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A semantic tolerance modeling scheme based on generalized intervals was recently
proposed to allow for embedding more tolerancing intents in specifications with a
combination of numerical intervals and logical quantifiers. By differentiating a priori
and a posteriori tolerances, the logic relationships among variables can be interpreted,
which is useful to verify completeness and soundness of numerical estimations in
tolerance analysis. In this paper, we present a semantic tolerance analysis approach to
estimate size and geometric tolerance stack-ups based on closed loops of interval vectors.
An interpretable linear system solver is constructed to ensure interpretability of
numerical results. A direct linearization method for nonlinear systems is also developed.
This new approach enhances traditional numerical analysis methods by preserving
logical information during computation such that more semantics can be derived from
variation estimations.

1. Introduction

In tolerance analysis, estimations of accumulative tolerances
are mathematically formulated and solved in different ways. The
typical approaches include variational estimation, kinematic
formulation, statistical approximation, and Monte Carlo
simulation. The analysis process is simplified to the computation
of pure numerical intervals. Methods of linearization and high-
order Taylor approximations are extensively used to compute
parameters (e.g., statistical moments) and variables (e.g.,
kinematic variations in assemblies). Because of these numerical
treatments, completeness and soundness of range estimations are
compromised. A complete solution includes all possible
occurrences, which is to check if the range estimation includes all
possible stack-up results. Conversely, a sound solution does not
include impossible occurrences, which consists in checking if the
interval overestimates the actual range.

The traditional worst-case linear stack-up methods focus on
completeness while range estimations may not be sound. The
results usually are overly pessimistic. In contrast, Monte Carlo
methods focus on soundness while estimations may not be
complete. Assuming the applied distributions and their parameters
reflect the true variations, the simulated ranges are complete only
when the sample size is enormously large such that the pseudo-
random numbers from a full-period random number generator are
exhausted. Kinematic formulation methods may result in solutions
that are neither complete nor sound because of numerical
treatments. This is illustrated by an example of one-way clutch in
Figure 1. The known dimensional tolerances are the hub height
a = [27.595,27.695], the ring radius e = [50.787550.8125], and

the roller radius r =[11.4211.44]. The variation of the roller

position b needs to be estimated. By the direct linearization
methods (DLM) with root-sum-square (RSS) and worst-case
(WC) [1], we have the estimations b™ = [4.35855.2625] and
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b" =1[4.1368,5.4842] respectively. However, the true variation
range is b =[4.08385.4405], which can be derived from the

direct analysis of geometry. The combination of the largest a and r
and the smallest e generates the lower bound of b. The
combination of the smallest a and r and the largest e forms the

upper bound of b. We can see b™* is sound but not complete,
whereas b"“ is neither complete nor sound.

Figure 1. An example of one-way clutch variation
estimation

Let z=f(z,...,z,) be a general relation in tolerance
analysis, where .’s (i=1...,n) are the variation source

variables (inputs), and z is the performance variable (output). Let
[z,,zi]’s (i=1...,n) be the respective intervals of the input

tolerances and [z,z] a variation range estimate. [z,z] is complete

if and only if the following statement is true: “for any combination
of inputs =z, ’s within the respective [z,,z:]’s, the output

z = f(z,,...,w,) must be included in the estimated [z,z] ”. That

is,
(Vxl e [gl,il})---(Vaﬁn e [QH,EM}XEIZ e [g,Z])(f(xN...w”) = z)
Similarly, the estimation is sound if and only if the following
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statement is true: “for any output z within the estimated [z,z],
there must exist a combination of inputs z, ’s within the respective
[z,,7:] ssuchthat z = f(z,,...,z,) ". That s,

(Vz € [g,E])(EI:I:l € [§1,§1])~-~(Elz" € [gn,i,,])(f(wl,...,zn) = z)
For instance, in the one-way clutch example of Figure 1, we are
able to assert
(Va €[27.595,27.695])V e € [50.7875,50.8125])

(Vr e [11.42,11.44](3b  [4.0838,5.4405])
( =4/(e—1)? +(a+7")2)

and
(Vb [4.0838,5.4405])Fa < [27.595,27.695))

(3e € [50.7875,50.8125]\3r < [11.4211.44])
( = (e—1)? +(a+7’)2)

Therefore, the logic interpretation of numerical results as
above enables us to assess the completeness and soundness of
range estimations. The attention of interpretability needs to be
given in tolerance analysis. Recently, we proposed a new semantic
tolerance modeling scheme [2, 3, 4, 5] based on generalized
intervals to enhance the interpretability of tolerance modeling.
The purpose of semantic tolerance modeling is to embed logic
relationships and engineering implications into the mathematical
representation. With logical quantifiers, the relationship between
tolerance specifications and implications of stacking may be
derived from formulations. With the explicit differentiation
between a priori and a posteriori tolerances, models can capture
process-oriented semantics such as the difference between rigid
and flexible materials in assemblies and the sequence of assembly.

In this paper, we present a tolerance analysis approach based
on interval vector loops to estimate semantic tolerance
accumulations. To ensure the interpretability of numerical results,
interpretable Jacobi algorithms are developed to solve interval
linear systems. Based on the algebraic closure property, we can
formulate constrained problems with closed loops of interval
vectors. Geometric tolerances can also be included in the loops
with the consideration of interdependency between size and
geometric tolerances. In the remainder of the paper, a brief review
of vector loop based tolerance analysis methods and the
generalized interval as the basis of semantic tolerance modeling
are given in Section 2. Section 3 presents the proposed analysis
approach for semantic tolerances. An interpretable linear system
solver to ensure interpretability is constructed. The new approach
is illustrated with examples. Section 4 describes the closed-loop
approach to integrate geometric tolerances.

2. Background

There is a substantial amount of literature on tolerance
modeling, analysis, and synthesis [6, 7]. Here, we only give a brief
overview of vector loop based analysis methods that are closely
related to the proposed closed-loop semantic tolerance analysis
approach, as reviewed in Section 2.1. The main properties and
notations of generalized intervals are summarized in Section 2.2.

