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Sensitivity Analysis in
Quantified Interval Constraint
Satisfaction Problems
Interval is an alternative to probability distribution in quantifying uncertainty for sensi-
tivity analysis (SA) when there is a lack of data to fit a distribution with good confidence.
It only requires the information of lower and upper bounds. Analytical relations among
design parameters, design variables, and target performances under uncertainty can be
modeled as interval-valued constraints. By incorporating logic quantifiers, quantified
constraint satisfaction problems (QCSPs) can integrate semantics and engineering intent
in mathematical relations for engineering design. In this paper, a global sensitivity analy-
sis (GSA) method is developed for feasible design space searching problems that are for-
mulated as QCSPs, where the effects of value variations and quantifier changes for
design parameters on target performances are analyzed based on several proposed met-
rics, including the indeterminacy of target performances, information gain of parameter
variations, and infeasibility of constraints. Three examples are used to demonstrate the
proposed approach. [DOI: 10.1115/1.4029513]

1 Introduction

In engineering design, SA methods can be applied in various
problems to study the effects of input uncertainty, such as design
optimization where searching directions may have different sensi-
tivities, reliability analysis where the most sensitive variables
need to be recognized, robust design where robustness is associ-
ated with variations of design parameters, and design space
searching where influential design parameters with respect to tar-
get performances need to be identified. This paper focuses on the
feasible design space searching problems, where SA is based on
mathematical relations among design parameters, design varia-
bles, and target performances. Feasible design space is formed by
all acceptable values of design variables that can meet the target
performances based on their mathematical relations. Searching
feasible design is different from searching optimum design. Feasi-
ble design space consists of all design solutions that satisfy design
requirements, whereas searching optimum design is to choose the
best among the feasible solutions. Searching feasible design is
important in real-world engineering practice, because searching a
solution that can satisfy all of the complex and multidisciplinary
requirements itself is already a daunting task. The main purpose
of SA for design optimization is to check the robustness of opti-
mality, whereas SA for feasible design space searching is to iden-
tify sensitive parameters or variables that have the most influence
on the variations of performances and the size of feasibility space.
Engineers can make informed decisions of which parameters or
variables to modify in order to find feasible solutions if current
requirements are not satisfied, or to improve the existing design.

The uncertainty associated with design parameters or variables
is typically quantified by probability distributions. Sampling-
based approaches for statistical SA, such as one-factor-at-a-time,
scattering, regression analysis, and variance-based methods, have
been developed. Based on different variation ranges of design
parameters, SA methods can be classified as either local or global.
Local SA methods, such as the derivative based approach [1–4],

response surface modeling [5], design of experiments [6], frac-
tional factorial design [7], and elementary effect method [8],
examine the impacts on target performances from small variations
of design parameters. Local SA is general and easy to implement.
Yet some issues associated with the derivative based approach
include how to differentiate small variations from large ones, and
the cost of computing derivatives. Constructing response surfaces
by design of experiments also becomes expensive for high-
dimensional problems. GSA [9,10] considers the entire possible
ranges of parameter variations and can be conducted in several
ways, such as scatter plots [11,12], screening [13], regression
analysis [14], variance-based methods [15–18], probabilistic SA
[4,19], and local variation approximation [4,20]. Most of them are
statistical methods, which use probabilistic information of design
variables and design parameters. Statistical GSA methods provide
a comprehensive view of sensitivity. The main shortcoming is that
the essential information of probabilistic distributions may not be
easily obtainable in practice. When there is a lack of data and data
fitting is not reliable, assumptions of distributions are needed,
including the types of distributions as well as the lower and upper
bounds of distributions. In addition, Monte Carlo sampling
involved in some of the statistical methods implies high computa-
tional costs associated with functional or model evaluations
(�1000) for an exhaustive search, especially for nonlinear
systems.

