · Varx·dualxðX̂−

k ÞÞ
− Varx·dualxðX̂−

k Þ · CT
k · dualKT

k

þ dualKk · Ck · dualVarxxðX̂−
k Þ · CT

k · dualKT
k

Varx·dualxðX̂kÞ ¼ Varx·dualxðX̂−
k Þ − VarxxðX̂−

k Þ · CT
k · KT

k

− dualðKk · Ck · VarxxðX̂−
k ÞÞ

þ dualKk · Ck · dualVarx·dualxðX̂−
k Þ · CT

k · KT
k

The correction term in Eq. (34) depends on the residual
Yk − dualðCkX̂

−
k Þ. The residual coefficient Kk is equivalent to

the Kalman gain Kk in Eq. (4). It has an expression in terms of
the priori error covariance VarðX̂−

k Þ.

4 Numerical Examples
In this section, two examples are given to illustrate the proposed

mechanism. The first one is a simple numerical example, which is to
estimate a random constant value. The second one is an application
to the estimation of dimensional variations in a multistage mechani-
cal assembly process.

4.1 Example 1: Estimating a Random Constant Value. A
simple example is presented here to illustrate the operation and
capability of the proposed mechanism. The example is adopted
from Ref. [52], which was used to illustrate the classical Kalman
filter. Suppose a scalar random constant value of voltage is to be

estimated, subject to measurement noise and a small external
adjustment. The state model in Eqs. (1) and (2) becomes

Xk ¼ Xk−1 þ Uk þ w Yk ¼ Xk þ v ð35Þ
where the system state does not change by itself from step to
step with Ak ¼ 1, a very small control input is applied with
B ¼ 1 and Uk ¼ −0.001, the measurement is applied directly to
the state with Ck ¼ 1, X0 ∼ Nð0,VarðX0ÞÞ, w ∼ Nð0,VarðwÞÞ, and
v ∼ Nð0;VarðvÞÞ.

When the model is extended to consider interval uncertainty,
Eq. (35) becomes

Xk ¼ Xk−1 þ Uk þ w Yk ¼ Xk þ v ð36Þ
where X0 ∼ Nð0;VarðX0ÞÞ, w ∼ Nð0;VarðwÞÞ, and v ∼ Nð0;
VarðvÞÞ. The control input has an improper interval value
Uk ¼ ½−0.0008;−0.0012�, which implies that the input is control-
lable and adjustable within the bound. Again, more details about
generalized interval and its logic interpretations can be found in
Refs. [29,43,53]. The data used in Example 1 are listed in Table 1,
in which the values in the second column are the original ones
from Ref. [52].

Based on Eqs. (3), (4), (18), and (34), we can calculate the
prediction and update steps for the classical Kalman filter and
the proposed mechanism, respectively. In the simulation, a ran-
domly generated value X ¼ −0.37727 is first chosen to represent
the true value. One hundred measurements of Yk values are then
sampled based on a normal distribution with the mean X ¼
−0.37727 and the standard deviation of 0.1. In Fig. 2(a), the true
value is shown as the dashed line. The sampled 100 measurements
are plotted as the crosses sequentially. The dash–dot curve denotes
the sequence of estimated values by the classical Kalman filter.
The estimated value becomes very close to the true one after 50
iterations, as shown in Fig. 2(a), assuming that the distributions are
precisely known.

For the proposed mechanism, the measurements’ Yk values are
derived from previous Yk values with �10 variation, with the con-
sideration of systematic error. The imprecise measurements are rep-
resented by the short solid lines in Fig. 2(b). The lower and upper
bounds of the estimated mean values by the proposed mechanism
are shown by the solid curves. It is seen that the estimation from the
classical Kalman filter is always included by the one from the pro-
posed mechanism after the initial transient stage. In Fig. 2(c), the
variance produced by the classical Kalman filter is also included
by the proposed method. The lower bound is very close to the
one from the classical Kalman filter when the number of iterations
increases, as shown in the enlarged plot. The lower and upper
bounds are approaching each other, and they converge to one from
the classical Kalman filter quickly and almost become identical after
90 iterations.

