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An Efficient First-Principles
Saddle Point Searching Method
Based on Distributed Kriging
Metamodels
Searching for local minima, saddle points, and minimum energy paths (MEPs) on the
potential energy surface (PES) is challenging in computational materials science because
of the complexity of PES in high-dimensional space and the numerical approximation
errors in calculating the potential energy. In this work, a local minimum and saddle point
searching method is developed based on kriging metamodels of PES. The searching algo-
rithm is performed on both kriging metamodels as the approximated PES and the calcu-
lated one from density functional theory (DFT). As the searching advances, the kriging
metamodels are further refined to include new data points. To overcome the dimensional-
ity problem in classical kriging, a distributed kriging approach is proposed, where clus-
ters of data are formed and one metamodel is constructed within each cluster. When the
approximated PES is used during the searching, each predicted potential energy value is
an aggregation of the ones from those metamodels. The dimension of each metamodel is
further reduced based on the observed symmetry in materials systems. The uncertainty
associated with the ground-state potential energy is quantified using the statistical mean-
squared error in kriging to improve the robustness of the searching method.
[DOI: 10.1115/1.4037459]

1 Introduction

Understanding the process–structure–property relation is cru-
cial in designing the materials for engineering problems. Compu-
tational tools, such as density functional theory (DFT), molecular
dynamics simulation, and finite element methods, can be utilized
to predict the material properties based on material structures.
Such linkages span a wide range of length and time scales in
materials science. Understanding the material behaviors at micro-
scale and nanoscale are essential to predict the material properties.
For complex material systems which contain multiple chemical
components, the material behaviors are even harder to compre-
hend, because there are many metastable states at which thermo-
dynamically distinct phases occur and coexist. Quantitative
description of phases, transition, and transformation processes
between phases is the key to improve and create desirable material
properties.

At nanoscale, the phase transition process can be predicted
from potential energy surface (PES). The PES is a hypersurface in
a high-dimensional configurational space that corresponds to the
potential energy based on the geometric configurations of the
material system. PES can be constructed via calculating potential
energy with first-principles approaches such as DFT. In molecular
dynamics simulation, the geometric configurations are given by
the atomistic positions, velocities, and interatomic forces. The
local minima on the PES indicate stable or metastable states of the
material system. A minimum energy path (MEP) [1,2] is the low-
est energy path that connects multiple local minima and describes
how the material system transforms from one metastable state to
another. The maximum potential energy along the MEP, which is
a saddle point, determines the activation energy which the mate-
rial system needs to overcome to complete the phase transition
process from one phase to another. As a result, the activation
energy is obtained by first searching for the MEP on PES, and

then finding saddle points along the MEP. With the activation
energy, the transition rate is calculated based on the transition
state theory [3].

Dynamic behaviors of materials, including chemical reaction,
diffusion, or protein folding, are regarded as phase transitions or
transformations at atomistic level. The prediction of phase transi-
tion relies on the accurate estimation of activation energy and sad-
dle points on PES. The overestimation of activation energy could
lead to underestimation of transition rates in crack propagation,
irradiation creep, or chemical erosion in structural materials,
which may cause catastrophic structure failures. The inaccurate
estimation of transition rates during the design stage could also
lead to high transient errors in phase-change memory materials
for information storage, or ineffective binding of new drugs,
which could result in significant costs and consequences for indi-
viduals and society. The risks associated with wrong activation
energy estimations are high, as simulation has become a universal
engineering tool for materials design.

Searching on the PES is a difficult problem, because the dimen-
sion of the configurational space is typically very high. This prob-
lem is also referred to as the curse of dimensionality in literature.
For complex material systems which contain multiple chemical
components, the curse of dimensionality significantly impacts the
efficiency and accuracy of the searching process. Specifically, for
n atoms, the dimension of the configurational space is 3n. There
are many literature reviews [4–7] on a number of the state-of-the-
art saddle points and transition pathway search methods. Some of
the most used search methods to find saddle point include nudge
elastic bands [8,9], ridge [10], Dewar–Healy–Stewart [11], and
dimer [12]. The existing search methods generally can be divided
into two groups: single-ended and double-ended methods. The
single-ended methods aim to locate the saddle points from initial
configuration and do not construct the MEP. The double-ended
methods aim to locate the saddle points and the transition path-
ways, i.e., the MEP connecting the initial and final configurations.
The majority of single-ended methods depend on the Hessian
eigenvalues and eigenvectors with local the quadratic approxima-
tion of PES within a trust region [13]. These methods rely directly
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on a large number of the functional evaluations, which is more
accurate but also computationally expensive.

