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A semantic tolerance modeling scheme based on generalized intervals was recently 
proposed to allow for embedding more tolerancing intents in specifications with a 
combination of numerical intervals and logical quantifiers. By differentiating a priori 
and a posteriori tolerances, the logic relationships among variables can be interpreted, 
which is useful to verify completeness and soundness of numerical estimations in 
tolerance analysis. In this paper, we present a semantic tolerance analysis approach to 
estimate size and geometric tolerance stack-ups based on closed loops of interval vectors. 
An interpretable linear system solver is constructed to ensure interpretability of 
numerical results. A direct linearization method for nonlinear systems is also developed. 
This new approach enhances traditional numerical analysis methods by preserving 
logical information during computation such that more semantics can be derived from 
variation estimations. 
 

 

1. Introduction 
In tolerance analysis, estimations of accumulative tolerances 

are mathematically formulated and solved in different ways. The 
typical approaches include variational estimation, kinematic 
formulation, statistical approximation, and Monte Carlo 
simulation. The analysis process is simplified to the computation 
of pure numerical intervals. Methods of linearization and high-
order Taylor approximations are extensively used to compute 
parameters (e.g., statistical moments) and variables (e.g., 
kinematic variations in assemblies). Because of these numerical 
treatments, completeness and soundness of range estimations are 
compromised. A complete solution includes all possible 
occurrences, which is to check if the range estimation includes all 
possible stack-up results. Conversely, a sound solution does not 
include impossible occurrences, which consists in checking if the 
interval overestimates the actual range.  

The traditional worst-case linear stack-up methods focus on 
completeness while range estimations may not be sound. The 
results usually are overly pessimistic. In contrast, Monte Carlo 
methods focus on soundness while estimations may not be 
complete. Assuming the applied distributions and their parameters 
reflect the true variations, the simulated ranges are complete only 
when the sample size is enormously large such that the pseudo-
random numbers from a full-period random number generator are 
exhausted. Kinematic formulation methods may result in solutions 
that are neither complete nor sound because of numerical 
treatments. This is illustrated by an example of one-way clutch in 
Figure 1. The known dimensional tolerances are the hub height 

].,.[ 6952759527=a , the ring radius ].,.[ 812550787550=e , and 
the roller radius ].,.[ 44114211=r . The variation of the roller 
position b needs to be estimated. By the direct linearization 
methods (DLM) with root-sum-square (RSS) and worst-case 
(WC) [1], we have the estimations ].,.[ 2625535854=RSSb  and 

].,.[ 4842513684=WCb  respectively. However, the true variation 
range is ].,.[ 4405508384=b , which can be derived from the 
direct analysis of geometry. The combination of the largest a and r 
and the smallest e generates the lower bound of b. The 
combination of the smallest a and r and the largest e forms the 
upper bound of b. We can see RSSb  is sound but not complete, 
whereas WCb  is neither complete nor sound.  
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Figure 1. An example of one-way clutch variation 
estimation 

 
Let ),,( nxxfz …

1
=  be a general relation in tolerance 

analysis, where 
i
x ’s ( ni ,,…1= ) are the variation source 

variables (inputs), and z  is the performance variable (output). Let 
],[ ii xx ’s ( ni ,,…1= ) be the respective intervals of the input 

tolerances and ],[ zz  a variation range estimate. ],[ zz  is complete 
if and only if the following statement is true: “for any combination 
of inputs 

i
x ’s  within the respective ],[ ii xx ’s, the output 

),,( nxxfz …
1

=  must be included in the estimated ],[ zz ”. That 
is, 

( ) ( )( )( )zxxfzzzxxxxxx nnnn =∈∃∈∀∈∀ ),,(],[],[],[ …"
1111

 
Similarly, the estimation is sound if and only if the following 
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statement is true: “for any output z within the estimated ],[ zz , 
there must exist a combination of inputs 