2.1 Vector Loop based Tolerance Analysis
Traditionally tolerance analysis is product-oriented.
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Dimensional limit, geometric variation, and kinematic
displacement can be modeled mathematically in vectors and
matrices. The vectorial tolerancing methods (Wirtz et al. [8],
Martinsen [9]) model size, form, location, and orientation
tolerances in a unified vector format in order to provide an
integrated quality control loop. Rivest et al. [10] employed the
kinematic characteristics of links between datum and toleranced
features to model chains of variations. Clément et al. [11]
identified and analyzed functional elements called TTRSs which
are associated with geometric constraints. The small-displacement
torsor methods (Bourdet and Ballot [12], Giordano and Duret
[13], Descrochers [14]) approximate the rotation and translation
displacement in the form of torsors. The matrix representation
methods (Whitney et al. [15], Desrochers and Riviere [16],
Lafond and Laperriere [17]) model small displacements in
kinematic chains in the form of homogenous transformation
matrices. Recently, Desrochers et al. [18] combined the torsor and
matrix-based representations for tolerance analysis. Chase et al.
[1, 19, 20] performed analysis of assemblies with tolerance
vectors and small kinematic adjustments with linear
approximations of implicit geometric constraints. Sacks and
Joskowicz [21] analyzed 2D kinematic tolerances of assemblies
with contact changes by the aid of contact constraints. Zou and
Morse [22] proposed a fitting condition test method based on
geometric constraints of gap closure between components.

In recent years, process-oriented analysis approaches were
also proposed to consider the accumulation effects of
manufacturing processes. With 1D vector loops, Zhang [23]
combined the relation between functional requirements and
dimensional tolerances with the one between dimensional and
machining tolerances for simultaneous tolerancing. Based on
constraints of force closure (Liu and Hu [24], Chang and Gossard
[25]), 3D vector loops were used to predict variation accumulation
in sheet metal joining with the linearized finite element
formulation. Long and Hu [26] extended the method to include the
variation of fixtures during assembly operations. The single-
station methods were also extended to multi-station approaches
(Shiu et al. [27], Camelio et al. [28]) where variations are
propagated in stages with tooling variations incorporated.
Recently, Huang et al. [29, 30] developed a stream-of-variation
method to estimate dimensional variations in rigid-body
assemblies for single-station and multi-station systems
considering fixtures based on kinematic constraints.

In the above vector loop based methods, variation problems
are formulated based on constraints of either form closure or force
closure. The numerical treatments applied in these approaches
prohibit interpretable numerical results. The main reason is that
the commonly used solving methods with linearization and high-
order approximations do not incorporate interpretability. During
computation, the logic relationships among variables are left out.
Therefore, the completeness and soundness of the results cannot
be verified. In this paper, we propose a semantic tolerance
analysis approach based on a new structure of interpretable linear
system solver. Generalized intervals are used for a unified
variation representation.

2.2 Generalized Intervals

The semantic tolerance model is based on modal interval
analysis (MIA) [31, 32, 33], which is an algebraic and semantic
extension of the classic interval analysis (1A) [34]. A modal
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interval or generalized interval x :=[z,z] e KR is called proper
when z <z and improper when z >z . The set of proper
intervals is denoted by IR ={z,Z]|z <%} and the set of
improper intervals by TR = {{z,7]| z > Z}. The width of x is

wid[z,7] := [z — 2], and the center is found by mid|z,7]:= re

A real function f(z) where z € R" can be extended to f(x)

where x e KR", which is called a KR -extension, AE-
extension, or modal extension. The real arithmetic is extended to
the so-called Kaucher arithmetic [35].

Three special operators, pro, imp, and dual, are defined in the
Kaucher  arithmetic.  Given a  generalized interval
x =[z,z] € KR, prox := [min(z,7), max(z, )] and
impx = [max(z,z), min(z,z)] return the respective proper and
improper interval values. dual[z,Z]:=[z,z] builds a relationship
between proper and improper intervals. Related to the arithmetic
operations o € {+,—x+}, (dualx)o(dualy)= dual(xoy). The
inclusion relationship between modal intervals is defined as
[2.7)c[y.y] = ly<z)A(@<7y). The less than or equal to

relationship is defined as [z,7] <[y,3] < [z < y)r (T < 7).

Table 1 lists the major differences between MIA and IA.
Different from IA, the group property is maintained in MIA
because generalized intervals are closed under the Kaucher
arithmetic operations. A generalized interval a is an algebraic
solution of the equation f(x)=b where x is unknown if the

original algebraic relation is still valid when the variable x is
replaced by the interval result a, i.e., f(a) =b. This property is

called algebraic closure, which is not available in 1A. The group
properties under addition and multiplication are lost in 1A. For

example, the solution of [L3]+x'=[27] is
x'=[2,7]-[13]=[-16] in IA. However, if the solution is
substituted back to the original equation,

[13]+[-16] =[09] #[2,7] . Therefore x' is not an algebraic
solution. The multiplication and division operators are similar. In
contrast, in MIA the solution of a+x=b is x=b —duala; and
the solution of ax=b is x=b /duala when 0 ¢ proa. For
example, [L3]+x=[27] has the algebraic solution
x =[2,7]—dual[13] = [2,7] - [31] = [L4] since [13]+[14]=[2,7].
The algebraic closure property is the basis of our closed-loop
analysis scheme. It simplifies the numerical analysis process while
interpretability is preserved. The numerical interval results always
satisfy the original constraints of form closure. Therefore, we call
our scheme closed-loop.

Another uniqueness of generalized intervals is the modal
semantic extension. Unlike IA which identifies an interval by a set
of real numbers only, MIA identifies an interval by a set of
predicates which is fulfilled by real numbers. Each interval
x € KR has an associated logical quantifier, either existential
(3) or universal (V). For a real relation ¢(z) = z where z € R"
and z € R, the semantics of its modal extension can be expressed
with quantifiers, which are derived based on the modalities of
generalized intervals. As universal quantifiers precede existential
ones, such quantified propositions have the form of

(ij, € xqj)(Qz ze proz)(Ele € pro x,)(qﬁ(x) =2)
where @ and 1 are disjoint sets of indices for proper and
improper components of x, e KR", Q, =V ifz eIR, and
Q, =3ifzelR.

