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A significant amount of research has been performed to explore the mathematical basis 
for dimensional and geometric tolerance representation, analysis, and synthesis. 
However, tolerancing semantics such as logical dependency among variations and 
sequence of specifications is not maintained in these models. Consequently, their 
numerical results are not interpretable. In this paper, a semantic tolerance modeling 
scheme based on generalized intervals is proposed to improve the interpretability of 
tolerance modeling. Under certain optimality conditions, semantic tolerance models 
allow for true variation range estimations with simple computations. With the theoretical 
support of semantic tolerance modeling, a new dimension and tolerance specification 
scheme for semantic tolerancing is also proposed to better capture design intents and 
manufacturing implications, including flexible material selection, rigidity of 
specifications and constraints, component sorting in selective assembly, and assembly 
sequences. 
 

 

1. Introduction 
Tolerance modeling forms an important link between design 

and manufacturing. A significant amount of research has been 
carried out to explore the mathematical basis for dimensional and 
geometric tolerance representation, analysis, and synthesis. 
Relations among tolerances in components and assemblies are 
formulated in different ways and solved numerically. The typical 
analysis methods include variational estimation, kinematic 
formulation, statistical approximation, and Monte Carlo 
simulation. However, current tolerance modeling methods do not 
capture the semantics of tolerance specifications well. 

First, traditional tolerance analysis methods assume all 
objects have rigid geometry. The variance is increasingly stacked 
up as components are assembled. The geometric variation of 
assembly is always assumed to be larger than those of its 
subassemblies and components. This rigid body tolerance analysis 
overlooks the role of flexible materials in assemblies, such as 
sheet metal and plastic components, which are common in 
aerospace, automobile, and electronics industries. For example, an 
airplane skin can be slightly warped, and yet riveted in place. 
Similarly, subassembly components of auto body with variations 
much larger than the specified ones can still meet the final 
assembly specification. The conventional addition theorem of 
tolerances is no longer valid in these applications. Given the 
specification of an assembly, unreasonably tight tolerance 
requirements may be assigned to subassemblies and components 
during tolerance synthesis if conventional methods are used. 
These methods treat tolerances for rigid and compliant assemblies 
with the same scheme of +/– range. The difference between rigid 
and flexible materials in assemblies is not captured.  

Second, current modeling and analysis methods do not 
maintain the semantics of tolerance specifications during model 
formulation and numerical computing. These specifications and 
relationships among them imply manufacturing and assembly 

methods such as the sequence of fabrication.  Tolerance analysis 
is usually simplified to the computation of numerical intervals. 
However, logical dependency and algebraic relations among 
variations are left out in existing approaches. This leads to the 
problem that numerical solutions are not interpretable, i.e., it is not 
viable to interpret and understand the relation between output 
range estimations and input variations. Instead of focusing only on 
mathematical and numerical convenience, a good model of 
tolerances should convey the full semantics of size and geometric 
tolerances and support analysis and synthesis with a simple yet 
comprehensive structure.  

Third, both completeness and soundness of range estimations 
should be emphasized in tolerance analysis. A complete solution 
includes all possible occurrences, which is to check if the range 
estimation includes all possible stack-up results. Conversely, a 
sound solution does not include impossible occurrences, which 
consists in checking if the interval overestimates the actual 
variation range. True variation range estimations are both 
complete and sound. For example, completeness is the focus of 
the worst-case methods. It is usually assumed that tolerance 
variables are independent of each other. Thus the estimations are 
conservative and not sound when dependency exists among 
variables, i.e., variables are positively or negatively correlated. On 
the other hand, numerical estimations of statistical moments or 
kinematic variations are usually based on linearization or higher-
order Taylor approximation, which makes it difficult to verify the 
completeness and soundness of solutions.  

In this paper, we propose a new scheme, Semantic Tolerance 
Modeling, to represent and analyze tolerances based on 
generalized intervals. Unlike traditional set-based intervals, such 
as the interval [1,2]  which represents a set of real values between 
1 and 2, generalized (or modal) intervals also allow the existence 
of the interval [2,1] . With this extension, logic quantifiers (∀  
and ∃ ) can be integrated to provide the interpretation of intervals. 
With tolerances represented by generalized intervals in semantic 
tolerance models, tolerancing semantics such as flexible material 
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selection and logical relations among variations can be integrated 
into numerical results. In addition, modal interval analysis based 
on generalized intervals provides better variation estimation than 
the traditional worst-case interval analysis. If several optimality 
principles are followed, we can formulate tolerance models that 
estimate true variation ranges with simple algebraic calculation. 