i
x ’s within the respective 

],[ ii xx ’s such that ),,( nxxfz …
1

= ”. That is, 

( )( ) ( )( )zxxfxxxxxxzzz nnnn =∈∃∈∃∈∀ ),,(],[],[],[ …"
1111

 
For instance, in the one-way clutch example of Figure 1, we are 
able to assert 
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Therefore, the logic interpretation of numerical results as 
above enables us to assess the completeness and soundness of 
range estimations. The attention of interpretability needs to be 
given in tolerance analysis. Recently, we proposed a new semantic 
tolerance modeling scheme [2, 3, 4, 5] based on generalized 
intervals to enhance the interpretability of tolerance modeling. 
The purpose of semantic tolerance modeling is to embed logic 
relationships and engineering implications into the mathematical 
representation. With logical quantifiers, the relationship between 
tolerance specifications and implications of stacking may be 
derived from formulations. With the explicit differentiation 
between a priori and a posteriori tolerances, models can capture 
process-oriented semantics such as the difference between rigid 
and flexible materials in assemblies and the sequence of assembly.  

In this paper, we present a tolerance analysis approach based 
on interval vector loops to estimate semantic tolerance 
accumulations. To ensure the interpretability of numerical results, 
interpretable Jacobi algorithms are developed to solve interval 
linear systems. Based on the algebraic closure property, we can 
formulate constrained problems with closed loops of interval 
vectors. Geometric tolerances can also be included in the loops 
with the consideration of interdependency between size and 
geometric tolerances. In the remainder of the paper, a brief review 
of vector loop based tolerance analysis methods and the 
generalized interval as the basis of semantic tolerance modeling 
are given in Section 2. Section 3 presents the proposed analysis 
approach for semantic tolerances. An interpretable linear system 
solver to ensure interpretability is constructed. The new approach 
is illustrated with examples. Section 4 describes the closed-loop 
approach to integrate geometric tolerances.  

2. Background 
There is a substantial amount of literature on tolerance 

modeling, analysis, and synthesis [6, 7]. Here, we only give a brief 
overview of vector loop based analysis methods that are closely 
related to the proposed closed-loop semantic tolerance analysis 
approach, as reviewed in Section 2.1. The main properties and 
notations of generalized intervals are summarized in Section 2.2. 

2.1 Vector Loop based Tolerance Analysis 
Traditionally tolerance analysis is product-oriented. 

Dimensional limit, geometric variation, and kinematic 
displacement can be modeled mathematically in vectors and 
matrices. The vectorial tolerancing methods (Wirtz et al. [8], 
Martinsen [9]) model size, form, location, and orientation 
tolerances in a unified vector format in order to provide an 
integrated quality control loop. Rivest et al. [10] employed the 
kinematic characteristics of links between datum and toleranced 
features to model chains of variations. Clément et al. [11] 
identified and analyzed functional elements called TTRSs which 
are associated with geometric constraints. The small-displacement 
torsor methods (Bourdet and Ballot [12], Giordano and Duret 
[13], Descrochers [14]) approximate the rotation and translation 
displacement in the form of torsors. The matrix representation 
methods (Whitney et al. [15], Desrochers and Riviere [16], 
Lafond and Laperrière [17]) model small displacements in 
kinematic chains in the form of homogenous transformation 
matrices. Recently, Desrochers et al. [18] combined the torsor and 
matrix-based representations for tolerance analysis. Chase et al. 
[1, 19, 20] performed analysis of assemblies with tolerance 
vectors and small kinematic adjustments with linear 
approximations of implicit geometric constraints. Sacks and 
Joskowicz [21] analyzed 2D kinematic tolerances of assemblies 
with contact changes by the aid of contact constraints. Zou and 
Morse [22] proposed a fitting condition test method based on 
geometric constraints of gap closure between components. 

In recent years, process-oriented analysis approaches were 
also proposed to consider the accumulation effects of 
manufacturing processes. With 1D vector loops, Zhang [23] 
combined the relation between functional requirements and 
dimensional tolerances with the one between dimensional and 
machining tolerances for simultaneous tolerancing. Based on 
constraints of force closure (Liu and Hu [24], Chang and Gossard 
[25]), 3D vector loops were used to predict variation accumulation 
in sheet metal joining with the linearized finite element 
formulation. Long and Hu [26] extended the method to include the 
variation of fixtures during assembly operations. The single-
station methods were also extended to multi-station approaches 
(Shiu et al. [27], Camelio et al. [28]) where variations are 
propagated in stages with tooling variations incorporated. 
Recently, Huang et al. [29, 30] developed a stream-of-variation 
method to estimate dimensional variations in rigid-body 
assemblies for single-station and multi-station systems 
considering fixtures based on kinematic constraints. 