The alternative approach of quantifying uncertainty is using
intervals, in which no assumption of distributions is made. Only
the lower and upper bounds of variation ranges are needed, and no
sampling is required. In contrast to statistical SA, few research
efforts have been taken for the sensitivity of interval-valued mod-
els. Early research focused on applying interval analysis to rigor-
ously bound the sensitivity estimate of real-valued models, where
the worst-case and best-case estimations of Jacobians for nonlin-
ear equations are computed [21–24]. More recently, a local SA
method was proposed to study the impacts of the width and mid-
point value changes for interval variables [25]. The maximum
impact is searched by varying the design parameter values with
small steps. This method however did not address the interaction
between design parameters, and only the main effect was ana-
lyzed. A hybrid approach [26,27] was developed to analyze the
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sensitivity of parameterized interval variables via multi-objective
optimization problems, where the variation of an output with a
given interval input was estimated by optimization. The searching
procedure for optimization can be computationally expensive for
highly nonlinear and coupled systems.

In this paper, a different approach for SA is taken for feasible
design space searching problems. In engineering design, numer-
ous actions are performed and decisions are made to ensure that
the final design meets various requirements and specifications,
such as functionalities, physical properties of materials, correlated
behaviors of subsystems, manufacturing capabilities, financial
budgets, and many others. The mathematical relations among
design variables, design parameters, and target performances can
be generally regarded as constraints. Design parameters are
known but varying within some ranges because of noises or other
sources of uncertainty. Design variables are unknown, but their
values are typically between some lower and upper bounds. Tar-
get performances are expected performances the design can
achieve. An important task of design process is searching the fea-
sible design alternatives or solutions in the allowable design space
that satisfy the constraints. SA in design space searching problems
is to check how the variations of design parameters and variables
within the permissible ranges, characterized as intervals in our
approach, affect target performances. Design parameters are not
precisely known, and their variations are bounded by intervals. As
a result of the mathematical relations, target performances are
also uncertain. The goal of SA is to estimate the expected varia-
tion ranges of target performances.

Searching in the feasible design space for all possible values of
design variables that satisfy the design constraints can be gener-
ally formulated as solving constraint satisfaction problems
(CSPs). A CSP can also be extended to a QCSP which allows for
universal (8) and existential (9) quantifiers associated with varia-
bles [28,29]. The variables with their quantifiers generate the first-
order logic interpretation [28] of the mathematical relations.
QCSP is a generalization of CSP, and CSP is a special case of
QCSP where all variables are associated with 9. In the QCSP for-
mulation of feasible design problems, design intent of controll-
ability, materials properties, process sequences, and others can be
captured by assigning appropriate quantifiers to variables so that
logic interpretations of quantified constraints become available
[30]. The interval-based SA approach can also be applied to the
compromise programming (CP) formulation [31] in set-based
design [32,33], as well as its extensions (e.g., Refs. [34] and [35]).
The set-based design method searches and constructs the feasible
design space defined by constraints, which is equivalent to solving
CSPs. The interval-based SA method can be used in solving CP
problems, such as studying the importance of imprecise parame-
ters with respect to the final solution, and fine-tuning the subjec-
tive weights associated with criteria based on their significance
toward the objective function.

Here, we propose a global SA method for quantified constraints
in feasible design space searching problems. Note that solving
CSPs or QCSPs is to find feasible values of design variables that
can achieve the specified target performances, whereas conducting
SA is to tell which parameters are more influential to target per-
formances than the other. In this paper, a GSA approach is pro-
posed to analyze the sensitivity of design parameters with respect
to target performances in the feasible design space searching prob-
lems that are formulated as QCSPs. Again, the QCSP formulation
is general enough for feasible design space searching problems,
because QCSP is a generalization of CSP and CSP is a generic
formulation for feasible design space searching. In the proposed
GSA approach, interval ranges of target performances are effi-
ciently estimated by applying Kaucher interval arithmetic. The
sensitivity is measured by two metrics. The first metric, indetermi-
nacy, is a generalization of Hartley like measure [36] and is
defined to measure the change of information about a target per-
formance as a design parameter varies. The second metric, infea-
sibility, qualitatively measures whether a quantified interval

constraint is satisfiable or not. Instead of the costly statistical sam-
pling, three representative values for each design parameter with
interval uncertainty are used to calculate the metrics to generate
sensitivity zones, which are used to provide the ranking of sensi-
tivity among design parameters.