Based on interpretability principles of semantic tolerance 
modeling, a new dimension and tolerance specification scheme for 
semantic tolerancing is also proposed. The main difference 
between the semantic tolerancing scheme and the commonly used 
tolerancing practice is that a priori and a posteriori tolerances are 
differentiated in the new method. In fact, whenever defining a 
relationship among tolerances, we have implicitly differentiated 
these two types of tolerances. For instance, a working dimension 
is a dimension that is functionally critical and therefore explicitly 
specified in the design and blueprint. On the other hand, a balance 
dimension is not explicitly specified and its nominal and tolerance 
values are calculated from working dimensions. Compared to 
working dimensions, which are hard requirements imposed a 
priori, balance dimensions are soft and derived a posteriori. In 
general, a priori tolerances are tolerances with predetermined 
variations. They have the semantics of uncontrollable, 
unchangeable, critical, hard-constrained, specified, etc. A 
posteriori tolerances are tolerances with derived variations. They 
have the semantics of controllable, adjustable, flexible, soft-
constrained, feedback, etc. It should be noted that the semantic 
categories of a priori and a posteriori tolerances depend on the 
context of discourse. 

The remainder of the paper is organized as follows: Section 2 
gives an overview of related work on tolerance modeling, interval 
analysis, and an introduction to generalized intervals. Section 3 
introduces the interpretability of semantic tolerance modeling. 
Section 4 presents the concept of semantic tolerancing based on 
the interpretability principles. Section 5 describes the true range 
estimation based on the optimality principles.  

2. Background 
2.1 3D Tolerance Modeling 

There is a considerable amount of literature on tolerance 
modeling [1, 2]. Here, we only give a brief overview of 3D 
geometric tolerance zone representation related to the tolerance 
semantics. In variational approaches, tolerance zones are 
established either in 3D Euclidean space or in configuration space, 
such as offsetting tolerance zone [3], plane boundary 
representation [4, 5], and simplex based representation [6, 7]. In 
statistical approaches [8], geometric and size tolerances are not 
modeled separately. Statistical moments are estimated with linear 
or nonlinear tolerance stack-up. While the root-sum-square 
method yields optimistic estimations, alternatives were proposed 
to perform adjustment and correction for shifts and drifts [9]. 
Tolerance zone is also represented in mean-variance (μ-σ2) space 
for analysis [10] and synthesis [11]. In kinematic approaches, 
geometrical variation and displacement are modeled by unified 
vectors and matrices [12, 13, 14], kinematic links in Euclidean 
space [15, 16] and configuration space [17]. The kinematic 
methods distinguish size tolerances and each type of geometric 
tolerances. However, relations among variations are not modeled, 
and estimation results are hard to interpret. In Monte Carlo 
simulation approaches [18, 19], large numbers of samples are 

randomly generated and evaluated in statistical estimation. The 
drawback is that the computational cost for the sampling process 
is very high if an accurate estimation is required. The process also 
depends on the pre-assumption of certain statistical distributions 
for input random variates.  

 The modeling and analysis methods mentioned above have 
been widely accepted and used in commercial software such as 
Vis VSA® and CE/Tol®. However, it is not easy to interpret the 
meanings of the estimated variations and relations among them in 
components and assemblies. Furthermore, tolerances of compliant 
assemblies tend to be overestimated with the rigid-body 
assumption. 

2.2 Tolerance Analysis for Flexible Assembly 
There is a relatively small amount of research on tolerance 

analysis for flexible materials. A combination of finite element 
structural analysis and Monte Carlo simulation was proposed to 
predict variations in sheet metal joining [20, 21]. Geometric and 
material covariance in compliant assemblies is modeled in finite 
element simulation [22, 23]. Process-oriented tolerancing for 
multi-station assembly has also been studied [24, 25]. 

The previously mentioned finite element approaches have 
been integrated into commercial software packages such as Vis 
VSA® and CATIA-TAA®. Nevertheless, the tradeoff between 
fidelity and performance is always associated with finite element 
methods. Accurate computations become expensive if the variance 
estimation involves complex assemblies. In most cases, the 
accurate calculation of structural deformation and stress 
distribution is not the main purpose of tolerance analysis. It is 
more important to analyze producibility and associated costs with 
a reasonable amount of computation. 

2.3 Interval Analysis 
Interval mathematics [26] is a generalization in which 

interval numbers replace real numbers, interval arithmetic replaces 
real arithmetic, and interval analysis replaces real analysis. 
Intervals inherently represent uncertainties and errors in technical 
constructions, measuring, computations, and ranges of fluctuation 
and variation. In engineering fields, interval analysis has been 
applied in computer graphics [27, 28, 29], robust geometry 
construction and evaluation [30, 31, 32, 33], set-based modeling 
[34], imprecise structural analysis [35], design optimization [36], 
finite-element formulation and analysis [37, 38], soft constraint 
solving [39, 40], and worst-case tolerance analysis and synthesis 
[41, 42].  

Interval analysis captures intrinsic uncertainty and variance. 
However, it is based on a worst-case scenario as in traditional 
linear stack-up methods. The computational results usually are 
pessimistic in this variance addition scheme if dependencies exist 
among variables. In contrast, modal interval analysis based on 
generalized intervals is an extension of the traditional interval 
analysis, which differentiates semantics of interval specification in 
different application situations. 