In the above vector loop based methods, variation problems 
are formulated based on constraints of either form closure or force 
closure. The numerical treatments applied in these approaches 
prohibit interpretable numerical results. The main reason is that 
the commonly used solving methods with linearization and high-
order approximations do not incorporate interpretability. During 
computation, the logic relationships among variables are left out. 
Therefore, the completeness and soundness of the results cannot 
be verified. In this paper, we propose a semantic tolerance 
analysis approach based on a new structure of interpretable linear 
system solver. Generalized intervals are used for a unified 
variation representation. 

2.2 Generalized Intervals 
The semantic tolerance model is based on modal interval 

analysis (MIA) [31, 32, 33], which is an algebraic and semantic 
extension of the classic interval analysis (IA) [34]. A modal 
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interval or generalized interval KR∈= ],[: xxx  is called proper 
when xx ≤  and improper when xx ≥ . The set of proper 
intervals is denoted by { }xxxx ≤= |],[IR  and the set of 

improper intervals by { }xxxx ≥= |],[IR . The width of x  is 

xxxx −=:],wid[ , and the center is found by 
2
xx

xx
+

=:],mid[ . 

A real function )(xf  where nx R∈  can be extended to )(xf  
where nKR∈x , which is called a KR -extension, AE-
extension, or modal extension. The real arithmetic is extended to 
the so-called Kaucher arithmetic [35].  

Three special operators, pro, imp, and dual, are defined in the 
Kaucher arithmetic. Given a generalized interval 

KR∈= ],[ xxx , )],max(),,[min(:pro xxxx=x  and 
)],min(),,[max(:imp xxxx=x  return the respective proper and 

improper interval values. ],[:],dual[ xxxx =  builds a relationship 
between proper and improper intervals. Related to the arithmetic 
operations { }÷×−+∈ ,,,D , ( ) ( ) ( )yxyx DD dualdualdual = . The 
inclusion relationship between modal intervals is defined as 

( ) ( )yxxyyyxx ≤∧≤⇔⊆ ],[],[ . The less than or equal to 

relationship is defined as ( ) ( )yxyxyyxx ≤∧≤⇔≤ ],[],[ . 
Table 1 lists the major differences between MIA and IA. 

Different from IA, the group property is maintained in MIA 
because generalized intervals are closed under the Kaucher 
arithmetic operations. A generalized interval a  is an algebraic 
solution of the equation bxf =)(  where x  is unknown if the 
original algebraic relation is still valid when the variable x  is 
replaced by the interval result a , i.e., baf =)( . This property is 
called algebraic closure, which is not available in IA. The group 
properties under addition and multiplication are lost in IA. For 

example, the solution of ],['],[ 7231 =+ x  is 
],[],[],[' 613172 −=−=x  in IA. However, if the solution is 

substituted back to the original equation, 
],[],[],[],[ 72906131 ≠=−+ . Therefore 'x  is not an algebraic 

solution. The multiplication and division operators are similar. In 
contrast, in MIA the solution of bxa =+  is abx dual−= ; and 
the solution of bax =  is abx /dual=  when apro∉0 . For 
example, ],[],[ 7231 =+ x  has the algebraic solution 

],[],[],[],dual[],[ 4113723172 =−=−=x  since ],[],[],[ 724131 =+ . 
The algebraic closure property is the basis of our closed-loop 
analysis scheme. It simplifies the numerical analysis process while 
interpretability is preserved. The numerical interval results always 
satisfy the original constraints of form closure. Therefore, we call 
our scheme closed-loop. 