Different from other interval based SA approaches [25–27], our
approach considers both the main and interaction effects for feasi-
ble design problems with continuous design parameters. Our SA
approach for interval-valued variables is global. No assumption of
probability distributions is needed, and no time-consuming sam-
pling is required. Interval-valued constraints are considered
directly in contrast to Refs. [21–24]. In this paper, the proposed
approach is illustrated by the examples with systems of equations.
But it is general enough to be extended to inequality. The novelty
of the proposed GSA approach is our unique way to assess the
individual and joint effects of interval uncertainty in CSPs. Addi-
tionally, the sensitivities of logic quantifiers associated with
design parameters are also evaluated in QCSPs. The sensitivities
of both quantitative values and qualitative semantics of design pa-
rameters are analyzed with the representation of generalized inter-
val. With this information, the design parameters can be adjusted
for feasible solutions by considering design intent in applications
and practice.

In the remainder of the paper, the background of CSP and
QCSP is introduced in Sec. 2. The proposed GSA approach and
sensitivity metrics are described in Sec. 3. Three examples are
presented to demonstrate the proposed method in Sec. 4.

2 CSP and QCSP

A CSP is a system of constraints where the variables are within
certain domains. Formally, a CSP is constructed by a set of con-
straints C(x)¼ {C1(x), …, Cm(x)}, which denotes mathematical
relations among a set of variables V¼ {x1, …, xn}. Each variable
xi has an associated domain Di. The complete searching space for
the CSP is a Cartesian product D¼D1�D2 �� � �� Dn. CSP is
related to but different from optimization. The standard form of
an optimization problem is typically defined as the minimization
of an objective function f(x) subject to inequality constraints gi(x)
� 0 (i¼ 1,…,m) and equality constraints hj(x)¼ 0 (j¼ 1,…,p).
The feasible domain of x in optimization is defined by constraints
gi’s and hj’s. Solving the optimization problem is to find the best
solution among the feasible ones within the feasible domain
defined by the constraints. In contrast, solving a CSP is to find all
of the feasible solutions that satisfy the constraints. A constraint
Ci(x) in a CSP can be either gi(x) � 0 or hj(x)¼ 0. In this paper,
we only consider equality constraints. An inequality constraint
can be easily converted to an equality one by introducing slack
interval variables. In the context of design, the equality constraint
h(x)¼ 0 is transformed to an equivalent form F(a, x)¼ b, where a
is the design parameter, b is the target performance, and x is the
design variable. Given some known values of a and b, solving the
CSP is to find the possible values of x such that F(a, x)¼ b. The
solution of a CSP in design thus is the feasible design space in
which the values of design variables satisfy all design constraints.

The CSP formulation has been applied in floor plan design
[37,38], geometric modeling [39], conceptual design [42,43], em-
bodiment design [42], collaborative design [43–45], design space
searching, and others.