2.4 Modal Interval Analysis 
Modal interval analysis (MIA) [43, 44, 45, 46, 47] is a 

logical and semantic extension of interval analysis. Unlike 
classical interval analysis which identifies an interval by a set of 
real numbers, MIA identifies the intervals by the set of predicates 
which is fulfilled by the real numbers. In MIA, a generalized 
interval is not restricted to ordered bounds. Operations are defined 
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in Kaucher arithmetic [48]. 
A modal interval or generalized interval : [ , ]x x= ∈x KR  is 

called proper when x x≤  and improper when x x≥ . The set of 
proper intervals is denoted by { }[ , ] |x x x x= ≤IR , and the set of 

improper interval is { }[ , ] |x x x x= ≥IR .  

Given a generalized interval [ , ]x x= ∈x KR , two operators 
pro and imp return proper and improper values respectively, 
defined as 

pro : [min( , ),max( , )]x x x x=x   (1) 
imp : [max( , ),min( , )]x x x x=x   (2) 

The relationship between proper and improper intervals is 
established with the operator dual: 

dual : [ , ]x x=x    (3) 
For example, [ 1,1]= −x  and [1, 1]= −y  are both valid intervals. 
While x  is a proper interval, y  is an improper one. The relation 
between x  and y  can be established by dual=x y . The 
inclusion relation between generalized intervals is defined as 
[ , ] [ , ]x x y y x y x y⊆ ⇔ ≥ ∧ ≤ . The less than or equal to relation 

is defined as [ , ] [ , ]x x y y x y x y≤ ⇔ ≤ ∧ ≤ .  

Given a set of closed intervals of real numbers in R , and the 
set of logical existential (∃ ) and universal (∀ ) quantifiers, each 
generalized interval has an associated quantifier. The semantics of 
∈x KR  is denoted by ( )Q prox∈x x  where Q { , }∈ ∃ ∀x . An 

interval ∈x KR  is called existential if Q = ∃x . Otherwise, it is 
called universal if Q = ∀x . Similar to the way that real numbers 
are associated in pairs with the same absolute value but opposite + 
and − signs, generalized intervals are also associated in pairs. 
Each member of a pair corresponds to the same closed interval of 
real numbers, but has opposite existential or universal modalities.  

Based on generalized intervals, we propose a semantic 
tolerance modeling scheme in which the implications of tolerance 
stacking can be embedded in tolerance models. Compared to 
traditional worst-case interval methods, MIA enables accurate 
range estimation with simple computations. The purpose of 
semantic tolerance modeling is to capture logical relationships and 
engineering implications with mathematical representation, which 
is to build a bridge between mathematical theory and engineering 
practice. Semantic tolerance modeling possesses important 
characteristics: (1) Interpretability: being able to interpret 
tolerance intervals during analysis and synthesis processes while 
providing the basic understanding of tolerancing semantics; and 
(2) Optimality: being able to analyze tolerance propagation and 
accumulation so that tolerances can be specified without 
invalidating the basic requirement of completeness and soundness. 
Interpretability allows tolerance semantics to be embedded in 
interval results. Optimality assures the tightness of variation 
estimation. 

3. Interpretability 
If a real relation 1( , , )nz f x x= "  is extended to the interval 

relation 1( , , )n=z f x x" , the interval relation z  is interpretable if 

there is a semantic relation 
( ) ( )( )
( )
1 1 1

1

Q pro Q pro Q pro

( , , )
n n n

n

x x z

z f x x

∈ ∈ ∈

=
zx x z…

"
 (4) 

As the basis of interpretation, two interval extensions of a 
real function ( ) : nf x →R R , so-called semantic interval 
functions, are defined in a min-max form as 

*

pro propro pro
( ) : [ min max ( , ), max min ( , )]

p p i ii i p p
p i p ix xx x

f f x x f x x
∈ ∈∈ ∈

=
x xx x

x  (5) 

**

pro propro pro
( ) : [ max min ( , ), min max ( , )]

p p i ii i p p
p i p ix xx x

f f x x f x x
∈ ∈∈ ∈

=
x xx x

x  (6) 

where ( , )p ix x  is the component splitting corresponding to 

interval vector ( , )p i=x x x , with sub-vectors px  and ix  
containing proper and improper components respectively. 
Important properties of interpretability are available and proved 
based on these two semantic interval functions. 