Another uniqueness of generalized intervals is the modal 
semantic extension. Unlike IA which identifies an interval by a set 
of real numbers only, MIA identifies an interval by a set of 
predicates which is fulfilled by real numbers. Each interval 

KR∈x  has an associated logical quantifier, either existential 
( ∃ ) or universal (∀ ). For a real relation zx =)(φ  where nx R∈  
and R∈z , the semantics of its modal extension can be expressed 
with quantifiers, which are derived based on the modalities of 
generalized intervals. As universal quantifiers precede existential 
ones, such quantified propositions have the form of  

( )( )( )( )zxxzx z =∈∃∈∈∀ )(proproQ φIIPP xzx  
where P  and I  are disjoint sets of indices for proper and 
improper components of n

IP KR∈∪x , IR∈∀= z if  zQ , and 
IR∈∃= z if  zQ . 

 

Table 1. The major differences between MIA and traditional IA 

 Classic Interval Analysis Modal Interval Analysis 
Validity ],[ 23  is an invalid or empty interval Both ],[ 32  and ],[ 23  are valid intervals 
Semantics 
richness 

],[],[],[ 744232 =+  is the only valid relation for 
+, and it only means “stack-up” and “worst-
case”. /,,×−  are similar. 

],[],[],[ 744232 =+ ,  
],[],[],[ 562432 =+ , 
],[],[],[ 654223 =+ , 
],[],[],[ 472423 =+  

are all valid, and each has a different meaning. 
/,,×−  have similar semantic properties. 

Group property bxa =+ , but abx −≠  
],[],[],[ 744232 =+ , ],[],[],[ 327442 −≠  

bxa =× , but abx ≠  

],[],[],[ 1264332 =× , ],/[],[],[ 3212643 ≠  
0≠− xx  

0113232 ≠−=− ],[],[],[  

bxa =+ , and abx dual−=  
],[],[],[ 744232 =+ ,  
],[],[],[ 237442 −=  

bxa =× , and abx dual=  

],[],[],[ 1264332 =× ,  
],/[],[],[ 2312643 =  

0=− xx dual  
02332 =− ],[],[  

 

3. Closed-Loop Tolerance Analysis 
The purpose of semantic tolerance model is to enrich 

tolerance modeling and analysis structures such that more process-
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oriented tolerancing semantics and intents can be embedded in 
mathematical representations. Interpretability is useful to verify 
completeness and soundness of interval results. Thus interpretable 
relations among variables should be maintained during 
computation. In this section, we describe the new interpretable 
linear system solver to ensure interpretability. At the same time, 
the algebraic closure of generalized intervals keeps the numerical 
computation simple enough. We formulate the form closure 
constraints of small displacement with closed loops of interval 
vectors. The new approach enhances numerical analysis methods 
by ensuring algebraic closure and interpretability. 

In closed-loop tolerance analysis, the interval vectors that 
represent size, geometry, and kinematic variations form closed 
loops in the 3D Euclidean space. That is, the variations KR∈

i
v  

in each of x , y , and z  directions should have the algebraic 
relations 021 ⊆),,,( nvvvf "  or 0

21
⊇),,,( nvvvf " . To form 

closed-loop tolerance chains, a priori tolerances with the 
semantics of universal and a posteriori tolerances with the 
semantics of existential need to be explicitly differentiated. A 
posteriori variations provide “buffers” in tolerance allocation to 
make algebraic relations valid and close the loop. If the traditional 
tolerancing without the differentiation of a priori and a posteriori 
tolerances is regarded as “passive” tolerancing, semantic 
tolerancing is “active” tolerancing so as to close the loops of 
tolerance chains. In general, a priori tolerances are tolerances with 
predetermined variations. They have the semantics of 
uncontrollable, unchangeable, critical, hard-constrained, specified, 
etc. A posteriori tolerances are those with derived variations. They 
have the semantics of controllable, adjustable, flexible, soft-
constrained, feedback, etc. 

Tolerance formulation and analysis methods based on 
generalized intervals and Kaucher arithmetic maintain the 
algebraic closure of interval computation. During the tolerance 
and kinematic chain formulation, if explicit functions are available 
to estimate variations of assemblies, accurate and interpretable 
ranges can be estimated based on the interpretability and 
optimality principles [5]. If only implicit functions are available, 
methods to solve generalized interval systems are needed. In 
Section 3.1, we describe the new interpretable linear system solver 
that preserves interpretable relationships. The algorithms and the 
advantage of interpretability are illustrated with an example in 
Section 3.2. In Section 3.3, a MIA direct linearization method is 
presented to solve nonlinear problems. A nonlinear example is 
given in Section 3.4. 