PrUTI

Table 1. The major differences between MIA and traditional 1A

Classic Interval Analysis

Modal Interval Analysis

Validity [3,2] is an invalid or empty interval Both [2,3] and [3,2] are valid intervals
Semantics (23] +[2,4] = [4,7] is the only valid relation for | [2,3]+[2,4] =[4,7],
richness +, and it only means “stack-up” and “worst- [2,3]+[4,2] = [65],
case”. —x,/ are similar. 32] + [2.4] = [5,6],
[32] +[4,2] = [74]
are all valid, and each has a different meaning.
—,X, | have similar semantic properties.
Group property atx=b,butx#b-a a+x=b,and x=b—duala

[23]+[2,4] =[4,7], [24] = [4,7] - [2,3]
axx=b, but x;tb/a
[2,3]x[34] =[612], [34] = [6,12]/[2,3]

x-x#0
[23]-[23]=[-11] # 0

[2,3]+[2,4] = [4,7],

[2,4] = [4,7] - [3,2]
axx=b,and x:b/duala
[2,3]x [34] =[612],

[34] =[612]/[3,2]

x —dualx =0
[23]-[32]=0

3. Closed-Loop Tolerance Analysis
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The purpose of semantic tolerance model is to enrich
tolerance modeling and analysis structures such that more process-
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oriented tolerancing semantics and intents can be embedded in
mathematical representations. Interpretability is useful to verify
completeness and soundness of interval results. Thus interpretable
relations among variables should be maintained during
computation. In this section, we describe the new interpretable
linear system solver to ensure interpretability. At the same time,
the algebraic closure of generalized intervals keeps the numerical
computation simple enough. We formulate the form closure
constraints of small displacement with closed loops of interval
vectors. The new approach enhances numerical analysis methods
by ensuring algebraic closure and interpretability.

In closed-loop tolerance analysis, the interval vectors that
represent size, geometry, and kinematic variations form closed
loops in the 3D Euclidean space. That is, the variations v, e KR

in each of x, y, and 2 directions should have the algebraic
relations f(v,,v,,---,v,) <0 or f(v,v,,---,v,)20. To form

closed-loop tolerance chains, a priori tolerances with the
semantics of universal and a posteriori tolerances with the
semantics of existential need to be explicitly differentiated. A
posteriori variations provide “buffers” in tolerance allocation to
make algebraic relations valid and close the loop. If the traditional
tolerancing without the differentiation of a priori and a posteriori
tolerances is regarded as “passive” tolerancing, semantic
tolerancing is “active” tolerancing so as to close the loops of
tolerance chains. In general, a priori tolerances are tolerances with
predetermined variations. They have the semantics of
uncontrollable, unchangeable, critical, hard-constrained, specified,
etc. A posteriori tolerances are those with derived variations. They
have the semantics of controllable, adjustable, flexible, soft-
constrained, feedback, etc.

Tolerance formulation and analysis methods based on
generalized intervals and Kaucher arithmetic maintain the
algebraic closure of interval computation. During the tolerance
and kinematic chain formulation, if explicit functions are available
to estimate variations of assemblies, accurate and interpretable
ranges can be estimated based on the interpretability and
optimality principles [5]. If only implicit functions are available,
methods to solve generalized interval systems are needed. In
Section 3.1, we describe the new interpretable linear system solver
that preserves interpretable relationships. The algorithms and the
advantage of interpretability are illustrated with an example in
Section 3.2. In Section 3.3, a MIA direct linearization method is
presented to solve nonlinear problems. A nonlinear example is
given in Section 3.4.

3.1 Solving interpretable linear systems

As mentioned in Section 2.1, the linearization approach used
in the existing vector loop based analysis methods does not
support interpretability. Thus the completeness and soundness of
the numerical results cannot be verified. Here, we describe a new
linearization and solving process that generates interpretable
numerical results.

For x e KR", a linear system of generalized intervals

A-x=b (1)

where A =(a ) e KR™ and b e KR", is closely associated

ij /mxn

with two inclusion relationships A-x < B and A -x o B, given
as
A-x=B& (A-xcB)A(A-x2B) (2)
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If a Jacobi interval operator is defined as
b, - Zdualay -dualx]

J(x )= el
! dual a,

(0 ¢ proa_andi :L---,n)

@)
the following theorem provides the foundation to solve the linear
system in Eq.(1).

Theorem 3.1 [36] (1) If X isasolutionto A-xc b, 3(x) isa
solutionto A-xob. (2) If X isasolutionto A-x2b, J(x)
isasolutionto A-xcb.

However, the linear system in Eq.(1) is not interpretable if it
includes multi-incident Xj ’s which are existential. That is, a

variable X]. appears multiple times in the equation. Because the

concatenation of Vzex and Vzex is Vzex, and the
concatenation of Vzex and Jdrex is Iz ex. But the
concatenation of 3z € x and 3z € x is not 3z € x in general.
Formally

(Q% y, € proy1XEix IS prox)(Qzl z € pr021Xz1 = fl(xyl))
and
(Qyz Yy, € proyZXEx € prox)(sz z, € pro ZZXZZ = fz(x,yz))
do not necessarily lead to
(Q% Y, € prolesz Yy, € pro yZXEIx € pro X)(Q:, z, € prozl)
(QZz z, € plrozzx,z1 = filz,y) Az, = fz(x,yz))

To ensure interpretability, a transformed and interpretable linear
system

a x +a,prox, +...+a prox,6 cb,

a, prox +a,X, +...+a, prox, c b,

4

a prox +a  prox,+..+a,x, cb,

nntn =

or
a x +a, impx, +..+a impx, Db,

a, impx +a,x, +...+a, impx, Db,

®)

a impx +a  impx,+..+a,x

i

ob,

should be solved instead, where each occurrence of the variables
except the diagonal ones is transformed to its proper or improper
counterpart in the new system. The notations of Eq.(4) and Eq.(5)
are simplified as

A-x" cb (6)
and

A-x" 2b 7
The algebraic solutions can be interpreted as
(VaP 1S aPXVbI € proleVzP € xPXHal € proaIXHbP € bPXEIII € prox[XA sT = b)

®)
and
(Val IS proalXVbP IS bPXle IS proxIXEIaP eaPXEIbI eprobIXEIzP exPXA-i' =b)
9)

respectively.
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An enhanced interpretable Jacobi algorithm is developed to
solve Eq.(6), as listed in Figure 2, where the Jacobi operator is
applied to the original and the transformed variables alternately.
We define a proper transform Jacobi interval operator as

b, —Zdualaw -impx,

J"(x.) = i
( 7) duala_

(O ¢ proa, andizl...’n)

(10)
Applying the Jacobi operator in Eq.(3) to the transformed variable
x"" is equivalent to applying the proper transform Jacobi
operator in Eq.(10) to the original variable X .