In DFT calculations, there are many approximations and
assumptions that involve in the computing process of exchange–
correlation energy, including Hatree–Fock self-consistent method,
Born–Oppenheimer assumption, and the Jacob’s ladder of density
functional approximations. Hatree–Fock method assumes that the
electrons move independently and repulse each other based on the
average positions, and thus can be approximated using a single Sla-
ter determinant. Born–Oppenheimer approximation assumes that
the lighter electrons adjust adiabatically to the motion of the heav-
ier atomic nuclei, and thus their motions can be separated. Also,
depending on how much accuracy one wish to achieve in the results
of DFT calculations, there are multiple levels of approximations to
the energy–correlation energy, so-called the rungs in Jacob’s lad-
der, from local spin-density approximation, to generalized gradient
approximation (GGA), meta-GGA, hyper-GGA, and generalized
random phase approximation [14]. Thus, the potential energy in
DFT calculations is numerically approximated rather than exact.
Additionally, the PES construction based on the calculated poten-
tial energies can be regarded as an interpolation process in a high-
dimensional configurational space. Therefore, uncertainty in DFT
calculations, which at least includes theoretical and numerical
approximations, and numerical interpolation error, is an inevitable
element in PES construction.

Efficient methods are needed to reduce the computational com-
plexity in searching on PES. Surrogate modeling or metamodeling
is a viable approach, which builds input–output response and
numerically approximate the PES. Numerous metamodel methods
have been proposed based on a set of sample points, such as poly-
nomial regression [15], support vector regression [16], moving
least squares regression [17,18], radial basis functions [19], neural
networks [20], kriging method [21], and inverse distance weight-
ing [22]. Strengths and weaknesses exist in different metamodel-
ing approaches. One of the most widely used metamodeling
methods is kriging, also known as Gaussian process regression.
The kriging metamodel estimator is expressed in terms of polyno-
mial regression, and a Gaussian process with zero mean. Assum-
ing different correlation models between inputs, one can compute
the covariance matrix and the unknown polynomial coefficients
by ordinary linear regression. Kriging estimator is the best linear
unbiased predictor, in the sense that mean-squared error is mini-
mized. The mean-squared error captures the variance of Gaussian
process that passes through the provided data points, which is
assumed to be independent of the data points’ locations. One of
the major challenges for applying kriging is the high computa-
tional cost in the sequential sampling and model construction pro-
cess. If m is the number of observations, then the computational
cost for calculating the inverse of covariance matrix is Oðm3Þ, and
the storage cost is Oðm2Þ. Kriging performance decreases as the
number of observations m increases. When the number of data
points reaches a thousand, the classical kriging method starts to
break down. Several kriging modifications are devised to reduce
the computational impact of covariance matrix, as well as to
improve the kriging capabilities. Examples include fixed-rank
kriging [23], fast kriging algorithm [24], multifidelity co-kriging
[25,26], and cluster kriging [27,28]. Lee et al. [29] developed and
compared the univariate dimension reduction method, perform-
ance moment integration method, and percentile difference meth-
ods in reliability-based robust design optimization problem,
showing that the dimension reduction method is effective when
the number of variables is small, whereas percentile difference
method is more effective when the number of random variables is
relatively large. Huang and Du [30] proposed the mean-value
first-order saddle point approximation to estimate the cumulative
and density function of output, linearized by first-order Taylor
expansion at the mean values of random input variables. Wang
and Wang [31] developed a maximum confidence enhancement-
based sequential sampling approach to improve the computational
efficiency.

In this paper, a local minimum and saddle point searching
method on PES is developed based on symmetry-enhanced cluster
kriging metamodels. The objective of the proposed approach is
twofold: one is to accelerate the searching process by using krig-
ing predictor instead of relying on DFT functional evaluations,
and the other is to improve the performance of classical kriging
method for large sample sizes. The searching method begins with
a limited number of DFT calculations. When the number of DFT
calculations reaches a limit, a new PES metamodel is constructed
using the distributed kriging metamodels. Thus, multiple kriging
metamodels are constructed as the size of dataset grows. The data-
set is divided into clusters dynamically. In each cluster, a classical
kriging metamodel is constructed. The PES metamodel predictor
is computed as an aggregation of all cluster kriging predictors.
The searching method is performed on the PES metamodel until
some defined criteria are satisfied. The search results based on the
metamodel are used to locate the new configurations for DFT cal-
culations. After DFT calculations are performed on the new con-
figurations, the metamodel is then refined and updated to include
those new data points, and the searching method switches back to
metamodel. This “real-surrogate-real” process in the searching
algorithm continues until some stopping criteria are satisfied. The
advantage of the proposed method is the significantly reduced
number of functional evaluations using density functional calcula-
tion compared to traditional approaches. In addition, the divide-
and-reconquer approach with distributed kriging metamodels
overcomes the high-dimensionality problems in the configura-
tional space and large sample size. The interpolated information
with kriging also comes along with mean-squared error, which is
used to assess the uncertainty of the searching method and
metamodel.