3.1 Solving interpretable linear systems 
As mentioned in Section 2.1, the linearization approach used 

in the existing vector loop based analysis methods does not 
support interpretability. Thus the completeness and soundness of 
the numerical results cannot be verified. Here, we describe a new 
linearization and solving process that generates interpretable 
numerical results.  

For nKR∈x , a linear system of generalized intervals  
bxA =⋅    (1) 

where nn
nnij

×
× ∈= KR)(aA  and nKR∈b , is closely associated 

with two inclusion relationships BxA ⊆⋅  and BxA ⊇⋅ , given 
as 

( ) ( )BxABxABxA ⊇⋅∧⊆⋅⇔=⋅   (2) 

If a Jacobi interval operator is defined as 

( )ni
ii

ii

ji
jiji

i
,,pro

dual

dualdual

:)( "1 and 0 =∉

⋅−

=ℑ
∑
≠ a

a

xab

x

 (3) 
the following theorem provides the foundation to solve the linear 
system in Eq.(1). 

 
Theorem 3.1 [36] (1) If x  is a solution to bxA ⊆⋅ , )(xℑ  is a 
solution to bxA ⊇⋅ . (2) If x  is a solution to bxA ⊇⋅ , )(xℑ  
is a solution to bxA ⊆⋅ . 

 
However, the linear system in Eq.(1) is not interpretable if it 

includes multi-incident 
j
x ’s which are existential. That is, a 

variable 
j
x  appears multiple times in the equation. Because the 

concatenation of x∈∀x  and x∈∀x  is x∈∀x , and the 
concatenation of x∈∀x  and x∈∃x  is x∈∃x . But the 
concatenation of x∈∃x  and x∈∃x  is not x∈∃x  in general. 
Formally  

( )( )( )( )),(proQproproQ 1111111 11
yxfzzxy zy =∈∈∃∈ zxy  

and 
( )( )( )( )),(proQproproQ

2222222 22
yxfzzxy zy =∈∈∃∈ zxy  

do not necessarily lead to 
( )( )( )( )
( )( )),(),(proQ

proQproproQproQ

22211122

112211

2

121

yxfzyxfzz

zxyy

z

zyy

=∧=∈

∈∈∃∈∈

z

zxyy
 

To ensure interpretability, a transformed and interpretable linear 
system 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⊆+++

⊆+++

⊆+++

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

…

…
…

…

2211

22222121

11212111

propro

propro

propro

 (4) 

or 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⊇+++

⊇+++

⊇+++

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

…

…
…

…

2211

22222121

11212111

impimp

impimp

impimp

 (5) 

should be solved instead, where each occurrence of the variables 
except the diagonal ones is transformed to its proper or improper 
counterpart in the new system. The notations of Eq.(4) and Eq.(5) 
are simplified as 

bxA ⊆⋅ pro    (6) 
and 

bxA ⊇⋅ imp    (7) 
The algebraic solutions can be interpreted as 
( )( )( )( )( )( )( )bxAxbaxba

IIPPIIPPIIPP
=⋅∈∃∈∃∈∃∈∀∈∀∈∀ xbaxba propropro

(8) 
and 
( )( )( )( )( )( )( )bxAxbaxba

PPIIPPIIPPII
=⋅∈∃∈∃∈∃∈∀∈∀∈∀ xbaxba propropro

(9) 
respectively. 
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An enhanced interpretable Jacobi algorithm is developed to 
solve Eq.(6), as listed in Figure 2, where the Jacobi operator is 
applied to the original and the transformed variables alternately. 
We define a proper transform Jacobi interval operator as 