Similarly, an interpretable Jacobi algorithm to solve Eq.(7) is
listed in Figure 3, where an improper transform Jacobi interval
operator is defined as

b, - Zdualay - prox,

i -_ py
imp (X[) = i#]

duala, (Oéproa“ andi:l}...m)

(11

Theorem 3.2 (1) If X isasolutionto A-x o b, then x is also
a solution to A-x" ob. (2) If x isasolutionto A-xcb,
then X isalsoasolutionto A-x"™ cb.

In Figure 2, at the (2k)th step in the iterative solving
process, applying the Jacobi operator in Eq.(3) to x*™, we
receive x* = J(x*™?) such that A-x"®* 5 A.x® ob.
Then at the (2% + 1)th step, applying the proper transform Jacobi

(2k) 2k+1) _ S(Xpro(Zk))

operator in Eq.(10) to X', we have x(

such that A - x** < b . The iteration continues until stopping

o o

criteria are met. If x*) converges to x*, x” is a solution to the
interpretable linear system in Eq.(6). The iteration of the
algorithm in Figure 3 is similar.

Input: generalized interval matrix A € KR" x KR",
generalized interval vector b € KR"

Output: generalized interval vector x e KR"

1. Initial estimation of y(o) as the point (real) solution
of mid(A)z = mid(b) such that imp A -y c prob;
2. x'% = 3(y®) associated with imp A - x = prob,
which is also the initial solutionto A-x o b as
k=0;
3. Iterate the following steps associated with A-x =b
until x converges:
k=k+1;
If & is odd, x* = 3" (x*™);

otherwise, x* = J(x*).

Figure 2. Proper transform Jacobi algorithm for the
linear system in Eq.(4)
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Input: generalized interval matrix A e KR” x KR",
generalized interval vector b € KR"

Output: generalized interval vector x e KR"

1. Initial estimation of y' as the point (real) solution of
mid(A)z = mid(b) such that proA -y” o impb;

2. x% = 3(y) associated with pro A - x = impb , which
is also the initial solutionto A-xcb as k=0;

3. Iterate the following steps associated with A-x=b
until x converges:
k=k+1;
If & is odd, x* = 3™ (x*™);

otherwise, x* = J(x*™).

Figure 3. Improper transform Jacobi algorithm for the
linear system in Eq.(5)

The interpretable linear system solving algorithms in Figure
2 and Figure 3 ensure the interpretability of numerical results.
This is regarded as an important step towards interpretable
tolerance analysis. Its advantage of completeness and soundness
assessment is illustrated in the example in Section 3.2.

3.2 Example A: stacked block assembly - linear

Figure 4 shows an example of a stacked block assembly
including a base, a rectangular plate and a cylindrical rod. With
the known size tolerances of manufactured components, the
kinematic variations of the assembly can be calculated with three
interval vector loops. Each of the closed loops defines the
algebraic relations between the size and kinematic variations. The
vector components in each 2D translational or rotational direction
sum up to zero, as listed in Table 2.

Rod

Plate

d Basé
P4 e :

(a) known parameters (b) vector loop 1

U

us 3
d
f

(c) vector loop 2

(d) vector loop 3

Figure 4. Stacked block assembly with closed loops of
variations

Suppose that the limits of angle variations in the assembly
are known, the tolerance analysis problem is reduced to solving a
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linear system. It can be solved using the improper transform
Jacobi algorithm in Figure 3. As listed in Table 2, the size
tolerances (a,b,c,d, e, f ) and angular variations (4,,4,,4,,4, ) are

assigned to be improper while the estimated kinematic variations
(u,,u,,u,,u,,u, ) are proper. Based on the interpretability rule in
Eq.(9), the result is interpreted as: given the size tolerances
(a,b,c,d,e, f) and the functionally critical kinematic variations
(¢.9,.4,4,), the non-functional  kinematic  variations
(w,u,,u,,u,,u, ) can be estimated. The most important inference

interpretation is that the numerical estimations
u, ) are complete. Producing verifiable results is the

from the
(U’l? 27 37 47
main advantage of solving interpretable systems compared to the

traditional analysis methods, where results are not interpretable
and completeness or soundness of the estimations is unknown.

3.3 MIA direct linearization for nonlinear systems

When constraints of variations are nonlinear, a linearization
process may be used to reduce the complexity of the direct
computation of nonlinear systems. The linear approximation
usually changes the semantic relationships among variables.
Therefore, the numerical result is only interpretable with respect
to the linearized system instead of the original nonlinear one.

To solve a nonlinear system

F(s,k) =0 (12)

where s € R™ is a size variation vector, k € R" is a kinematic
variation vector, and F: R"™ x R" — R" is a nonlinear function,
we can apply the Taylor’s expansion to the nonlinear system with
respect to the nominal values of s and k. Then we have a
linearized interval relation

oF oF
—L As+|=Lt| Ak=0 (I=L...mi=1...,m;j=1...,n)
65 nxm ak]

i

(13)
oF oF - .
where | —L | e R™™ and | —L|e R™" are sensitivity matrices.
0s, ok,

Because the nominal values are used, the elements in the
sensitivity matrices have real values. As € KR™ and Ak € KR"
are interval vectors corresponding to the size and kinematic
variations respectively.

With the real sensitivity matrices in Eq.(13), tolerance
accumulations can be estimated directly. For example, if the
kinematic variations are to be calculated, we solve

oF [oF |
—L| Ak =-=—L| dualAs (14)
ok, Os,
The kinematic variations can be simply derived from
oF “Tor ]
Ak = —L|  dualAs (15)
ak] 0s, |

Because of the linear approximation, the full semantics of the
original nonlinear relations in Eq.(12) cannot be obtained directly
from the numerical result. Instead, it is only interpretable with
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respect to Eq.(13). In parallel, the result is an algebraic solution of
Eq.(13) instead of Eq.(12).