In the remainder of the paper, Sec. 2 reviews the concurrent
searching method developed in our earlier work. Section 3
describes the incorporation of kriging metamodel to accelerate
searching method. Section 4 provides the formulation and con-
struction of distributed kriging for high-dimensional and large
dataset problem. Section 5 demonstrates the scalability of distrib-
uted kriging, in contrast to the computational bottleneck of classi-
cal kriging. Section 6 applies the searching method of hydrogen
diffusion in body-centered center (BCC) cubic iron using the sup-
porting metamodel to accelerate the searching method. Section 7
concludes the paper.

2 Previous Work

We recently developed a concurrent searching method [32] for
searching multiple local minima and saddle points simultaneously
along one transition pathway on the PES, without the knowledge
of the initial and final metastable configurations. The algorithm
uses B�ezier curve to model the transition path from one local min-
imum to another. For each polygon formed by the B�ezier curve’s
control points, two end control points are converged to two local
minima, and one intermediate control point climb ups to find the
saddle point in between. A constrained degree elevation and
reduction scheme is incorporated to maintain an even distribution
of control points in modeling B�ezier curve. A curve subdivision
scheme is developed to break one curve into two curves recur-
sively to possibly search for multiple transition paths. The search-
ing method is composed of three stages: (1) a single transition
pathway search, (2) multiple transition pathway search, and (3)
climbing process to locate the saddle position.

In the first stage, the algorithm locates two local minima by
minimizing two end control points using the conjugate gradient
method. The intermediate control points are relaxed along their
corresponding conjugate directions with positive eigenvalues of
the Hessian matrix. In the second stage, the algorithm locates all
local minima between two stable configurations obtained from the
first stage. To locate all local minima along the path, a curve sub-
division scheme is developed to check whether one curve crosses
an extra energy basin with a local minimum between the two
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stable states (i.e., end control points of the curve produced from
the first stage). If one curve is breakable, the algorithm breaks the
curve successively into two curve sections representing two stages
of transition, separating at one break point. The break point is
then relaxed again using the conjugate gradient method to locate
the extra local minimum, while the shape of the two newly created
curves are refined in the same manner as in the first stage. This
process continues until each curve crosses only two adjacent
energy basins. In the third stage, the control point with the maxi-
mum energy within each of those transition paths climbs up to
locate the actual saddle points. Similar to the first stage, a set of
conjugate directions are constructed for each intermediate control
point. The control point with the maximum energy along each
transition pathway is maximized along the direction with a nega-
tive eigenvalue and relaxed along all other conjugate directions.
All the other intermediate control points are only relaxed in all the
conjugate directions except the one with negative eigenvalues.
The algorithm was not implemented to execute in parallel. How-
ever, the optimization processes of these curve sections are inde-
pendent and can be further implemented as parallel searching
methods. A number of numerical examples, such as Rastrigin func-
tion, Schwefel function, and London–Eyring–Polanyi–Sato poten-
tial, are provided to benchmark the searching method [32–34].

3 Saddle Point Searching Method Using Potential

Energy Surface Metamodel

To improve the efficiency, the searching method is accelerated
using a PES metamodel in this work. In this section, we discuss
the incorporation of kriging into the single transition pathway
search and climbing process using PES metamodel. The incorpo-
ration of the PES metamodel is enabled by implementing several
thresholds. For instance, if the number of certain functional evalu-
ations passes these thresholds, then the functional evaluations are
performed using the PES metamodel instead of DFT calculations,
to reduce the computational cost of the searching method. At cer-
tain point, the searching method switches back to DFT calcula-
tions to update the PES metamodel. This approach is referred to
as the “real-surrogate-real” process, by accelerating the algorithm
using the PES metamodel, and updating it as the algorithm advan-
ces to improve the metamodel accuracy.