The CSP formulation can only express limited semantics. All of
the variables in CSPs are existentially quantified (9) in determin-
ing whether the statement is true in the sense of first-order logic.
In contrast, a QCSP allows universal and existential quantifiers to
be associated with variables [28,29]. A QCSP is a general problem
with its solution satisfying all constraints in the form of both
mathematical and logic expressions. In engineering design, QCSP
can be used to integrate design intent of engineers into calcula-
tions by associating quantifiers with variables. Those variables
that are not controllable by the designer can be associated with
universal quantifier 8. They usually correspond to the external
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disturbance or bias of a system. The variables that can be con-
trolled and modified within some prescribed ranges by the de-
signer are associated with existential quantifier 9. They are
controllable and adjustable internally. For a universally quantified
variable, all values in its domain must satisfy the constraints. For
an existentially quantified variable, at least one value in its do-
main satisfies the constraints. By incorporating quantifiers, the
QCSP formulation can capture design intent as well as material
properties, process sequences, and other semantics. With the
advantage of quantified variables, QCSPs have recently been
applied in mechanical design [46–50], control [51–55], scheduling
[56,57], and planning [58,59]. Notice that CSP can be regarded a
special case of QCSP, in which all variables are existentially
quantified. Here, we use generalized interval [60–62], an algebraic
and semantic extension of the classical interval [63], to incorpo-
rate quantifiers in QCSP formulation. More information of how to
formulate QCSPs from a given design problem and how to solving
QCSPs can be found in Ref. [30].

Instead of solving QCSPs to find feasible values of design vari-
able x, in this paper, we use the QCSP formulation to study the
sensitivity of design parameters. The variational ranges of design
parameter a and design variable x are represented as intervals a

and x, respectively. The impact on the target performance b thus
is estimated as an interval b, which is a straightforward evaluation
of constraint F(a,x)¼b based on interval arithmetic.

The SA with the QCSP formulation can provide the information
of which design parameter is the most influential one that affects
the target performance and which parameters are more robust than
the other. For over-constrained problems in searching feasible
design, SA also provides the information of how to modify design
requirements to find feasible solutions. For instance, when con-
straints are overly restrictive on interval value ranges, or when all
variables in a constraint are universally quantified and interpreta-
tion is not possible (i.e., over-constrained in logic), we need to
know which design parameter to adjust in order to receive feasible
solutions. SA is necessary and useful to gain such information.

3 The Proposed GSA Approach

The main idea of the proposed GSA approach is summarized as
follows. The sensitivity of a design parameter with respect to each
constraint is estimated both quantitatively and qualitatively. The
new metric, indeterminacy, is a generalization of Hartley like

measure [36] that considers both proper and improper intervals.
Three representative values, lower bound, midpoint, and upper
bound, of an interval-valued design parameter are chosen as the
references. In engineering applications, these three values are typ-
ically the most important ones for analysis. When the value of a
design parameter changes, it is called a variation. The difference
between the original indeterminacy of a target performance and
the new one after a variation quantifies information gain. In order
to differentiate the impact of each design parameter on a target
performance, the GSA is implemented in a framework of making
the variations of design parameters one at a time. The interaction
of two design parameters is estimated by varying the two design
parameters simultaneously. The sensitivities of the design parame-
ters are ranked based on some sensitivity zones, which are gener-
ated by computing the total information gains for the three
different representative values of a design parameter. When two
design parameters have the same total information gain which
include information gains of individual parameters and their inter-
actions, qualitative metrics of infeasibility are compared.

Figure 1 provides an overview of the proposed concepts in our
GSA method, in which the relationships among the concepts and
the calculation sequences are indicated as arrows with solid lines.
When total information gain is not computable, the additional
relationship between total information gain and quantifier muta-
tion gain is used and indicated by the arrow with a dashed line.
The directions of the arrows show the sequence of calculation.
For each of design parameter, the quantities enclosed in the box
with the dotted line in Fig. 1 are calculated three times for the
three representative values to construct sensitivity zones. The final
output, sensitivity ranking, is generated based on the total infeasi-
bility and sensitivity zones. As an extension of our previous work
[64,65], here high-order interaction is introduced in calculating
the total information gain. In addition, rules of suggested ranking
are provided when sensitivity zones overlap and there is a lack of
further information to fully decide the ranking. The details of the
proposed GSA method are described in Subsections 3.1–3.3.