3.4 Example B: stacked block assembly - nonlinear

Suppose that the angle variations in the previous stacked
block assembly example in Section 3.2 are unknown, the tolerance
analysis problem is nonlinear. The variables are listed in Table 3.
In this example, we assume the dimensional tolerances are a

priori. That is, As € IR® are proper as in Eq.(13). The numerical

estimations of the kinematic variations Ak € IR® are shown in
Table 4. Compared to the results from the DLM methods [37],
which are purely numerical estimations, the kinematic variation
intervals from the MIA direct linearization method are improper,
in contrast to the size variations as proper intervals. The modality
difference indicates the semantic difference between dimensional
tolerances and kinematic variations, which are regulating,
buffering, and more flexible. Furthermore, both completeness and
soundness of the estimation from the linearized system can be
verified from the interpretations based on the interpretability
principles [5]. Therefore, the MIA direct linearization method
provides more information than the regular numerical methods.

In general, different modality assignments of tolerance
intervals lead to different numerical results and interpretations.
Depending on the designer’s intention and desired semantics,
corresponding combinations of proper and improper intervals can
be applied. For instance, if the dimensional tolerances a and b
become non-critical or controllable, they are assigned to be
proper. Then the new numerical estimations are:
u, =18.7181+0.1374, u, = 8.6705+ 0.1641,

u, =10.0477 7 0.1311, u, = 2.1894 7 0.1629 ,
u, = 27.2965 7 0.4727 ¢, = 74.7243 7 0.0108,
¢, = —74.72437 0.0108, ¢, = —105.27617 0.0108,
¢, = -105.27617 0.0108, where u

1
tolerances. The corresponding interpretation is

and w, are a priori

(Vu, €[18.5807,18.8555])(Vu, e [8.5064,8.8346])(V ¢ e [10.5510.8])

(Vd € [3.914.21))(Ve € [23.87,24.57))(Vf < [3.78,4.03))

Ja < [6.42,6.82])(3b € [6.736.88])(Fu, < [9.9166,10.1788))
Ju, €[2.0265,2.3523])(Fu,  [26.8238,27.7692))

3¢ [74.7135,74.7351]) (3¢, < [~74.7351-74.7135))

3¢, e [~105.2869,-105.2653]) (3¢, < [~105.2869,~105.2653])

oF
al}abcdef]f
9x6

i

(
(
(
(

+{%} [ul Uy Uy U, U ¢1 ¢z ¢3 ¢4]T:0

J
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Table 2. Linear problem in stacked block assembly

Known a=6.62F0.2 b=6.805F0.075 ¢=10.675F0.125
Size d=406F0.15 e=2422F0.35 f=3.90570.125
variations
Known ¢, =T74.7243 7 0.4281 ¢, =-74.7243 7 0.4281 ¢$ =-105.2761F 0.4281 ¢, = —-105.2761 F 0.4281
Kinematic
variations
Unknown u, =18.7181+7 wu, =8.6705+7 u, =10.0477 £ ? u, =21894+7 wu, =27.2965+7
Kinematic
variations
Loop 1 F, =u,cos(90+¢,)+acos(180 + ¢,) + acos(180 + ¢, +4,) =0
F, =u, +u,sin(90 + ¢,) + asin(180 + ¢,) + asin(180 + ¢, +¢,) —u, =0
F, =90+ ¢, +90+¢ +90+90-360 =0
Loop 2 F, =bcos(@,) +u, cos(d, +90) +dcos(g, +90+¢,) - f =0
F, =u, +bsin(¢,) +u, sin(g, +90) + dsin(g, +90+¢,) =0
F,=90+¢,-90+90+¢, —90+180=0
Loop 3 F, = beos(d,) + ug cos(g, +90) + ccos(g, +90+¢,) e~ f =0
F, = u, +bsin(g,) + u, sin(g, +90) + csin(g, + 90+ ¢,) =0
F,=90+¢, -90+90+¢, -90+180=0
Linear —u, +u,sin(90 + ¢,) + u, +asin(180 +4,) =0
equations
u, cos(90 + @,) + a(cos(180 + ¢,) =1) = 0
u, +u, sin(g, +90) + bsin(g,) —d =0
u, cos(@, +90) + bcos(g,) — f =0
u, cos(@, +90) + beos(p,) e~ f =0
(-1 [0.2707,0.2562] 1 0 0 w7 [[-6.5922,-6.1804]
0 [0.9667,0.9626] 0 0 0 u, [8.0652,8.6659)]
0 0 1 [0.2707,0.2562] 0 u, | - | [10.388810.8602]
0 0 0 [0.9667,0.9626] 0 u, [1.9179,2.3054]
0 0 0 0 [0.9667,0.9626] || u, [25.7879,26.8754]
Result of Mu,7 [[18.058319.3812]
interpretable u,| | [8.34309.0026]
Jacobi u, | = | [9.740410.3520]
. u, | | [1.9839,2.3950]
algorithm |u. | |[26.6762.27.919]
Interpretation (Va €[6.42,6.82])(Vb € [6.736.88])(Vc € [10.5510.8])(Vd € [3.91,4.21])(Ve € [23.87,24.57])
of result (Vf € [3.784.03))(V ¢, < [74.2962,75.1524])(V ¢, e [-75.1524,-74.2962))

(V4, e [-105.7042,-104.8480])(V ¢, e [~105.7042,-104.8480]) (3, < [18.058319.3812])
(Ju, < [8.34309.0026))(3u, < [9.7404,10.3520])(Fu, « [1.9839,2.3950])(Ju, < [26.6762,27.9196])

—u, +u,sin(90 + @,) + u, +asin(180+4,) =0
u, cos(90 + @,) + a(cos(180 + ¢,) = 1) = 0

u, +u, sin(g, +90) + bsin(g,) —d =0

u, cos(g, +90) +bcos(4,) — f =0

u, cos(g, +90) +bcos(4,) —e~f =0
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Table 3. The variation formulation of loops