Figure 1 summarizes the general process of the searching
method using PES metamodels. In the first stage, the algorithm
updates the positions of the end control points based on DFT cal-
culations using the conjugate gradient method, and the positions
of intermediate control points by moving them along conjugate
directions until a number of functional evaluations equals to a
threshold. The PES metamodel is constructed, and the searching
method relies on sampling scheme to locate two local minima for
two end control points. For each end control point, the algorithm
draws uniformly distributed samples in a local region, defined by
the current location of the end control point, and a hypercube
whose side length is

a ¼
ffiffiffi
2
p

c minðdpre; dneighborÞ (1)

where c � (0, 1] is a constant, dpre ¼ kxðiÞ � xði�1Þk is the distance
between the positions of the end point in the current iteration i

and previous iteration (i� 1). dneighbor ¼ kxðiÞend � xðiÞk is the dis-
tance between the end point and its neighboring control point. The
definition of the hypercube length assures that the new end control
point will not jump to the position which is far away from the
closest local minimum, and prevents the formation of possible
loops at the end of the curve. In the second stage, the functional
evaluations in the line search along conjugate directions are also
based on DFT calculations until another threshold is enabled.
When more functional evaluations are required, the PES metamo-
del is used as an approximation. Line search is one of the main

components in the searching method, as it involves in all stages,
and is used to determine the minimum or maximum along each
conjugate direction. The line search process conducts a few trial
searches to determine an appropriate step length using DFT calcu-
lations, refines the position of the control points along the direc-
tion using the determined step length also using DFT calculations,
and updates the position of control points using the PES metamo-
del until stopping criteria is satisfied. In the third stage, the control
points with the maximum energy climb up along a conjugate
direction and all other intermedia control points are minimized
along their corresponding conjugate directions with positive
eigenvalues. The construction of the conjugate directions is based
on DFT calculations, except for some functional evaluations dur-
ing the line search are conducted using the PES metamodel until a
threshold is satisfied. After that, the climbing process depends
solely on the PES metamodel.

4 Symmetry-Enhanced Distributed Kriging

Metamodel

In this section, we describe the symmetry-enhanced distributed
kriging. The new kriging approach is a natural extension of classi-
cal kriging to (1) take advantages of symmetry in materials sys-
tems and (2) break the large datasets into smaller clusters of fixed
size and build a kriging model on each cluster.

4.1 Symmetry in Materials Systems. In a material system,
an atom is invariant to its own kind. The physical interpretation of
this statement can vary from one nanoscale computational method
to another. Here, we discuss the physical meaning in terms of
molecular dynamics simulation and DFT calculations. For molec-
ular dynamics simulation, simply exchanging the atomistic posi-
tions and velocities of two atoms of the same kind simultaneously
does not affect the dynamics behavior of the simulation system.
For DFT calculations, the Born–Oppenheimer approximation
assumes that the motion of nuclei and electrons are separable. The
symmetry principle is even more useful for ground-state DFT cal-
culations, where atomistic velocities can be disregarded corre-
sponding to 0 K temperature. Thus, exchanging the atomistic
positions of two atoms of the same kind also does not affect the
calculated potential energy. The statement can also be understood

Fig. 1 Flowchart of the searching method with metamodel
involves three stages. The first and second stages are com-
bined into a single transition pathway search, and third stage is
the climbing process. A PES metamodel is utilized in all three
stages to accelerate the searching process.
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as the invariant properties of enumeration or relabeling of atoms.
In other words, the potential energy is invariant to the permutation
of the configurations. Assume that the chemical composition of
the material system is AaBb…Zz, and denote the superscript as the
enumeration of each component. To illustrate the argument for
DFT calculations, Fig. 2 illustrates the concept of swapping atom-
istic positions without alternating potential energy. For instance,
simultaneous exchange of the atomistic position A(1)! A(2), A(2)

! A(a),…, A(a)! A(1),…, Z(1)! Z(1), Z(2)! Z(z),…, Z(z)! Z(2)

does not affect the potential energy as illustrated in Fig. 2(a). For
the aforementioned chemical composition, the number of permu-
tation is a!b!…z!, meaning that for one data point in DFT calcula-
tions, there are a!b!…z! other inputs producing the same output.
We refer to other permutated inputs as the symmetric configura-
tions with respect to the real configuration of DFT calculations.
The permutation principle is used to produce many symmetric
configurations that yield the same potential energy, which in turn
increases the number of observations for kriging metamodel and
overcomes the curse of dimensionality. One could also use permu-
tation to increase the resolution of kriging, but it is also worthy to
note that the metamodel efficiency always reduces as more data
points are introduced, especially for very large permutations. It is
noteworthy that the PES metamodels are constructed with the per-
mutated configurations, instead of the original configurations.