3.1 Basic Definitions. The proposed SA of constraints is
based on the variation of interval ranges. A generalized interval
x ¼ ½x; �x� 2 KR is called proper when x � �x and denoted as

x 2 IR. x is called improper when x � �x and denoted as x 2 IR.
Proper or improper is called the modality of an interval. The width

Fig. 1 The relations among the concepts developed in the proposed method
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of x is defined by widðxÞ :¼ �x� xj j. The center is found by
midðxÞ :¼ ð�xþ xÞ=2. The radius is defined by radðxÞ
:¼ ð�x� xÞ=2, which is positive when x is proper and negative
when it is improper. Functions infð½x; �x�Þ ¼ x and supð½x; �x�Þ ¼ �x
return the lower and upper bounds of x, respectively. The relation-
ship between proper and improper intervals is established by an op-
erator dual, defined as dualð½x; �x�Þ :¼ ½�x; x�. Furthermore, proð½x; �x�Þ
:¼ ½minðx; �xÞ;maxðx; �xÞ� and impð½x; �x�Þ :¼ ½maxðx; �xÞ;minðx; �xÞ�.
Intersection is defined as ½x; �x� \ ½y; �y� ¼ ½maxðx; yÞ;minð�x; �yÞ�.

The variation of x, denoted by vx, is defined as a value change
from x ¼ ½x; �x� to x0 ¼ ½x0; �x0� with x0 ¼ xþ d1 and �x0 ¼ �x� d2

where 0< d1< 2rad(x) and 0< d2< 2rad(x) if x 2 IR, and

2rad(x)< d1< 0 and 2rad(x)< d2< 0 if x 2 IR. When x0 has the
same modality as x, the variation is called local. When the modal-
ity is changed, the variation is called global. For instance, if inter-
val [1,2] is changed to [1.1,1.9], the variation is local. If it is
changed to [1.5,1.5] or [2,1], the variation is global.

Note that the term, global, used in traditional SA means
target performance variance is evaluated within the entire
value ranges of all design parameters. Here, global indicates
that the variation causes not only the value change within the
entire design parameter range but also the interval modality
change, which has an even more significant effect than the
value change only.

Consider a constraint system with m constraints and l variables.
The first GSA metric is the indeterminacy measure, denoted as
M(•). It quantifies the uncertainty associated with a generalized
interval. The indeterminacy measure for a generalized interval
x 2 KR is defined as

MðxÞ ¼
log2ð1þ widðxÞÞ; if x 2 IR

� log2ð1þ widðxÞÞ; if x 2 IR

(
(3.1)

A negative M(•) is associated with an improper interval. There-
fore, the indeterminacies for two intervals that have equal widths
but different quantifiers can be differentiated.

The indeterminacy of a generalized interval vector x 2 KRl is
defined as a vector M(x)¼ [M(x1),…,M(xl)], which measures the
indeterminacy of each element in x separately.

The second metric is infeasibility, defined as

ujða; xÞ ¼
1; if cj is unsatisfiable

0; otherwise

�

which indicates whether the jth constraint cj can be satisfied or not
with the values of variables a and x. The total infeasibility of the
constraint system with m constraints is defined as

Uða; xÞ ¼
Xm

j¼1

ujða; xÞ

3.2 Sensitivity Quantified by Indeterminacy of Target
Performance. Given a constraint system Fða; xÞ ¼ b, with
F : KRn �KRl ! KRm in which x 2 KRl is the design vari-
able, a 2 KRn is the design parameter, and b 2 KRm is the target
performance, the indeterminacy M(b) of b is called initial
indeterminacy when design parameter a takes its initially given
interval range. The indeterminacy M(bjai) of b is called remain-
ing indeterminacy, where b¼F(a	i,ai,x) is estimated by choosing
ai as a representative value, i.e., lower bound inf(ai), midpoint
mid(ai), or upper bound sup(ai), while other design parameters
remain as the original interval values. Here, 	i denotes the rest of
elements in a vector except the ith one.