Known size a=662+02 b=6.805+0.075 c=10.675+0.125
variations d=4.06%0.15 e=24.22+0.35 f=23.905%0.125
Unknown u, =18.7181+7 w, =8.6705+7  wu, =10.0477+? u, =2.1894+? u, =27.2965+7
kinematic = +? = +7? =_ +7? = +7?
Kinematic ¢ =TAT243+7 §, =-TAT243+7 ¢ =-105.2761+7 ¢, = —105.2761 + ?
Linearized -1.
system 01926?1?;5 g 8 8 8 g -0.20.2
: [-0.075,0.075]
0 0 00 0 0 [-0.125,0.125]
o 0 02635 0 0 0 -—1| As= ~0.15,0.15]
{asl} =l 0 -09647 0 -1 0 O (0.35,0.35]
oo 0 0 0 0 0 O [~0.125,0.125]
0 02635 0 0 -1 -1 ) .
0 -09647 -1 0 0 O
| 0 0 0 0 0 0]
[0 09647 0 0 0  18.7181 10.0477 0 0 ]
-1 02635 1 0 0 -6.62 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0947 0 0  10.0477 4.0600 0
{Zﬂ =/0 0 1 02635 0 0 0  —3.9050 0
Tleo 1O 0 0 0 0 0 1 1 0
0 0 0 0 09647 0  10.0477 0 10.6750
0 0 1 0 02635 0 0 0 -28.125
0 0 0 0 0 0 1 0 1|
Equations [-1 02635 1 0 0 662 0 0 0 TAuw ] [[0.1929,-0.1929]]
with row 0 0947 0 0 0 187181 10.0477 0O 0 |Au,| |[0.2527,-0.2527]
rearrangement | |0 0 1 0 02635 O 0 0  -28.125(Au, | [[0.1973-0.1973]
0 0 0 0947 0 0  10.0477 4.0600 0 |[Au, | |[0.1447,-0.1447)
0 0 0 0 0947 0 100477 0 10.6750 | Au, | = | [0.4947,-0.4947)
0 0 0 0 0 1 1 0 0 |Ae,| |[0.0000,-0.0000]
0 0 0 0 0 0 1 1 0 |Ae,| |[0.0000,-0.0000]
0 0 1 0235 0 0 0 39050 0 [Ag,| |[0.2223-0.2223]
o o o0 0 0 0 1 0 1 |Ae, | [[0.0000,-0.0000] |
First (Va € [6.42,6.82])(Vb € [6.736.88])(V ¢ e [10.5510.8])(Vd € [3.914.21])(Ve e [23.87,24.57])
interpretation (Vf € [3.784.03])(3u, < [18.176119.2601))(Iu, € [8.21239.1467])(Iu, < [9.734,10.3614])

of the result

(Ju, « [1.91652.4623])(Ju, e [26.7756,27.8174])(3¢, < [74.7015,74.7471))
(34, < [-74.7015-74.7471])(3¢, < [-105.2989,-105.2533)) (3¢, < [~105.2989,~105.2533])

Second
interpretation
of the result

Vu, e [18.176119.2601])(Vu, < [8.21239.1467])(Vu, e [9.73410.3614])(Vu, e [1.91652.4623))
Vu, e [26.7756,27.8174))(V ¢, < [T4.701574.7471])(V, e [-74.7015,~74.7471])

v¢ € [~105.2989,-105.2533]) (V¢ e [~105.2989,-105.2533]) (3 « [6.42,6.82])

(3b € [6.736.88])(3c < [10.5510.8))(3d < [3.914.21]) (3¢  [23.87,24.57])(3f < [3.78,4.03])

oF,
0s;

l:}adecf]T{’}[uluzuauAuS¢1¢2¢3¢A]T=O
(
(
(
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Table 4. Comparison of MIA linearization and DLM

MIA DLM Worst-Case | DLM Statistical
Linearization

Au, =[05420, -0.5420] | Au, =[-0.5421, 0.5421] Au, =[-0.2998, 0.2998]
Au, =[0.4672, -0.4672] | Au, =[-0.3899, 0.3899] Au, =[-0.2725, 0.2725]
Au, =[0.3137, -0.3137] | Au, =[-0.2942, 0.2942] Au, =[-0.1844, 0.1844]
Au, =[0.2729, -0.2729] | Au, =[-0.2384, 0.2384] Au, =[-0.1411, 0.1411]
Au, =[0.5209, -0.5209] | Au, =[-0.5174, 0.5174] Au, =[-0.3836, 0.3836]
Ag, =[0.0228, -0.0228] | Ag, =[-0.8156, 0.8156] Ag, =[-0.4784, 0.4784]
Ag, =[0.0228, -0.0228] | Ag, =[-0.8156, 0.8156] | Ag, =[-0.4784, 0.4784]
Ag, =[0.0228, -0.0228] | Ag, =[-0.8156, 0.8156] Ag, = [-0.4784, 0.4784]
Ap, =[0.0228, -0.0228] | Ag, =[-0.8156, 0.8156] | Ag, =[-0.4784, 0.4784]

4. Geometric Tolerances

Size and geometric tolerances cannot always be stacked up
independently in interval vector loops. Interdependency between
size and geometric tolerances exists. For instance, the Envelope
Rule does not allow elements of specified features to go beyond
size limits. Size limits control the allowable magnitudes of
geometric form variations. This implies that the variation of
geometric form is decreased when the actual size approaches the
Maximum Material Condition (MMC). Features would be
required to have perfect form and the geometric variation is
reduced to zero at the MMC. Therefore, the mating envelope or
virtual condition of the feature is its size limit. However, if a
geometric tolerance is applied to a feature of size, the Envelope
Rule is overridden. Then the geometric tolerance can be stacked
with the size tolerance independently to estimate the accumulative
effect.

Depending on the relationship between size and geometric
tolerances, interval vector loops need to be constructed in different
ways. For example, in Figure 5-(a), the straightness tolerance of
the rod is applied to the feature. The Envelope Rule is applied.
The form variation of the rod W, should not be included in the

interval vector loop when estimating kinematic variations. The
limit of the form variation w, has been incorporated in the size

tolerance a. The size and geometric tolerances are not
independent. In contrast, in Figure 5-(b), the straightness tolerance
W, is applied to a feature of size. The size and geometric

tolerances thus are stacked up independently and must be included
in the vector loop. Similarly, the perpendicularity tolerance w,

applied to the base is stacked up independently in the same figure.
In Figure 5-(c), the flatness tolerance w, is incorporated in the

size tolerance b . In Figure 5-(d), the perpendicularity tolerance

w, is incorporated in the size tolerance €. The new formulation

of vector loops with the consideration of geometric tolerances is
shown in Table 5. Notice that the respective nominal values of
form tolerances (w1 and w3) and orientation tolerances (w2

and w,) in the loops are different. Those of the orientation

tolerances are zeros and the corresponding interval vectors are
bidirectional. To estimate the variation accumulations in Table 5,
the numerical methods developed in Section 3 can be applied.