It is shown that scattered data, which are DFT inputs and out-
puts for PES metamodels, tend to reduce the accuracy of the PES
metamodel prediction. Driven by the symmetry principle, DFT
inputs and outputs are first permutated in such a way that their dis-
tances, typically measured by the Euclidean ‘2 norm, are mini-
mized, and thus the PES metamodel prediction can be improved.
We propose two steps to construct the PES metamodel for config-
urational space. First, by the aforementioned symmetry principle,
the input of DFT calculation, which describes the atomistic

positions of the configuration, is permutated to create other three
fictitious DFT inputs. These three DFT inputs are created by sort-
ing the original DFT input so that the x-, y-, and z-coordinates of
the original DFT input, respectively, are monotonically increasing
for each chemical component of the configuration. Figure 2(b)
illustrates the sorting process to these three fictitious DFT inputs.
Then, the kriging metamodel is constructed using only these
sorted configurations, but not the original DFT inputs. The output
of the original DFT calculation is preserved during the sorting
process. To predict the functional evaluation for an unknown loca-
tion using the PES metamodels, the inputs of DFT calculations
are first sorted into three different configurations. The predictions
of all configurations are evaluated. Among three functional evalu-
ations, the one with the minimum mean-squared error is picked.
The advantages of the sort function are twofold. First, the distan-
ces between inputs are minimized; thus, the accuracy of the krig-
ing metamodel significantly increases. Second, by carefully
selecting three specific permutations of all possible permutations
by the symmetry principle, the PES sample size is kept at a com-
putationally tractable level, and the efficiency of the proposed
PES metamodels is maintained. The minimization of distances
between inputs by sorting is established based on the rearrange-
ment inequality theorem. The theorem states that by sorting, the
‘2-norm between two vectors is minimized.

THEOREM 1. (Rearrangement inequality). Let X;Y be the sorted
configuration of x; y, respectively, i.e., [35] fxign

i¼1 ¼
fXign

i¼1; fyign
i¼1 ¼ fYign

i¼1 and

Xi � Xj and Yi � Yj for every i; j 1 � i � j � n

then kX � Yk2
2 ¼ arg minrðx;yÞ kx� yk2

2, where rðx; yÞ is the set of
all possible permutations.

Fig. 2 The invariant property of PES with respect to the atomistic component and the con-
struction of symmetry-enhanced cluster kriging metamodel: (a) The potential energy of an
arbitrary material systems is invariant to the permutation of its atomistic component and (b)
The construction of symmetry-enhanced cluster kriging metamodel by sorting each of its
component by x-, y-, and z-coordinates separately and construct the PES metamodel based
on the permutated configurations
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4.2 Clustering Algorithm.

Algorithm 1 Sequential construction of clusters given k initial
clusters.

Input: new data point fxnew; ynewg
1: if cluster(k).Ndata�Nthres then
2: Add new data point into the last cluster:
3: clusterðkÞ:X  ½xnew; clusterðkÞ:X�
4: clusterðkÞ:y ½ynew; clusterðkÞ:y�
5: Remove last datapoint from clusterðkÞ:X and

cluster(k).y
6: Increase the counter: clusterðkÞ:Ndata  clusterðkÞ:Ndata

þ1
7: if Nfitj clusterðkÞ:Ndata then
8: Fit the hyperparameter h every Nfit of new datapoints
9: end if
10: else
11: Create (kþ 1) cluster:
12: clusterðk þ 1Þ:y clusterðkÞ:y�
13: clusterðk þ 1Þ:X  clusterðkÞ:X�
14: Add new data point into the last cluster:
15: clusterðkÞ:X  ½xnew; clusterðkÞ:X�
16: clusterðkÞ:y ½ynew; clusterðkÞ:y�
17: Remove last datapoint from clusterðkÞ:X and

cluster(k).y
18: Reset the counter: clusterðk þ 1Þ:Ndata  1
19: Increase the number of cluster: k k þ 1
20: end if

The searching method only switches to the “real-surrogate-
real” approach if there is sufficient data to support the metamodel.
The initial dataset is first sorted according to the symmetry prop-
erty as described previously, before being clustered again to mini-
mize their overlapping data. As the searching method advances,
more data points are added into the metamodel prediction. Here,
we propose a feedforward scheme to build clusters sequentially.
The algorithm is inspired by the local Gaussian process regression
[27,28]. Suppose we have k clusters. In each cluster, there is a
counter of unique data points Ndata. If the counter exceeds the pre-
defined threshold for the cluster size Nthres, then the new cluster
kþ 1 is created in the following manner. First, the counter Ndata

for the new cluster is reset to one. Second, the remaining missing
data (Nthres�Ndata) is borrowed from the last cluster k. Finally,
when a new data point is added, the borrowed data point is
replaced with the new one until the counter Ndata hits the threshold
Nthres, and a new cluster is created again. As previously men-
tioned, on each cluster, a kriging model is built. After certain
number of steps Nfit, on each cluster, the hyperparameters h are
recalculated by optimizing the maximum likelihood estimation
function, and the centroids c0ks are updated. The construction
scheme is summarized in Algorithm 1.