Similarly, M(bjai,ak) is called joint remaining indeterminacy,
where b¼F(a	i	k,ai,ak,x) is estimated by choosing ai and ak as
the representative values of ai and ak, respectively, with the same
correspondence of lower bound, midpoint, or upper bound.

The main information gain by knowing ai with certainty with
respect to the jth constraint is quantified as

Im
j ðaiÞ ¼

MðbjÞ �MðbjjaiÞ
MðbjÞ

(3.2)

For example, in constraint b¼ a1xþ a2x
2, a1¼ [1,2], a2¼ [6,4],

x¼ [-1,3], and target performance b¼ [-2,42] are all generalized
intervals. When a1¼mid(a1), the target performance is updated to
b¼ [-1.5,40.5]. The main information gain by knowing a1 is
Im(a1)¼ (M(b) - M(bja1))/M(b)¼ (5.49 - 5.42)/5.49¼ 0.01. It
means that the indeterminacy of target performance b in the con-
straint is reduced by 0.01 when a1 becomes certain as a1.

We say Ij
m(•) is computable if

MðbjÞ �MðbjjaiÞ � 0 (3.3)

and

MðbjÞ 6¼ 0 (3.4)

The two computable conditions in Eqs. (3.3) and (3.4) ensure
that the definition of Ij

m(ai) in Eq. (3.2) holds. The computable
condition in Eq. (3.3) requires that M(bj) and M(bjjai) have the
same sign, which indicates that only the numerical value of inde-
terminacy is changed by knowing ai. Ij

m(ai) reveals the numerical
change of indeterminacy of the jth target performance when ai is
changed to ai.

When M(bj)�M(bjjai)< 0, the quantifier of the jth target per-
formance is also changed besides its value change for the varia-
tion from ai to ai. In this scenario, the quantifier change is
measured by quantifier mutation gain, defined as

QjðaiÞ ¼MðbjjaiÞ=MðaiÞ (3.5)

where bj¼Fj(a~i,ai,x), i¼ 1,…,n, and j¼ 1,…,m.
The computable condition in Eq. (3.4) requires that the de-

nominator M(bj) should be nonzero. When M(bj)¼ 0, the tar-
get performance bj is a real number with zero interval width.
It implies that the interval uncertainties associated with the
strongly correlated design parameters are canceled by each
other and the target performance becomes a precisely known
value. Any change of the design parameters may introduce
uncertainty back into the target performance. Since the point-
wise interval can be treated as either proper or improper, the
quantifier can be seen as either changed or not when an inter-
val width is zero. In this paper, we treat it as a change so
that the indeterminacy of target performance in this scenario
can also be quantified by Eq. (3.5).

The indeterminacy of a target performance has two levels. One
is a numerical value change with the same quantifier, and the
other is a quantifier change. With the same amount of variation
for design parameters, a target performance with a quantifier
change is seen as more sensitive than the one with only numerical
value changes.

The joint information gain Ij
jt(ai,ak) quantifies the uncertainty

reduction with respect to the jth constraint by simultaneously
knowing two design parameters ai and ak with certainty. It is cal-
culated by

Ijt
j ðai; akÞ ¼

MðbjÞ �Mðbjjai; akÞ
MðbjÞ

(3.6)

under the computable conditions M(bj)�M(bjjai,ak) P 0 and
M(bj) 6¼ 0, where i¼ 1,…,n and j¼ 1,…,m. In the previous exam-
ple, b¼ [�1.5,49.5] when a1¼mid(a1) and a2¼mid(a2). Then
Ijt(a1,a2)¼ (M(b) - M(bja1,a2))/M(b)¼ (5.49 - 5.7)/5.49¼�0.03.
The negative value means that the indeterminacy of target perform-
ance b in the constraint is increased by 0.03 when a1 and a2 become
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a1 and a2 simultaneously. Because a2 is an improper interval in the
constraint, the reduction of uncertainty for design parameter a2

actually increases the level of uncertainty for target performance b.
Improper intervals play the role of controllable parameters and can
reduce the variations of target performances. When controllable pa-
rameters are fixed, uncontrollable parameters become more influen-
tial on the target performance.