Table 5. Formulation of closed loops with size, geometric, and kinematic variations

Known size a=6.62+02 b=6.805+0.075 ¢=10.675%0.125
variations d=4.06+0.15 ¢=2422+035 f=3.9050.125
Known w, = 0.01+£0.01 w, = 0+0.01 w, = 0.01+0.01 w, = 0+0.01
geometric
variations
Unknown u, =18.7181+7 1w, 867057 u, —100477%7 u, —21894+7 u_=27.2965%7
kinematic _ 2 _ ? - _ ? - _ ?
variations ¢1 747243+ 7 ¢2 74.7243 + 7 ¢3 105.2761+ 7 ¢4 105.2761+ 7
Loop la F =w, +u,cos(90 + ¢,) + acos(180 + @,) + acos(180 + ¢, + ¢,) =0
(When the F, =u, +u,sin(90+¢,) + asin(180 + ¢,) + asin(180 + ¢ +4,) —u, =0
Envelope Rule is F,=90+¢, +90+ 4, +90+90-360=0
applied)
Loop 1b F, = w, +u,cos(90 + @) + (a +w,)cos(180 + 4,) + (a + w,) cos(180 + 4 +¢,) = 0
(when the . F, = u, +u,sin(90 + ¢,) + asin(180 + ¢,) + asin(180 + 4 +¢,) —u, =0
Envelope Rule is |F —90+¢ +90+¢ +90+90—360=0
overridden) ’ ’ '
Loop 2 F, = w, +bcos(4,) + u, cos(¢, +90) + dcos(¢, + 90+ ¢4,)— f =0
F, = u, +bsin(¢,) + u, sin(g, +90) + dsin(g, + 90+ ¢,) =0
F,=90+¢ ~90+90+g, —90+180 = 0
Loop 3 F, = w, +bcos(g,) + u, cos(¢, +90) + ccos(g, +90+¢,) —e—f=0
E, = u, +bsin(g,) + u, sin(g, +90) + csin(g, + 90 +¢4,) =0
|Fg =90+¢,-90+90+¢, —90+180 =0
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W,
(a) The straightness tolerance w; is not included in the
loop when the Envelope Rule is applied, while the
perpendicularity tolerance w, is included

v
<
w; a

E\
[ Wy
uy
u;
Loop 1b
Us
=
W2

(b) The straightness tolerance w; is included in the loop
when the Envelope Rule is overridden

(c) The flatness tolerance wj is not included in the loop
when the Envelope Rule is applied

(d) The perpendicularity tolerance wy is not included in
the loop when the Envelope Rule is applied

Figure 5. Incorporating geometric tolerances in closed-
loop analysis

5. Concluding Remarks

The purpose of semantic tolerance model is to enrich
tolerance modeling and analysis structures such that more process-
oriented tolerancing semantics and intents can be embedded in

ASME Journal of Mechanical Design

mathematical representations. The ultimate goal is to support
better design and manufacturing specifications. In this paper, we
presented a tolerance analysis approach based on interval vector
loops. To ensure the interpretability of numerical results,
interpretable Jacobi algorithms are developed to solve linear
systems. Thus interpretable relations among variables can be
maintained during computation. Nonlinear systems can be
linearlized and variations can be estimated. With the interpretable
relations, completeness and soundness of numerical results from
linear systems can be verified. Producing verifiable results is the
main advantage of solving interpretable systems compared to the
traditional analysis methods, where results are not interpretable
and completeness or soundness of the estimations is unknown.

Based on the algebraic closure property, we formulate form
closure constraints of small displacement with closed loops of
interval vectors. Geometric tolerances can also be included in the
loops. Depending on the interdependency between size and
geometric tolerances, form variations may be stacked up
differently. The new approach enhances numerical analysis
methods by ensuring algebraic closure and interpretability.

Future work may include developing interpretable nonlinear
system solving methods. Since linearization is necessary to solve
nonlinear systems numerically, maintaining the original logic
relationships among variables during the process is critical. These
new interpretable methods are expected to provide more accurate
tolerance analysis. Since the developed numerical methods are
generic in nature, they could potentially be applied in other
engineering domains such as robust control and prediction under
uncertainties.

6. Acknowledgements

The author appreciates the comments from anonymous
reviewers for the improvement of the paper.

7. References

[1] Chase, K.W., Gao, J., and Magleby, S.P., 1995, “General 2-D
tolerance analysis of mechanical assemblies with small
kinematic adjustments,” J. of Design and Manufacturing,
5(4), pp.263-274

[2] Wang, Y., 2006, “Semantic tolerance modeling based on
modal interval analysis,” In R.L. Muhanna and R.L. Mullen,
eds., Proc. 2006 NSF Workshop on Reliable Engineering
Computing (REC’06), Georgia Institute of Technology,
Savannah, GA, pp.293-318

[3] Wang, Y., 2006, “Semantic tolerance modeling,” In Proc.
2006 ASME International Design Engineering Technical
Conferences & The Computer and Information in
Engineering Conference (IDETC2006), Philadelphia, PA,
Paper No. DETC2006-99069.

[4] Wang, Y., 2007, “Semantic tolerancing with generalized
intervals,” Computer-Aided Design & Applications, 4(1-4),
pp.257-266

June 2008, Vol. 130 / 061701 (1-10)



[5] Wang, Y., 2007, “Semantic tolerance modeling with
generalized intervals,” ASME J. Mech. Design, under
review.

[6] Hong, Y.S. and Chang, T.-C., 2002, “A comprehensive
review of tolerancing research,” Int. J. of Production
Research, 40(11), pp.2425-2459.

[7] Zhang, H.C. eds., 1997, Advanced Tolerancing Techniques,
John Wiley & Sons, New York.