4.3 Prediction Using Multiple Metamodels.

Algorithm 2 Prediction using weighted kriging from all clusters.

Input: location x, k clusters and their centroids cl; 1 � l � k
Output: the prediction ŷ at location x using k clusters
1: for l 1; k do
2: Compute the distance from x to all clusters’ centroids:
3: d2

l  kx� clk2
2

4: if minlfdlgk
l¼1 6¼ 0 then

5: Compute the weights with a radial basis function fRBF (�):
6: wl  fRBFðdlÞ
7: else
8: Insert a penalized term davg to stabilize fRBF (�)
9: Compute the weights:
10: wl  fRBFðdavg; dlÞ
11: end if
12: end for

13: Normalize the weights:

14: wl  wlPk

l¼1

wl

15: Compute the prediction:

16: ŷ  
Pk

l¼1

wl�y
ðlÞ � �yðlÞ is the kriging prediction of l

cluster at x
To predict the response value ŷ at the location x, given k clus-

ters and a kriging metamodel on each cluster, the prediction is
given in the form of weighted average as

ŷ ¼
Xk

l¼1

wl�yl (2)

where
Pk

l¼1 wl ¼ 1, and �yl is the kriging prediction of the lth clus-
ter. Here, the local weight wl is computed based on a radial basis
function fRBF (�) of the distance d from the query point x to the
centroid of the lth cluster cl, i.e., d ¼ jx� clj, for example,

inverse distance weight wl / ð1=d2
l Þ, or Gaussian weight

wl / e�ed2
l . The main principle for choosing an appropriate weight

function is that the closer the location to the centroid of the lth
cluster, the more accurate prediction one can obtain from this
kriging prediction. As the searching method advances, the loca-
tion point x for prediction tends to be away from initial datasets.
With the formalism of sequential clusters construction, only the
last few clusters contribute meaningful predictions to the location
x. In case the prediction is at the centroid of one or many clusters,
a penalized term is inserted to the denominator to avoid numerical
instabilities. Nguyen et al. [28] proposed the weights computed by
a Gaussian kernel of the distance to each clusters. van Stein et al.
[27] minimized the variance of the weighted average and obtained
the weights of inverse variances. More general choices for weight
functions exist in literature, such as Mat�ern functions or the multi-
quadrics [36] with generalized exponentials. The prediction algo-
rithm is summarized in Algorithm 2. Because the underlying
assumption of kriging is that the errors are Gaussian, the predicted
variance can be assessed as

r̂2 ¼
Xk

l¼1

w2
l �r2

l (3)

where r2
l is the predicted mean-squared error from the kriging

model of the lth cluster, assuming data in clusters are independ-
ently sampled.

5 Numerical Validation and Verification Example

Here, we demonstrate the scalability of the distributed kriging
with the Schwefel function on two-dimensional, where the func-
tion is evaluated by

f ðxÞ ¼ 418:9829� 2� ðx sinð
ffiffiffiffiffi
jxj

p
Þ þ y sinð

ffiffiffiffiffi
jyj

p
ÞÞ (4)

on the domain [�500, 500]� [�500, 500]. In order to compare
the classical and distributed kriging, the subdomain of diagonal
stripe is chosen where nine clusters of distributed kriging are con-
structed. This comparison subdomain is the union of nine squares,
where each square is associated with a cluster in distributed krig-
ing. The centers of the squares are ð�400;�400Þ; ð�300;
�300Þ;…; ð400; 400Þ. The dimension of each square is 200. In
this example, the Gaussian weight function is chosen, in which
the weights are exponentially decayed with respect to dl, i.e.,
wl / e�0:01dl , where dl is the distance between query point to the
lth cluster’s centroid. Figures 3(a) and 3(b) shows the interpola-
tory surfaces between classical and distributed kriging, respec-
tively, on the comparison domain of diagonal stripe, where both
interpolatory surfaces are very similar.
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To verify the computation, the distributed kriging is compared
against with true Schwefel function value with 101 equidistant
points on the line x¼ y in [�500, 500]� [�500, 500], where the
cluster size Ndata is set to 150. The comparison results between the
distributed kriging and the true value of Schwefel function are
presented in Fig. 4, where the Schwefel function value is plotted
against the x-coordinates, showing an excellent agreement. Note
that near the boundary of the computational domain, the distrib-
uted kriging predictor slightly deviates from the true function due
to less number of available sampling points around the neighbor-
hood. The clusters’ centroids are plotted as a black dot along the
curve.