 
Theorem 3.1 [43] Given a continuous function ( ) : nf →x R R  
and a generalized interval vector n∈x KR , if there exists an 
interval ( )∈f x KR , then  

( )( )( )( )),(pro)(proQpro)()(*
ipiipp xxfzxzxf =∈∃∈∈∀⇔⊆ xxfxxfx

f

 (7) 
 

Theorem 3.2 [43] Given a continuous function ( ) : nf →x R R  
and a generalized interval vector n∈x KR , if there exists an 
interval ( )∈f x KR , then 

( )( )( )( )**
dual( ) ( ) pro Q pro ( ) pro ( , )i i p p p if x z x z f x x⊇ ⇔ ∀ ∈ ∈ ∃ ∈ =fx f x x f x x

 (8) 
 
Let ( ) : nf →x R R  be a rational continuous function. Its 

modal rational extension : n →f KR KR  replaces the real 
variables of f  with generalized interval variables and real 
operators with interval operators. The semantics of a modal 
interval relation or function is embodied in the relation’s syntax. 
The syntax of a function 1( , , ) : n

nf x x →R R…  can be 
represented by a syntax tree. For example, the syntax tree of 

( )1 1 2 1 2 3f x x x x x= + −  is shown in Figure 1. A component ix  

is considered uni-incident in the function 1( , , )nf x x…  if it 
occupies only one leaf of the syntax tree, such as 3x  in 1f . 
Otherwise, it is multi-incident, such as 1x  and 2x  in 1f . Leaves 
and branches of the syntax tree are connected with either one-
variable operators such as  and , or two-variable operators 

such as /,,, ×−+ . 
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x3 

x1 

x2 x2 x1 

×+

−

 

Figure 1. The syntax tree of ( )1 1 2 1 2 3f x x x x x= + −  

3.1 Uni-incident interpretation 
Theorem 3.3 [43] For a modal rational function 

( ) : n →f x KR KR , if all arguments of ( )f x  are uni-incident, 
then 

* **( ) ( ) ( )f f⊆ ⊆x f x x   (9) 
 
From Theorems 3.1, 3.2, and 3.3, we know modal rational 

functions of uni-incident variables are interpretable. For example, 
( , )f x y x y= +  is considered for [1,3]x∈  and [2,5]y∈ . 

([1,3],[2,5]) [1,3] [2,5] [3,8]= + =f ,   
([1,3],[5,2]) [1,3] [5,2] [6,5]= + =f ,   
([3,1],[2,5]) [3,1] [2,5] [5,6]= + =f ,   
([3,1],[5,2]) [3,1] [5,2] [8,3]= + =f ,   

have the meanings of  
( )( )( )( )[1,3] [2,5] [3,8]x y z z x y∀ ∈ ∀ ∈ ∃ ∈ = + ,   

( )( )( )( )[1,3] [5,6] [2,5]x z y z x y∀ ∈ ∀ ∈ ∃ ∈ = + ,   

( )( )( )( )[2,5] [1,3] [5,6]y x z z x y∀ ∈ ∃ ∈ ∃ ∈ = + ,   

( )( )( )( )[3,8] [1,3] [2,5]z x y z x y∀ ∈ ∃ ∈ ∃ ∈ = + ,   
respectively. Similarly, the modal natural extension of function 

1 2 3 4( ) ( )( )f x x x x x= + +  with the generalized interval 

1 [ 2,2]= −x ,  2 [1, 1]= −x , 3 [ 1,1]= −x , and 4 [2, 2]= −x   is 

1 2 3 4( ) ( )( ) [0,0]= + + =f x x x x x . It is interpreted as 

( )( )( )( )
( )

1 3 2 4

1 2 3 4

[ 2,2] [ 1,1] [ 1,1] [ 2,2]

( )( ) 0

x x x x

x x x x

∀ ∈ − ∀ ∈ − ∃ ∈ − ∃ ∈ −

+ + =
  

Different semantics of tolerance stack-up in assembly 
enclosure need to be differentiated in tolerance design. This 
includes the semantics associated with assembly sequence, 
accuracy of tolerance estimation, and controllability of variation. 
As tolerances are stacked up in a tolerance chain, a direct 
correlation exists between the time at which the part is assembled 
and the degree to which the corresponding variations are 
controllable in order to close the chain. The earlier a part is 
assembled in the sequential process, the less controllable the 
corresponding variations are in order to close the chain. In this 
sense, tolerances of earlier assembled parts are out of the current 
worker’s control. They are uncontrollable tolerances. In contrast, 
the most recently assembled ones have controllable tolerances. 

Based on manufacturing and assembly sequences, tolerances 
may be specified in different ways to designate desirable 
semantics. For example, in Figure 2, dimensions a, b, and c in 
three components have relation a b c+ = . If Part A and B are 
provided by suppliers and Part C is to be built in house (Figure 2-
b, Case I), or if a and b are working dimensions and c is a balance 
dimension, the tolerance of c is determined by the tolerances of a 
and b and the tolerance chain should be closed. In this case, the 
semantics of “given A and B, C needs to fit A and B” is expressed 
as ( )( )( )( )pro pro proa b c a b c∀ ∈ ∀ ∈ ∃ ∈ + =a b c , which is 
different from the semantics of “given A, B and C need to fit A” 
when a is a working dimension while b and c are balance 
dimensions (Figure 2-c, Case II). These algebraic relations among 
tolerances should be compatible with the semantics of engineering 
specifications. In a semantic tolerance model, a priori and a 
posteriori tolerances are differentiated by the modalities of 
intervals. With the modal extension, semantics of specification 
sequence and rational can be embedded in algebraic relations of 
the model.  