( )ni
ii

ii

ji
jiji

i
pro ,,pro

dual

impdual

:)( "1 and 0 =∉

⋅−

=ℑ
∑
≠ a

a

xab
x

 (10) 
Applying the Jacobi operator in Eq.(3) to the transformed variable 
prox  is equivalent to applying the proper transform Jacobi 

operator in Eq.(10) to the original variable x .  
Similarly, an interpretable Jacobi algorithm to solve Eq.(7) is 

listed in Figure 3, where an improper transform Jacobi interval 
operator is defined as 

( )ni
ii

ii

ji
jiji

i
imp ,,1 and pro0 

dual

produal
:)( "=∉

⋅−
=ℑ

∑
≠ a

a

xab
x

 (11) 
 
Theorem 3.2 (1) If x  is a solution to bxA ⊇⋅ , then x  is also 
a solution to bxA ⊇⋅ pro . (2) If x  is a solution to bxA ⊆⋅ , 
then x  is also a solution to bxA ⊆⋅ imp . 

 
In Figure 2, at the ( k2 )th step in the iterative solving 

process, applying the Jacobi operator in Eq.(3) to )( 12 −kx , we 
receive )( )()( 122 −ℑ= kk xx  such that bxAxA ⊇⋅⊇⋅ )()( kkpro 22 . 
Then at the ( 12 +k )th step, applying the proper transform Jacobi 

operator in Eq.(10) to )2( kx , we have )( )()( kprok 212 xx ℑ=+  

such that bxA ⊆⋅ + )( 12k  . The iteration continues until stopping 
criteria are met. If )(kx converges to ∞x , ∞x  is a solution to the 
interpretable linear system in Eq.(6). The iteration of the 
algorithm in Figure 3 is similar. 

 
Input:  generalized interval matrix nn KRKR ×∈A , 
 generalized interval vector nKR∈b  

Output: generalized interval vector nKR∈x  

1. Initial estimation of )0(y  as the point (real) solution 
of )mid()mid( bA =x  such that byA proimp )( ⊆⋅ 0 ;

2.  )( )()( 00 yx ℑ=  associated with bxA proimp =⋅ , 
which is also the initial solution to bxA ⊇⋅  as 

0=k ; 
3. Iterate the following steps associated with bxA =⋅  

until x  converges:  
1+= kk ; 

If k  is odd, )( )()( 1−ℑ= kprok xx ;  

otherwise, )( )()( 1−ℑ= kk xx .  
Figure 2. Proper transform Jacobi algorithm for the 

linear system in Eq.(4) 

 

Input:  generalized interval matrix nn KRKR ×∈A ,  
 generalized interval vector nKR∈b  

Output: generalized interval vector nKR∈x  

1. Initial estimation of )(0y  as the point (real) solution of 
)mid()mid( bA =x  such that byA imppro )( ⊇⋅ 0 ; 

2.  )( )()( 00 yx ℑ=  associated with bxA imppro =⋅ , which 
is also the initial solution to bxA ⊆⋅  as 0=k ; 

3. Iterate the following steps associated with bxA =⋅  
until x  converges:  

1+= kk ; 
If k  is odd, )( )()( 1−ℑ= kimpk xx ;  

otherwise, )( )()( 1−ℑ= kk xx .  
Figure 3. Improper transform Jacobi algorithm for the 

linear system in Eq.(5) 

 
The interpretable linear system solving algorithms in Figure 

2 and Figure 3 ensure the interpretability of numerical results. 
This is regarded as an important step towards interpretable 
tolerance analysis. Its advantage of completeness and soundness 
assessment is illustrated in the example in Section 3.2. 

3.2 Example A: stacked block assembly - linear 
Figure 4 shows an example of a stacked block assembly 

including a base, a rectangular plate and a cylindrical rod. With 
the known size tolerances of manufactured components, the 
kinematic variations of the assembly can be calculated with three 
interval vector loops. Each of the closed loops defines the 
algebraic relations between the size and kinematic variations. The 
vector components in each 2D translational or rotational direction 
sum up to zero, as listed in Table 2. 

u5 
b 

f 

φ4
φ2 

u3 
c

e 

u4
b

d
f

φ3

φ2

u3

u2 

a a 

u3 

u1 

φ1 

φ2 

d
c

b 
a

ef
Base

Rod 
Plate 

(b) vector loop 1 

(c) vector loop 2 (d) vector loop 3 

(a) known parameters  

 