To show the scalability of distributed kriging, we compare the
computational cost between distributed and classical kriging,
where the total number of sampling points varies at 1350, 1800,
2250, 2700, 3150, and 3600. These numbers correspond to the
cluster size Ndata of 150, 200, 250, 300, 350, and 400. Figure 5
presents the comparison of computational cost between classical
and distributed kriging. With Ndata¼ 400, corresponding to the
total number of sampling points of 3600, the classical kriging
takes 376.31 s to construct the metamodel, whereas the distributed
kriging only takes 8.50 s. It is demonstrated that the scalability
problem of classical kriging can be solved by decomposing large
dataset into smaller clusters, where each clusters corresponds to a
kriging metamodel. The advantage of distributed kriging is that
the response surface can be constructed at a much computation-
ally cheaper price.

Theoretically, the distributed kriging method in optimization
would yield the same result compared to the classical kriging, pro-
vided that these constraints are satisfied. First, there must be suffi-
cient number of data points in each cluster to approximate the
local response surface. Second, the clusters have to be relatively
disjoint from others to keep the clusters’ centroids substantially

far away from each other. Third, there must also be some overlap-
ping regions between clusters, so that the prediction between clus-
ters is accurate. Finally, an appropriate weight computation needs
to be carefully chosen. In practice, the optimization results might
vary due to unsatisfied constraints. The distributed kriging uncer-
tainty is typically higher compared to classical kriging, due to sig-
nificantly less number of data points available in the cluster.
Therefore, it is recommended to set the cluster size sufficiently
high, but not too high, preferably in the magnitude of 103. Further-
more, the buffering zone that connects one cluster to another
should also have sufficient sampling points to prevent spikes of
mean-squared errors. Locally, the accuracy of distributed kriging
response surface is essentially the same with classical kriging, i.e.,
the approximation error depends on the number of sampling
points. The more sampling points there are, the smaller the
approximation error is.

6 Material Science Example: Hydrogen

Embrittlement in Body-Centered Cubic Iron

An example of hydrogen embrittlement in BCC iron, in which
the hydrogen atom diffuses in pure BCC iron with lattice constant
of 2.86 Å, is used to demonstrate the searching method. There are
two possible sites that H atoms reside in BCC iron: one is octahe-
dral site and another is tetrahedral site. Since it is generally
believed that hydrogen has low solubility in BCC iron, we assume
there is one hydrogen in the supercell, which is composed of four
unit cells and includes eight Fe atoms. The chemical composition
of the material system is Fe8H. The lattice parameter for the unit
cell Fe8H is set at a¼ 5.72 Å, b¼ 2.86 Å, and c¼ 5.72 Å. The total
energy of the system and the forces on each atom are performed
based on DFT calculations using Vienna Ab initio simulation

Fig. 3 Comparison between classical and distributed kriging
on the comparison domains shows very similar response surfa-
ces (a) Classical kriging on the comparison domain with 1800
sampling points and (b) Distributed kriging on the comparison
domain, where the sampling points on odd clusters are plotted
as diamonds, and the sampling points on even clusters are
plotted as upside down triangle. There are totally nine clusters,
where each cluster contains 200 sampling points.

Fig. 4 Comparison between the distributed kriging and the
true value of Schwefel function shows an excellent agreement
with a small number of cluster size Ndata of 150

Fig. 5 Comparison of computational cost shows that the dis-
tributed kriging scheme is scalable
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package. The local density approximation projector augmented
wave potential is used. The convergence test for the k-point sam-
pling with respect to the total energy shows that 13� 26� 13
gamma centered grid of k-point sampling is adequate for study of
Fe8H structure. To reduce the computational time, k-point sam-
pling of 2� 4� 2 is used. In this simulation, the cluster size Ndata

is set at 721. The cluster size is chosen so that it is less than 1000,
but very close to the least common multiple of 2, 3, 4, 5, and 6 so
that the Nfit parameter for fitting procedure can be easily chosen
from these numbers. The number of DFT calculations is 1598. For
every Nfit¼ 4 steps, the hyperparameters in the last cluster are
updated. In our study, the variances of clusters are roughly of the
same scale, and the exponential weights decay rapidly to zero
without the shape parameters in the exponent, leading to numeri-
cal instability issues. Thus, the inverse distance weight function is
used to compute the weight, i.e., wl ¼ ð1=d2

l Þ, where dl is the dis-
tance from the query point to the lth cluster. The penalized param-
eter d2

avg is set at 0:25 � ðmaxlfdlgk
l¼1Þ

2
. The uncertainty of the

searching method, particularly the predicted energy levels at local
minima and saddle points, and the MEP are assessed based on Eq.
(3). The PES metamodels helps to predict not only the potential
energy from DFT calculations, but also its first partial derivatives
with respect to each of the atom positions.