 
 
 
 
 
 
 
 
 

Dimensional relation a + b = c 

Part C 

Part A 
Part B 

c 

a b 

c 

a b 

Case I: given Part A and Part B, 
Part C needs to fit A and B. 

c 

a b 

Case II: given Part A, Part B and 
Part C need to fit A. 

c 

a b 

Case III: given Part C, Part A and 
Part B need to fit C. 

( )( )
( )( )cbac

ba

=+∈∃

∈∀∈∀

c

ba

pro

propro

(a) (b) (c) (d) 

( )( )
( )( )cbac

ba

=+∈∃

∈∃∈∀

c

ba

pro

propro ( )( )
( )( )cbab

ac

=+∈∃

∈∃∈∀

b

ac

pro

propro

 
Figure 2. Different types of semantics need to be captured, which are not differentiated in traditional modeling 

methods 
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With the symbolic differentiation of a priori and a posteriori 

tolerances, different strategies of tolerance allocation could be 
applied in different scenarios. For example, in Figure 2-b, given 
two uncontrollable dimensions a  and b , the controllable 
dimension c a b [2,5] [1,3] [3,8]= + = + = . In Figure 2-c, one extra 

controllable dimension b  allows a tighter tolerance of c . 
c a b [2,5] [3,1] [5,6]= + = + = . The tolerance range of c  is 
reduced from 5 to 1, which is smaller than the tolerance range of 
a . This indicates that the principle of selective assembly may be 
applied to achieve assembly. Selective assembly is a widely used 
process of sorting and selecting mating components in pairs so 
that high-precision assemblies can be achieved even with low-
precision components. This method is valuable when individual 
components cannot be produced with small enough tolerances to 
be fully interchangeable in assembly such as specialized roller 
bearings with micrometer level tolerances. However, selective 
assembly is a manual process, which signifies it may only be used 
in low-volume high-value products. In a cost-conscious mass 
production environment, choosing flexible materials is the 
alternative, as discussed in Section 3.3. 

3.2 Multi-incident interpretation 
Theorem 3.4 [43] For a modal rational function 

( ) : n →f x KR KR , if there are multi-incident improper 
arguments in ( )f x  and *( )t x  is obtained from x , by 
transforming, for every multi-incident improper component, all 
incidences but one into its dual, then   

* *( ) (t ( ))f ⊆x f x    (10) 
 

Theorem 3.5 [43] For a modal rational function 
( ) : n →f x KR KR , if there are multi-incident proper arguments 

in ( )f x  and **( )t x  is obtained from x , by transforming, for 
every multi-incident proper component, all incidences but one into 
its dual, then 

** **( ) (t ( ))f ⊇x f x    (11) 
 
From Theorems 3.1, 3.2, 3.4, and 3.5, modal rational 

functions of multi-incident variables are interpretable with some 
modifications. For example, ( , ) /( )f x y xy x y= +  is extended to  

[ 1,3]= −x  and [15,7]=y . 
( , ) [ 1,3] [15,7]/([ 1,3] [15,7]) [ 0.5,1.5]= − × − + = −f x y   

is not interpretable, whereas  
*( ( , )) [ 1,3] [15,7]/([ 1,3] [7,15]) [ 1.1667,3.5]= − × − + = −f t x y , 

*( ( , )) [ 1,3] [7,15]/([ 1,3] [15,7]) [ 1.0715,3.2143]= − × − + = −f t x y , 
**( ( , )) [ 1,3] [15,7]/([3, 1] [15,7]) [ 0.3889,1.1667]= − × − + = −f t x y , 

**( ( , )) [3, 1] [15,7]/([ 1,3] [15,7]) [4.5, 1.5]= − × − + = −f t x y  
are interpretable. They are interpreted as 

( )( )( )( )[ 1,3] [7,15] [ 1.1667,3.5] /( )x y z z xy x y∀ ∈ − ∃ ∈ ∃ ∈ − = + , 

( )( )( )( )[ 1,3] [7,15] [ 1.0715,3.2143] /( )x y z z xy x y∀ ∈ − ∃ ∈ ∃ ∈ − = +

, 
( )( )( )( )[7,15] [ 0.3889,1.1667] [ 1,3] /( )y z x z xy x y∀ ∈ ∀ ∈ − ∃ ∈ − = + , 

( )( )( )( )[7,15] [ 1,3] [ 1.5,4.5] /( )y x z z xy x y∀ ∈ ∃ ∈ − ∃ ∈ − = +  

respectively.  
In assemblies, parametric relations with multi-incident 

variables are common. Compared to traditional tolerance 
modeling, semantic tolerance modeling allows us to explicitly 
interpret algebraic relations with the interpretability properties of 
modal intervals. Different numerical values and modalities can 
also be selected in order to derive specific semantics.  