It is also observed that the estimation of the mean from the
classical Kalman filter fluctuates above or below the true value, par-
ticularly at the beginning. Thus, the estimation either over- or under-
estimate the true value, depending on the number of iterations for
observation before the estimation is taken. In contrast, the interval
estimation in the proposed mechanism always encloses the true
value at each iteration. The estimated interval mean values gradually
shrink towards the true value. The convergence speed of the pro-
posed method is slower than the classical one, which avoids the
fluctuation.

Table 1 Data used in Example 1

Data Classical Kalman filter Proposed mechanism

X0 0 0
VarðX0Þ 1 ð½0.9; 1.1�; 1ÞT
VarðwÞ 1e−5 ð½1e−6; 1e−4�; 1e−5ÞT
VarðvÞ 0.01 ð½0.009; 0.011�; 0.01ÞT
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The proposed mechanism extends the classical Kalman filter
with the consideration of both random error and systematic error
associated with the measurements with improved robustness,
whereas the classical Kalman filter only models random error. With
the consideration of bias in experimental measurements, interval
probability distributions eliminate the assumption of Gaussian dis-
tributions. In other words, the sensitivity information of what if

the noise deviates from a Gaussian distribution can be obtained ef-
ficiently with the new mechanism, where the interval bounds esti-
mate the effect of deviation. If sensitivity analysis is required in the
classical Kalman filter, samples need to be drawn for each of the
assumed distributions for X0, w, and v. In contrast, in the proposed
mechanism, one run of calculations can provide similar informa-
tion. In addition, the variance may be underestimated in the classical
Kalman filter because of the deviation away from a Gaussian dis-
tribution. In the new mechanism, interval variance provides an es-
timation of a range of values. Therefore, the proposed method can
provide more robust estimations of the mean and variance than the
classical Kalman filter in a more efficient manner.

Interval arithmetic tends to overestimate when variables appear
multiple times in functions. In the formulation of the update step in
the proposed method, there are multiple occurrences of variables.
Thus, the results from the proposed method are likely to be an over-
estimation when all of the intervals are proper. Nevertheless, a mod-
erate level of overestimation is acceptable if robustness is preferred.

4.2 Example 2: Modeling Dimensional Variation in
Mechanical Assemblies. The dimensional variation propagation
in a multistage assembly process can be described as a linear dis-
crete-time dynamic system, where “time” is the stage as an inde-
pendent variable. The uncertainty propagating along the assembly
process causes dimensional variations of parts from their specified
values. Random errors arise from environmental disturbance, inho-
mogeneity of materials, or nonuniformity of components. System-
atic errors come from model simplification, measurement bias, and
nonobservability. For example, a measured dimension x can never
be quantified with absolute certainty; only an interval value x ¼
½x; x̄� is obtained. It could be caused by the measuring limitation
of equipment, round off during data digitization, personal bias,
and so on. The measured quantity is actually a random interval in-
stead of a precise one, given the various sources of systematic
errors. In this case, the distribution of measurement x values has
the imprecise mean and variance, represented as interval numbers.
If the interval nature of xi is neglected, the dimensional fluctuation
can be underestimated. Therefore, it is useful to apply interval-
valued probability distributions in analyzing dimensional variations
with the effects of systematic error and random error differentiated.

In this example, the multistage assembly process with the con-
sideration of measurement error is used to demonstrate the proposed
method. The example is adopted from Refs. [54–56], which was
formulated by considering traditional statistical distributions. The
multistage assembly model is obtained from a side aperture
assembly line in the automotive industry. As in Fig. 3, four stages
(S1; : : : ; S4) are shown. All parts are assumed to be rigid and var-
iations only occur in the x − z plane. A total of eight sensing and
measurement points (m1; : : : ;m8) are available. Each measurement
has the coordinate values of x and z. It is also assumed that all of the
parts are manufactured at the same location, and the dimensional
deviations follow a distribution with zero means and interval-valued
variances.