Figure 6 shows the transition pathways obtained by the pro-
posed searching method using the PES metamodel. The corre-
sponding configurations at different states are also presented
corresponding with the local minima and saddle points of the tran-
sition path. Table 1 presents the potential energy of the local min-
ima, saddle points, and control points along the curve of MEP1

and MEP2. The activation energy is calculated to be 1.004 eV.
The computational time is about 31 h, using four processors for

parallel DFT calculations. The covariance matrix size is
721� 721 for each of the two clusters.

The proposed distributed kriging breaks the covariance matrix
in classical kriging method into several covariance matrices, one
for each kriging metamodel on each cluster. The covariance
matrix has a chosen constant size. By doing so, the fitting hyper-
parameters can be calculated at a cheaper computational price.
Additionally, only the hyperparameters for the kriging metamodel
for the last cluster are inferred. Thus, the nature of sequential
design is preserved in the distributed kriging approach. Further-
more, because the size of covariance matrices is smaller than the
classical kriging approach, the distributed kriging is more effi-
cient. A comparison between classical kriging and distributed
kriging depends on many parameters, but mainly on the chosen
size of the cluster Ndata and the number of clusters k. If m is the
sample size, the computational cost reduces from Oðm3Þ for clas-
sical kriging to OðkN3

dataÞ for distributed kriging, almost by a fac-
tor of k2, where m � kNdata. In this example, the transition path of
the hydrogen atom is known a priori that the metastable and final
states are away from the initial one. With the sequential formalism
of cluster construction, as the searching algorithm converges, we
expect clusters are born naturally along the pathway in a sequen-
tial manner. Therefore, the data are automatically clustered and
no clustering algorithm is needed. For a more general application,
one may need to consider clustering algorithms, such as k-means
and random clustering, to cluster the large dataset after a certain
number of clusters are constructed.

While the idea of using PES metamodels to support search
method is promising in term of computational time and the simple
reconstruction of potential energy landscape, there are several
limitations in the current state of the search method. First, even

Fig. 6 Transition pathway with local minima and saddle points from initial to final states and
its corresponding configurations for Fe8H system. The saddle points are denoted as circles,
whereas the local minima are denoted as squares.

Table 1 Potential energy of the configurations in Fig. 6 and their standard deviations

Configuration number

1 2 3 4 5 6

Pot. E. MEP1 �74.7027 �74.2947 �74.2945 �74.2943 �74.2942 �74.9158
Std. Dev. 3.2652 3.2825 3.2951 13.5816 13.5033 3.3306

MEP2 �74.9158 �74.0713 �74.0712 �73.9122 �74.7660
Std. Dev. 3.3306 13.4424 13.3451 13.2758 12.9051
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though the distributed kriging can compute the functional evalua-
tions quickly compared to the classical kriging method, the uncer-
tainty associated with distributed kriging is typically higher
because distributed kriging has significantly fewer data points,
hence a larger standard deviation. Additionally, the uncertainty is
amplified in a high-dimensional configurational space. However,
the location of saddle points is assured by the gradients of PES,
whose gradient vectors contain mostly zero components. Second,
the current curve subdivision scheme that breaks the modeling
B�ezier curves successively is incapable of searching two paths
with the same initial and final states. There could be multiple
paths between two states, as illustrated in Fig. 7.

The current search method can only locate one transition path
which consists of multiple curves with their end points connected
together locating at multiple local minima, that is A-D-E-B or A-
C-B, but not both. As a result, the activation energy between states
A and B can be overestimated.

7 Conclusion

In this paper, a saddle point searching method using distributed
kriging metamodels is developed to improve the efficiency of the
searching method. Furthermore, the distributed kriging metamo-
dels are refined to cope with the large sample size and high-
dimensionality problems. The main improvement from existing
saddle point search methods is that the new searching method
retains the searching history in the PES metamodels. These meta-
models are continuously updated as the algorithm advances.
Numerical scheme to construct the clusters sequentially is
devised, and prediction by inverse distance weighted average is
used. Also, the uncertainty of the results is also assessed using the
error estimated in kriging metamodels. Possible future directions
are stochastic kriging [37], where input uncertainty is included
and composite Gaussian process [38], where the global trend and
local details are captured separately. The choice of weights in dis-
tributed kriging remains a open question for further research.
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