3.3 Rigidity interpretation 
In the material property domain, the tolerance ranges for 

rigid materials correspond to proper intervals and those for 
flexible materials correspond to improper intervals.  

In the one-way clutch example of Figure 3, the distance 
vector b , the length of the spring s , and the radius of the ball r  
satisfy the relation r s b+ = . If ranges [5.2,5.7]  and [7.8,8.0]  are 
given to r  and b  respectively, the range for spring length s  can 
be [2.1,2.8] , as in relation 

[5.2,5.7] [2.8,2.1] [8.0,7.8]+ = + = =r s b   
It is interpreted as 

( )( )( )( )[5.2,5.7] [7.8,8.0] [2.1,2.8]r b s r s b∀ ∈ ∀ ∈ ∃ ∈ + =   
The spring provides a “cushion” to absorb variance. If a larger 
range [7.8,8.5]  is allowed for b , no flexible material is 
absolutely required to absorb variance. Rigid material instead of 
spring for s  can be chosen, as in relation 

[5.2,5.7] [2.6,2.8] [7.8,8.5]+ = + = =r s b   
It is interpreted as 

( )( )( )( )[5.2,5.7] [2.6,2.8] [7.8,8.5]r s b r s b∀ ∈ ∀ ∈ ∃ ∈ + =  

φ 

e 

r 

b 
a 

r 

 

Figure 3. variations of size and geometry, shape 
deformation, and kinematics form a closed loop in 

assembly 

 
As illustrated in Figure 4-a, the semantic difference between 

rigid and flexible materials is noted by interval modalities. If a 
function width of interval [ , ]x x=x  is defined as 

wid( ) : x x= −x , the flexibility of materials is quantified by the 

width of improper intervals. The relative width of an improper 
interval indicates how flexible the material is. Compressibility 
may be indicated by the index ( )( )I x x x− = −x  and 

stretchability by ( )( )I x x x+ = −x . For example, in Figure 4-b, 

material 
1
x  is more flexible than material 

2
x , and 

2
x  is more 

flexible than 
3
x . The rigidity diagram illustrates the relationship 
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between rigid and flexible materials. Selection of materials thus 
can be integrated into algebraic relations of generalized intervals. 

x

x

3
x

2
x 1

x
)wid(
1
x

)wid(
2
x

)wid(
3
x

Rigid 

Flexible 

(improper) 

(proper) (pointwise) x

x

xx <

xx >

xx =

(a) the improper interval domain 
corresponds to flexible materials 

(b) the width of an improper interval 
indicates how flexible the material is

 

Figure 4. An inf-sup diagram is also a rigidity diagram 

4. Semantic Tolerancing 
Capturing semantics associated with design intents in 

engineering drawings is the main purpose of Geometric 
Dimensioning and Tolerancing (GD&T). Yet the current GD&T 
has some weakness such as not specifying the practice of 
measurement and inspection and lack of process semantics [49]. 
Semantic tolerancing with generalized intervals is a new 
dimension and tolerance specification scheme based on semantic 
tolerance modeling. With the differentiation of existential and 
universal modalities associated with ranges, design intents and 
manufacturing implications such as selection of flexible materials, 
rigidity of specifications and constraints, and sorting and 
sequencing of assembly can be captured. The major step of the 
proposed tolerancing practice is to differentiate a posteriori 
tolerances from a priori tolerances with symbols. Tolerances with 
universal modality are a priori tolerances, while those with 
existential modality are a posteriori tolerances. We use a minus-
plus notation Δ∓x  in combination with the traditional plus-
minus notation Δ±x  to represent two modalities.  

The modality of a tolerance is determined by the following 
rules. (1) If a closed tolerance chain zd

i
i
=∑  is formed, the 

dimensions on the left-hand side with the notation of 
ii

d Δ±  

are a priori tolerances. Those with the notation of  
ii

d Δ∓  on 

the left-hand side are a posteriori. However, on the right-hand side 

of the chain, notations Δ±z  and Δ∓z  are considered to be a 
posteriori and a priori tolerances respectively. (2) If there is no 
closed tolerance chain formed in a drawing, Δ±x  denotes a 
priori tolerance and Δ∓x  denotes a posteriori tolerance. For 
example, in the drawing of Figure 5, the tolerance of a  is a 
priori, and the tolerance of b  is a posteriori. A closed tolerance 
chain x y [17.2,16.8] [14.9,15.1] [32.1,31.9] z+ = + = =  is formed. 
Therefore, y  and z  are a priori and x  is a posteriori. In other 

words, dimensions a , y  and z  are working dimensions. b  and 
x  are balance dimensions. The closed-loop algebraic relations 
between working and balance dimensions can now be specified 
explicitly in drawings. 