When Ij
jt(ai,ak), Ij

m(ai), and Ij
m(ak) are all computable, the dif-

ference between Ij
jt(ai,ak) and the sum of Ij

m(ai) and Ij
m(ak) is the

extra information gained by the interaction between ai and ak

when they become certain simultaneously. Assuming that ai and
ak are independent to each other, the interaction between ai and
ak, as an indicator of the strength of correlation between the two,
is quantified by

Iin
j ðai; akÞ ¼ Ijt

j ðai; akÞ � Im
j ðaiÞ � Im

j ðakÞ � ae ði 6¼ kÞ (3.7)

where ae is a compensation term. The compensation term is intro-
duced because there could be a numerical difference in calculating
the linear relationship used in Eq. (3.7), whereas indeterminacy is
defined with the logarithm function. In other words, ae is intro-
duced such that Ij

in(ai,ak) becomes zero when the linear combina-
tion of the effects of individual design parameters Ij

m(ai) and
Ij

m(ak) is comparable to Ij
jt(ai,ak) if there is no interaction between

the two design parameters. Indicator a is defined as 1 if
2MðbjÞ þ 2Mðbj ai;akj Þ ¼ 2Mðbj aij Þ þ 2Mðbj akj Þ. Otherwise, a¼ 0. e is
defined as e ¼ (M(bj|ai)þM(bj|ak) – M(bj) – M(bj|ai,ak))/M(bj).

Higher-order interaction among multiple design parameters can
be evaluated in a similar way as in Eq. (3.7), Ij

in(ai,ak,al,…)
¼ Ij

jt(ai,ak,al,…) - Ij
m(ai) - Ij

m(ak) - Ij
m(al) - � � � -a0e0, in which e0 is

defined as (M(bj|ai)þM(bj|ak)þM(bj|al) þ � � � - M(bj) –

M(bj|ai,ak, al,…))/M(bj). Similarly, a0 ¼ 1 if 2MðbjÞ þ 2Mðbj ai;ak ;j al;���Þ

¼ 2Mðbj aij Þ þ 2Mðbj akj Þ þ 2Mðbj alj Þ þ � � � . Otherwise, a0 ¼ 0.
The total information gain Ij(ai) with respect to the jth target

performance by knowing ai with certainty is defined as

IjðaiÞ ¼ Im
j ðaiÞ þ

X
k 6¼i

Iin
j ðai; akÞ þ

X
k;l6¼i

Iin
j ðai; ak; alÞ

þ
X

k;l;���6¼i

Iin
j ðai; ak; al;…Þ þ � � � (3.8)

in which high order interaction terms are applied if the fine granu-
larity is desirable.

Note that the total information gain in Eq. (3.8), the main infor-
mation gain in Eq. (3.2), and the extra information gain by inter-
action in Eq. (3.7) correspond to the total, main, and interaction
effects respectively in the statistical SA.

With the above definitions of information gains and quanti-
fier change, we can now perform the SA. A higher total in-
formation gain indicates a higher sensitivity. We make the
variation of design parameters one at a time by fixing its
value and leaving the other as intervals. The lowest or high-
est values of the target performance typically occur when a
design parameter has the largest variation if the design pa-
rameter and target performance are either positively or nega-
tively correlated. Therefore, the lower and upper bounds are
chosen as the representative values. The midpoint is chosen
to exam the case when the design parameter and target per-
formance are not linearly correlated. Thus, we use a sensitiv-
ity zone of Ij(ai) constructed from the three representative
values to estimate the possible sensitivities of ai with respect
to the jth target performance. The lower and upper bounds of
the sensitivity zone are computed from the minimum and
maximum among the three values in Ij(ai)¼ {Ij(ai¼ inf(ai)),
Ij(ai¼mid(ai)), Ij(ai¼ sup(ai))}. When Ij(ai) is not computable,
the sensitivity zone is computed from the minimum and max-
imum values in Qj(ai)¼ {Qj(inf(ai)), Qj(mid(ai)), Qj(sup(ai))}.