Figure 4. Stacked block assembly with closed loops of 
variations 

 
Suppose that the limits of angle variations in the assembly 

are known, the tolerance analysis problem is reduced to solving a 
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linear system. It can be solved using the improper transform 
Jacobi algorithm in Figure 3. As listed in Table 2, the size 
tolerances ( fedcba ,,,,, ) and angular variations (

4321
φφφφ ,,, ) are 

assigned to be improper while the estimated kinematic variations 
( 54321

uuuuu ,,,, ) are proper. Based on the interpretability rule in 
Eq.(9), the result is interpreted as: given the size tolerances 
( fedcba ,,,,, ) and the functionally critical kinematic variations 
(

4321
φφφφ ,,, ), the non-functional kinematic variations 

( 54321
uuuuu ,,,, ) can be estimated. The most important inference 

from the interpretation is that the numerical estimations 
( 54321 uuuuu ,,,, ) are complete. Producing verifiable results is the 
main advantage of solving interpretable systems compared to the 
traditional analysis methods, where results are not interpretable 
and completeness or soundness of the estimations is unknown. 

3.3 MIA direct linearization for nonlinear systems 
When constraints of variations are nonlinear, a linearization 

process may be used to reduce the complexity of the direct 
computation of nonlinear systems. The linear approximation 
usually changes the semantic relationships among variables. 
Therefore, the numerical result is only interpretable with respect 
to the linearized system instead of the original nonlinear one.  

To solve a nonlinear system  
0=),( ksF    (12) 

where mR∈s  is a size variation vector, nR∈k  is a kinematic 
variation vector, and nnm RRR →×:F  is a nonlinear function, 
we can apply the Taylor’s expansion to the nonlinear system with 
respect to the nominal values of s  and k . Then we have a 
linearized interval relation 
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Because the nominal values are used, the elements in the 
sensitivity matrices have real values. mKR∈Δs  and nKR∈Δk  
are interval vectors corresponding to the size and kinematic 
variations respectively.  

With the real sensitivity matrices in Eq.(13), tolerance 
accumulations can be estimated directly. For example, if the 
kinematic variations are to be calculated, we solve 

sk Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−=Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

××

dual
mni

l

nnj

l

s

F

k

F
  (14) 

The kinematic variations can be simply derived from  
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Because of the linear approximation, the full semantics of the 
original nonlinear relations in Eq.(12) cannot be obtained directly 
from the numerical result. Instead, it is only interpretable with 

respect to Eq.(13). In parallel, the result is an algebraic solution of 
Eq.(13) instead of Eq.(12).  

3.4 Example B: stacked block assembly - nonlinear 
Suppose that the angle variations in the previous stacked 

block assembly example in Section 3.2 are unknown, the tolerance 
analysis problem is nonlinear. The variables are listed in Table 3. 
In this example, we assume the dimensional tolerances are a 
priori. That is, 6IR∈Δs   are proper as in Eq.(13). The numerical 

estimations of the kinematic variations 
9

IR∈Δk  are shown in 
Table 4. Compared to the results from the DLM methods [37], 
which are purely numerical estimations, the kinematic variation 
intervals from the MIA direct linearization method are improper, 
in contrast to the size variations as proper intervals. The modality 
difference indicates the semantic difference between dimensional 
tolerances and kinematic variations, which are regulating, 
buffering, and more flexible. Furthermore, both completeness and 
soundness of the estimation from the linearized system can be 
verified from the interpretations based on the interpretability 
principles [5]. Therefore, the MIA direct linearization method 
provides more information than the regular numerical methods. 