2.014 ∓=b

2.017 ∓=x 1.015 ±=y

1.032 ∓=z

2.030 ±=a

 

Figure 5. A priori and a posteriori tolerances in 
semantic tolerancing 

 
Assembly sequence can be inferred from the semantic 

tolerance chain stack-up. As illustrated in Figure 6-a, four 
dimensions a , b , g , and z  are specified within a closed chain 
a g b [8.8,9.2] [2.8,3.2] [5.2,4.8] [16.8,17.2] z+ + = + + = = . 

9 0.2a = ±  and 5 0.2b = ∓  imply that subassembly B is 
assembled after subassembly A. If the functional requirement of 
working dimension g  is not met, B needs to be adjusted. 

However, if the specifications are 2.09 ∓=a  and 
2.05 ±=b  as in Figure 6-b, A needs to be adjusted to meet 

the requirement of g. In Figure 6-c, 2.03 ∓=g  indicates that 

g  is no longer functionally critical while a  and b  are.  
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  (c) 

2.03 ∓=g

2.05±=b

2.09 ±=a

A B 

2.017 ±=z

(b) 

2.03 ±=g

2.05±=b

2.09 ∓=a

A B

2.017 ±=z

(a) 

2.03 ±=g

2.05 ∓=b

2.09 ±=a

A B 

2.017 ±=z

 

Figure 6. Semantic tolerancing implies assembly sequence 

 
In semantic tolerancing, material selection and assembly 

methods can also be explicitly specified. Figure 7 illustrates 
flexible assembly and selective assembly examples of the Case III 
in Figure 2-d. The size tolerances of Part A and Part B are a 
posteriori. Both are larger than the size tolerance of Part C. Yet, 
three parts need to be assembled. The symbols of the tolerance 
specification in Figure 7-a indicate that flexible materials with the 
compressibility index in the range of 0.6 10.3 0.0583≈  need to 
be chosen for Parts A and B. If variation ranges of a  and b  are 
reduced to 0.03∓  and selective assembly process is intended to be 
used, the a posteriori tolerance symbol captures the intent that A 
and B need to be sorted and paired, as in Figure 7-b.  

 
Part A 

(a) flexible assembly 

03.00.10 ∓ 03.00.12 ∓

Part B 

01.00.22 ±

Part C 

Part A 

(b) selective assembly

3.00.10 ∓ 3.00.12 ∓

Part B

01.00.22 ±

Part C

 

Figure 7. Semantic tolerancing captures intent of 
material selection and selective assembly 

5. Completeness and Soundness 

For n∈x KR , if  the modal  rational extension 
( ) : n →f x KR KR  satisfies 

* **( ) ( ) ( )f f= =x f x x ,    
( )f x  is called optimal. In other words, if the evaluation of a 

modal rational function ( )f x  is both complete and sound, ( )f x  is 

optimal. Optimal functions give tight bounds of complete 
estimation. The optimal modal interval extension unifies 
computable ( )f x  and interpretable *( )f x  and **( )f x . 

A real function 1
1( , , , ) : m

mf x y y + →R R…  is called 

uniformly monotonic for x  in an interval domain ( )1, , , mx y y… , 

if f  is monotonic for prox∀ ∈ x  and it keeps the same 
monotonicity for all the values of proi iy ∈ y . If each incidence of 

x  in f  is considered as an independent variable and each one of 

the incidences is uniformly monotonic, then f  is called totally 
monotonic for x .  

In the syntax tree of a modal rational function ( )f x , an 
operator is called node-optimal if its operands are all uniformly 
monotonic in their evaluated interval domains. ( )f x  is called tree-
optimal in an interval domain x , if the children of those operators 
that are not node-optimal in the syntax tree are either leaves or 
one-variable operators. For instance, the function 

1 2 3 4 1 2 3 4( , , , ) = +f x x x x x x x x  is tree optimal in any interval 
domain. Because 1 2+y y  is node-optimal for any values of 

1
y  

and 
2
y  with the partial derivative of constant 1 . Here, 1 1 2=y x x  

and 
432
xxy = . Although 

21
xx  or 

43
xx  is not node-optimal 

if 1 20 pro 0 pro∈ ∨ ∈x x  or  3 40 pro 0 pro∈ ∨ ∈x x , the children of 
the multiplication operator are leaves. 

1 2 3 4 1 2 3 4( , , , ) ( )( )= + +g x x x x x x x x  is tree optimal for 

( )[1,2],[0,2],[4,3],[3,2] , since 1 2⋅y y  is node-optimal for 

( )[1,4],[7,5] ; 1 2+x x  and 3 4+x x  are node-optimal. But 

1 2 3 4( , , , )g x x x x  is not tree-optimal for 

( )[ 2,2],[1, 1],[ 1,1],[2, 2]− − − − . 