The state-space model for this four-stage assembly process is
formulated as

Xi ¼ AiXi−1 þ BiUi þ wi i ¼ 1; 2; 3 ð37Þ

X4 ¼ A4X3 þ w4 ð38Þ

Y ¼ CX4 þ v ð39Þ
where X0 ∈ KR12×1 is a 12-dimensional vector that represents the
initial dimensional variations associated with the incoming parts,
and Y ∈ KR16×1 corresponds to the x- and z-coordinate measure-
ments at the eight measurement points at the fourth stage. The val-
ues of matrices Ai, Bi, and C are given in Ref. [56].

For the proposed method, input X0 is set to be distributed as
Nð0;VarðX0ÞÞ, where VarðX0Þ¼ ½VarxxðX0Þ VarxdualxðX0Þ �T.
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Fig. 2 Comparison between the results from the classical
Kalman filter and the proposed mechanism in Example 1:
(a) estimated voltage values of the classical Kalman filter,
(b) mean value comparison, and (c) variance comparison
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VarxxðX0Þ is assumed to vary �10 of the nominal value 0.04 · I
with the consideration of systematic error, where I stands for the
identity matrix with appropriate dimensions. VarxdualxðX0Þ with
�5 variation is also assumed because of VarxdualxðX0Þ ⊆
VarxxðX0Þ and the symmetry of measurement error. The same as-
sumptions are also applied to VarðwÞ and VarðvÞ, where the nomi-
nal values are 0.0001 · I and 0.0009 · I, respectively.U is controlled
within the range of ⟦ − 10; 10⟧ by the tooling locators. The unit for
all values is millimeters.

To verify the robustness of interval estimations, a Monte Carlo
sampling procedure is taken, where real-valued variances are
sampled to run the classical Kalman filter. The real-valued variances
VarðX0Þ for initial inputs X0 are sampled uniformly within the cor-
responding interval ranges. For each of the 12 locators, 100 samples
are taken as initial variances for the classical Kalman filter formu-
lations in Eqs. (3) and (4). That is, 100 possible distributions are
tested for the dimensional variations for each of the 12 locators.
The sampled real-valued variances are then computed in the clas-
sical Kalman filter formulation to predict the dimensional variation.

Because the assembly line has three assembly stations and one mea-
surement station, there are four iterated prediction steps and one
update step in the calculation. Because VarxxðX0Þ is comparable
with traditional VarðX0Þ, VarðX0Þ is sampled within VarxxðX0Þ,
whereas VarxdualxðX0ÞÞ is not used in the sampling. In addition,
U ∼ Nð0; 0.0017Þ, w ∼ Nð0; 0.0001Þ, and v ∼ Nð0; 0.0009Þ are also
assumed in the verification. One hundred samples are drawn for
each of w and v at a time. The noises are assumed to be the same
for all four stages.

The variances estimated from the proposed mechanism and the
ones from the classical Kalman filter are compared in Fig. 4, in
which the cross markers (+) denote the ones computed by the
classical Kalman filter during the Monte Carlo sampling, and circles
denote the bounds of VarxxðXÞ from the proposed mechanism. As
shown in the figure, the dimensional variations of locators with
real-valued VarðXÞ are sampled by the Monte Carlo method and
propagated from station 1 to station 4 by the prediction step. The
variances along with each stations from the classical Kalman filter
are always enclosed by VarxxðXÞ, which are computed by the

Fig. 3 Assembly sequence, locating, and measurement points in Example 2
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Fig. 4 Results comparison between classical and the proposed Kalman filter: (a) variances
estimated at stage 1, (b) variances estimated at stage 2, (c) variances estimated at stage 3,
and (d) variances estimated at stage 4
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prediction step of the proposed mechanism. The samples of VarðXÞ
are given as uniformly distributed within interval ranges, as shown
in Fig. 4(a). The uniformity is preserved until station 3, as shown in
Figs. 4(b) and 4(c). The cross markers are uniformly distributed
within the entire interval range. At station 4, the uniformity is
changed at locator 9, where VarxxðXÞ is overestimated compared
to the Monte Carlo sampling, as shown in Fig. 4(d). At other loca-
tors, reasonable completeness and soundness of the interval estima-
tions are seen. If considering all possible combinations of sampled
noises and variances of 12 locators, the number of simulation runs
for the classical Kalman filter will be 10012, which is not comput-
able. The efficiency of the proposed mechanism is obvious. One run
of the interval-based method can provide the range estimation that
requires many runs of the classical method, if sensitivity analysis is
applied to test the robustness.