[8] Wirtz, A., Gachter, C., and Wipf, D., 1993, “From
unambiguously defined geometry to the perfect quality
control loop,” Annals of the CIRP, 42(1), pp.615-618

[9] Martinsen, K., 1995, “Statistical process control using
vectorial tolerancing,” In CIRP/JSPE/ASME Proc. 4" CIRP
Seminar on Computer Aided Tolerancing, University of
Tokyo, Tokyo, Japan, pp.195-210

[10] Rivest, L., Fortin, C., and Morel, C., 1994, “Tolerancing a
solid model with a kinematic formulation,” Computer-Aided
Design, 26(6), pp.465-476

[11] Clément, A., Valade, C., and Riviere, A., 1996, “The
TTRSs: 13 oriented constraints for dimensioning,
tolerancing and inspection,” Advanced Mathematical Tools
in Metrology 111, pp.24-41

[12] Bourdet, P. and Ballot, E., 1995, “Geometric behavior for
computer aided tolerancing,” In CIRP/JSPE/ASME Proc. 4™
CIRP Seminar on Computer Aided Tolerancing, University
of Tokyo, Tokyo, Japan, pp.143-154

[13] Giordano, M. and Duret, D., 1993, “Clearance space and
deviation space,” In CIRP Proc. 3™ Seminars on Computer
Aided Tolerancing, Cachan, France, pp. 179-196

[14] Desrochers, A., 1999, “Modeling three-dimensional
tolerance zones using screw parameters,” Proc. 25" ASME
Design Automation Conference, Paper No. DAC-8587

[15] Whitney, D.E., Gilbert, O.L., and Jastrzebski, M., 1994,
“Representation of geometric variations using matrix
transforms for statistical tolerance analysis in assemblies,”
Research in Engineering Design, 6, pp.191-210

[16] Desrochers, A. and Riviere, A., 1997, “A matrix approach to
the representation of tolerance zones and clearances,” Int. J.
Advanced Manufacturing Technology, 13, pp.630-636

[17] Lafond, P. and Laperriére, L., 1999, “Jacobian-based
modeling of dispersions affecting pre-defined functional
requirements of mechanical assemblies,” Proc. IEEE Int.
Symp. Assembly & Task Planning, pp.20-25

[18] Descrochers, A., Ghie, W., and Laperriere, L., 2003,
“Application of a unified Jacobian-torsor model for
tolerance analysis,” ASME J. Comp. in Sci. Eng., 3(1), pp.2-
14

[19] Chase, K.W., Magleby, S.P., Gao, J., and Sorensen, C.D.,
1996, “Including geometric feature variations in tolerance
analysis of mechanical assemblies,” IIE Transactions,
28(10), pp.795-807

[20] Gao, J.,, Chase, KW., and Magleby, S.P., 1998,
“Generalized 3-D tolerance analysis of mechanical
assemblies with small kinematic adjustments,” IIE
Transactions, 30(4), pp.367-377

[21] Sacks, E. and Joskowicz, L., 1998, “Parametric kinematic
tolerance analysis of general planar systems,” Computer-
Aided Design, 30(9), pp.707-714

ASME Journal of Mechanical Design

[22] Zou, Z. and Morse, E.P., 2004, “A gap-based approach to
capture fitting conditions for mechanical assembly,”
Computer-Aided Design, 36(8), pp.691-700

[23] Zhang, G., 1996, “Simultaneous tolerancing for design and
manufacturing,” Intl J. Prod. Res., 34(12), pp.3361-3382

[24] Liu, S. and Hu, S., 1997, “Variation simulation for
compliant sheet metal assemblies using finite element
methods,” ASME J. of Manufacturing Science &
Engineering, 119(3), pp.368-374.

[25] Chang, M. and Gossard, D.C., 1997, “Modeling the
assembly of compliant, non-ideal parts,” Computer-Aided
Design, 29(10), pp.701-708

[26] Long, Y. and Hu, S., 1998, “A unified model for variation
simulation of sheet metal assemblies,” in Geometric Design
Tolerancing: Theories, Standards, and Applications, ed. by
H.A. Elmaraghy, London: Chapman & Hall, pp.208-219

[27] Shiu, B.W., Ceglarek, D., and Shi, J., 1996, “Muilti-stations
sheet metal assembly modeling and diagnostics,” Trans.
NAMRI, 24, pp.199-204

[28] Camelio, J., Hu, S.J., and Ceglarek, D., 2003, “Modeling
variation propagation of multi-station assembly systems
with compliant parts,” ASME J. of Mechanical Design,
125(4), pp.673-681.

[29] Huang, W., Lin, J., Bezdencny, M., Kong, Z., and Ceglarek,
D., 2007, “Stream-of-variation modeling — Part I: A generic
3D variation model for rigid body assembly in single station
assembly processes,” ASME J. Manu. Sci. & Eng., 129(4),
pp.821-831.

[30] Huang, W., Lin, J.,, Kong, Z., and Ceglarek, D., 2007,
“Stream-of-variation (SOVA) modeling — Part 1I: A generic
3D variation model for rigid body assembly in multistation
assembly processes,” ASME J. Manu. Sci. & Eng., 129(4),
pp.832-842.

[31] Gardenes, E., Sainz, M.A,, Jorba, L., Calm, R., Estela, R.,
Mielgo, H., and Trepat, A., 2001, “Modal intervals,”
Reliable Computing, 7(2), pp.77-111.

[32] Markov, S., 2001, “On the algebraic properties of intervals
and some applications,” Reliable Computing, 7(2), pp.113-
127.

[33] Shary, S.P., 2002, “A new technique in systems analysis

under interval uncertainty and ambiguity,” Reliable
Computing, 8(2), pp.321-418.
[34] Moore, R.E., 1966, Interval Analysis, Prentice-Hall,

Englewood Cliffs, N.J.

[35] Kaucher, E., 1980, “Interval analysis in the extended
interval space IR,” Computing Supplement, 2, pp.33-49.

[36] Sainz, M.A., Gardenes, E., and Jorba, L., 2002, “Formal
solution to systems of interval linear or non-linear
equations,” Reliable Computing, 8(3), pp.189-211.

[37] Chase, K.W., Magleby, S.P., Gao, J., 1997, “Tolerance
analysis of two- and three- dimensional mechanical
assemblies with small kinematic adjustments,” in Advanced
Tolerancing Techniques, H.C. Zhang, eds., John Wiley &
Sons, New York, pp.103-137.

June 2008, Vol. 130 / 061701 (1-10)