5.1 Uni-incident optimality 

Theorem 4.1 [43] If ( )f x  is tree-optimal in a domain n∈x KR  
and all arguments of ( )f x  are uni-incident, 

* **( ) ( ) ( )f f= =x f x x . 
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For example, 2( , ) ( )f x y x y= +  is optimal for [1,3]=x  and 
[2,5]=y . The true range of the function [9,64]fR = . The natural 

extension is 2([1,3],[2,5]) ([1,3] [2,5]) [9,64]= + =f . Similarly, 
([3,1],[5,2]) [64,9]=f  is optimal. 

5.2 Multi-incident optimality 

Theorem 4.2 [43] If ( )f x  is tree-optimal in a domain n∈x KR  
and totally monotonous for all of its multi-incident arguments, and 

Dx  is obtained from x , by transforming, for every multi-incident 
component, all incidences into its dual if the corresponding 
incidence has a monotonicity sense contrary to the global one, 
then 

* **( ) ( ) ( )Df f= =x f x x .     
For example, ( , ) /( )f x y xy x y= +  is extended to [1,3]=x  

and [15,7]=y . The partial derivatives of f  with respect to x  
and y  are all positive within the domain. The partial derivatives 

of f  with respect to the first incidences of x  and y  are 
positive, and negative with respect to the second incidences of x  
and y . Therefore, 

( ) [1,3] [15,7]/([3,1] [7,15]) [0.9375,2.1]D = × + =f x   
is optimal.  

When the syntax structure of a modal interval function is 
optimal within a given interval domain, true range estimation can 
be obtained. However, if the structure is not optimal, true range 
estimation is not guaranteed with the direct algebraic calculation. 
Theorems of optimality have been proved. Interested readers are 
referred to [43] for details. Following the above optimality 
principles, we can construct tolerance models that estimate true 
variation ranges with simple algebraic evaluation. 

5.3 Example: true range estimation of one-way clutch 
To illustrate the optimality of generalized intervals in range 

estimation, a comparison of the MIA method and the Direct 
Linearization Method (DLM) [50] (as implemented in CE/Tol® 
package) for the one-way clutch example is made, as shown in 
Figure 8. In this example, the true variation range can be derived 
analytically. The combination of the smallest roller (r ) and 

largest gap (a  and e ) gives the upper bound of displacement b . 

Conversely, we can derive the lower bound of displacement b .  
The MIA evaluation is based on the optimality analysis. It is 

not difficult to verify that the modal rational extension function 
2 2( , , ) ( ) ( )= − − +b a e r e r a r  is tree-optimal within the given 

tolerance ranges of a , e , and r  listed in Table 1. The function 
is totally monotonous for r . 0b r∂ ∂ <  for r  and for both of its 

incidences if regarded as independent individual variables. Thus 
the rational extension function is optimal. Compared to the 
methods of DLM with Root-Sum-Square (RSS) and Worst-Case 
(WC), the MIA evaluation result [4.0838,5.4405]  based on the 
modal rational extension function ( , , )b a e r  gives an accurate 
estimation of the true variation range.  

 
 φ 

e

r 

b
a 

r
re
ra

−
+

= −1cosφ

22 )()( rareb +−−=

φ
φ

b
b

 

Figure 8. Modal intervals make complex algebraic 
relations with multi-incident variables interpretable. 

Interpretations are corresponding to different value sets 

6. Concluding Remarks 
A semantic tolerance modeling scheme based on generalized 

intervals is proposed to enrich tolerance modeling and analysis for 
interpretable and accurate variation estimations. Logical 
relationships among variations are embedded in the mathematical 
formulation. Semantic tolerance models capture more process-
oriented tolerancing semantics such as the difference between 
rigid and flexible materials in assemblies and component sorting 
in selective assembly and assembly sequence. The degeneracy of 
semantics during numerical computation is prevented. A new 
dimension and tolerance specification scheme for semantic 
tolerancing is proposed to symbolically differentiate a priori and a 
posteriori tolerances. Compared to traditional methods, semantic 
tolerance models with the optimal construction of relations 
estimate true variation ranges such that sound and complete 
solutions can be obtained.  

The future work may include the study of linear and 
nonlinear tolerance stack-ups in flexible assemblies, where the 
optimal allocation of flexible materials helps to reduce the overall 
variations and costs. Interpretable linear and nonlinear tolerance 
analysis will also help to incorporate more process semantics in 
products’ tolerance design. 

 

 

Table 1. Result comparison between MIA and DLM method 

Input Output: position of roller (b)    True Range is [4.0838,5.4405] 
Hub Height (a) Ring Radius (e) Roller Radius (r) DLM with Root-Sum-

Square (as in CE/Tol®) 
DLM with Worst-
Case (as in CE/Tol®) 

MIA 

[27.595, 27.695] [50.7875, 50.8125] [11.42, 11.44] [4.3585, 5.2625] [4.1368, 5.4842] [4.0838, 5.4405] 
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