In general, different modality assignments of tolerance 
intervals lead to different numerical results and interpretations. 
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corresponding combinations of proper and improper intervals can 
be applied. For instance, if the dimensional tolerances a  and b  
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Table 2. Linear problem in stacked block assembly 
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Table 3. The variation formulation of loops 

Known size 
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Table 4. Comparison of MIA linearization and DLM 

MIA 
Linearization 
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4. Geometric Tolerances 
Size and geometric tolerances cannot always be stacked up 

independently in interval vector loops. Interdependency between 
size and geometric tolerances exists. For instance, the Envelope 
Rule does not allow elements of specified features to go beyond 
size limits. Size limits control the allowable magnitudes of 
geometric form variations. This implies that the variation of 
geometric form is decreased when the actual size approaches the 
Maximum Material Condition (MMC). Features would be 
required to have perfect form and the geometric variation is 
reduced to zero at the MMC. Therefore, the mating envelope or 
virtual condition of the feature is its size limit. However, if a 
geometric tolerance is applied to a feature of size, the Envelope 
Rule is overridden. Then the geometric tolerance can be stacked 
with the size tolerance independently to estimate the accumulative 
effect. 

Depending on the relationship between size and geometric 
tolerances, interval vector loops need to be constructed in different 
ways. For example, in Figure 5-(a), the straightness tolerance of 
the rod is applied to the feature. The Envelope Rule is applied. 
The form variation of the rod 

1
w  should not be included in the 

interval vector loop when estimating kinematic variations. The 
limit of the form variation 

1
w  has been incorporated in the size 

tolerance a . The size and geometric tolerances are not 
independent. In contrast, in Figure 5-(b), the straightness tolerance 

1
w  is applied to a feature of size. The size and geometric 

tolerances thus are stacked up independently and must be included 
in the vector loop. Similarly, the perpendicularity tolerance 

2
w  

applied to the base is stacked up independently in the same figure. 
In Figure 5-(c), the flatness tolerance 

3
w  is incorporated in the 

size tolerance b . In Figure 5-(d), the perpendicularity tolerance 

4
w  is incorporated in the size tolerance e . The new formulation 

of vector loops with the consideration of geometric tolerances is 
shown in Table 5. Notice that the respective nominal values of 
form tolerances ( 1w  and 3w ) and orientation tolerances ( 2w  

and 4w ) in the loops are different. Those of the orientation 
tolerances are zeros and the corresponding interval vectors are 
bidirectional. To estimate the variation accumulations in Table 5, 
the numerical methods developed in Section 3 can be applied. 
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(a) The straightness tolerance w1 is not included in the 
loop when the Envelope Rule is applied, while the 
perpendicularity tolerance w2 is included 

 
(b) The straightness tolerance w1 is included in the loop 
when the Envelope Rule is overridden 

 
(c) The flatness tolerance w3 is not included in the loop 
when the Envelope Rule is applied 

(d) The perpendicularity tolerance w4 is not included in 
the loop when the Envelope Rule is applied 
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Figure 5. Incorporating geometric tolerances in closed-
loop analysis 

5. Concluding Remarks 
The purpose of semantic tolerance model is to enrich 

tolerance modeling and analysis structures such that more process-
oriented tolerancing semantics and intents can be embedded in 

mathematical representations. The ultimate goal is to support 
better design and manufacturing specifications. In this paper, we 
presented a tolerance analysis approach based on interval vector 
loops. To ensure the interpretability of numerical results, 
interpretable Jacobi algorithms are developed to solve linear 
systems. Thus interpretable relations among variables can be 
maintained during computation. Nonlinear systems can be 
linearlized and variations can be estimated. With the interpretable 
relations, completeness and soundness of numerical results from 
linear systems can be verified. Producing verifiable results is the 
main advantage of solving interpretable systems compared to the 
traditional analysis methods, where results are not interpretable 
and completeness or soundness of the estimations is unknown. 

Based on the algebraic closure property, we formulate form 
closure constraints of small displacement with closed loops of 
interval vectors. Geometric tolerances can also be included in the 
loops. Depending on the interdependency between size and 
geometric tolerances, form variations may be stacked up 
differently. The new approach enhances numerical analysis 
methods by ensuring algebraic closure and interpretability.  

Future work may include developing interpretable nonlinear 
system solving methods. Since linearization is necessary to solve 
nonlinear systems numerically, maintaining the original logic 
relationships among variables during the process is critical. These 
new interpretable methods are expected to provide more accurate 
tolerance analysis. Since the developed numerical methods are 
generic in nature, they could potentially be applied in other 
engineering domains such as robust control and prediction under 
uncertainties. 
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