The results of the update at stage 4 are shown in Fig. 5. A com-
parison between VarðXÞ and VarxxðXÞ is shown in Fig. 5(a), in
which VarðXÞ are always enclosed by VarxxðXÞ. However, the in-
terval range VarxxðXÞ is much larger than the area covered by the
values of VarðXÞ. There could be two reasons for this. One is the
underestimation from the classical Kalman filter, which do not
consider all possible combinations of sampled noise and variances.
The other is the overestimation from the update step of the proposed
method because of the multiple occurrences of variables. Note
that Kk appears four times, VarxdualxðX̂−

k Þ appears twice, and
VarxxðX̂−

k Þ appears twice in VarxxðX̂kÞ in Eq. (34).
The values ofVarxxðXÞ and VarxdualxðXÞ computed by the pro-

posed method are shown in Fig. 5(b). Some values of VarxdualxðXÞ
are negative. Based on Definition 2 and Theorem 2, VarxdualxðXÞ
measures the covariance between the lower and upper bounds.
Negative values reveal that the upper and lower bounds of interval-
valued dimensions vary in the opposite trend. A negative value of
VarxxðXÞ also occurs at locator 3. This is likely to be caused by the
overestimation in the inverse interval matrix when calculating K in
Eq. (33). The overestimation of interval matrixK can be passed over
to VarxxðXÞ as in Eq. (34). Currently, the inverse of matrix A ¼
½A; Ā� is simply calculated asA−1 ¼ ½A−1; Ā−1�. Other ways to com-
pute the inverse of interval matrices to reduce overestimation are
needed in future studies.

Given the systematic error associated with measurement and
the initial variance estimation, the proposed method is an efficient
alternative to sensitivity analysis. For each of the assumed initial
distributions of state vector, noise, and observations, Monte Carlo
sampling is the typical way to assess the effect of error in the
classical Kalman filter. High computational costs come from run-
ning the model with combinations of different input values to realize
all possible variations. In contrast, the interval estimation provides
similar information with only one run of calculations.

5 Concluding Remarks
In this paper, an extended Kalman filter mechanism which dif-

ferentiates systematic error from random error is proposed. It is
based on generalized interval probability that integrates generalized
interval and probability. In this approach, state and observation var-
iables are random intervals. Noise is modeled as interval Gaussian
distributions. The variance of random intervals is defined as both
the scattering of the interval bounds and the covariance between
the lower and upper bounds. The new mechanism is an alternative
to sensitivity analysis to quantify the effect of systematic error in the
inputs of the Kalman filter. The two examples show that the esti-
mations of interval means and variances in the proposed method can
provide more robust prediction than the classical Kalman filter with
the consideration of measurement errors. The prediction of interval
values can provide more information than traditional precise ones,
such as the best-case and worst-case scenarios, the effect of system-
atic error, and the convergence speed of estimation when imprecise
data are applied.

In the future, the range overestimation associated with interval
analysis in the proposed method must be addressed. Both the effi-
ciency of computation and the value of the information provided by
interval ranges need to be considered. The overestimation of inter-
val analysis is typically caused by multiple occurrences of variables
in functions. The interval extension of a real-valued function in
which all variables are in continuous domains is usually defined
by replacing real operands and operators by the corresponding
interval ones, in which multiple occurrences are inherited. On the
other side, overestimation is an outer estimation which intends to
provide a complete range in which all possible values are included.
The inner estimation that provides a sound range also needs to be
studied such that more information is available. The goal is to pro-
vide a more accurate prediction of hidden states while maintaining
good robustness and computational efficiency.
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