Here, the concept of sensitivity zone is developed to rank the
sensitivities of design parameters. The sensitivity zone is defined
to include the possible impact on the target performance as much
as possible. The ranking based on the best-case and worst-case
scenarios will be inherently robust. The introduction of sensitivity
zone is intended to provide such scenarios. The rankings with sen-
sitivity zones provide engineers more information to make deci-
sions of how to adjust design parameters. In addition, when a
design parameter is shared by several constraints, it may have
opposite effects on those constraints. With the interaction effect
included in the proposed approach, engineers can find tradeoffs
among different target performances when adjusting design
parameters.

Table 1 lists the sensitivity comparison rules for ranking, where
Sj(ai) denotes the sensitivity of the ith design parameter with
respect to the jth target performance. The lower and upper bounds
of the sensitivity zone are defined as

migðI jðaiÞÞ ¼ minfjIjðinfðaiÞÞj; jIjðmidðaiÞÞj; jIjðsupðaiÞÞjg
(3.9)

and

magðI jðaiÞÞ ¼ maxfjIjðinfðaiÞÞj; jIjðmidðaiÞÞj; jIjðsupðaiÞÞjg
(3.10)

respectively.
Quantified interval constraints have logic interpretations

embedded in the mathematical expression. Therefore, the impact
of design parameter variation includes not only the change of
indeterminacy for the target performance but also the feasibility
of the constraint. The feasibility of a quantified constraint can be
verified by checking if the interval intersection between an ini-
tially given target performance b0

j and the one after the variation
bj¼Fj(a	i,ai,x), calculated as b\j ¼ pro(Fj(a~i,ai,x)) \ pro(b0

j ), is
empty. If the intersection is not empty, then the interpretation
exists and constraint is satisfiable or feasible. Otherwise, the con-
straint is infeasible.

The indeterminacy of intersection M(b\j jai) can be calculated,
where b\j ¼ pro(Fj(a,x)) \ pro(b0

j ) is estimated. If M(b\j jai)< 0,
the jth quantified interval constraint is infeasible. That is, the
infeasibility of jth constraint after variation is

ujða	i; ai; xÞ ¼
1 if Mðb\j jaiÞ < 0

0 otherwise

�
(3.11)

Similarly, the infeasibility uj(a, x) with the original values of vari-
ables a and x can be estimated by Eq. (3.11).

The infeasibility change of the jth constraint with the variation
ai 7! ai is defined as

Dujðai 7! aiÞ ¼ ujða	i; ai; xÞ � ujða; xÞ (3.12)

Table 1 Sensitivity comparison rules

Ij(ai) Ij(ak) Rules

Comp Comp Sj(ai) P Sj(ak), if mig(I j(ai)) P mag(I j(ak));
Sj(ai)< Sj(ak), if mag(I j(ai))<mig(I j(ak));
cannot be decided, otherwise

Comp Incomp Sj(ai)< Sj(ak)
Incomp Comp Sj(ai)> Sj(ak)
Incomp Incomp Sj(ai) P Sj(ak), if mig(Qj(ai)) P mag(Qj(ak));

Sj(ai)< Sj(ak), if mag(Qj(ai))<mig(Qj(ak));
cannot be decided, otherwise

Note: Comp, computable and Incomp, not computable.
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For example, if we have three constraints and u(a, x)¼ (1, 0, 1),
the first and third constraints are infeasible. With a variation of
design parameter ai, u(a~i, ai, x)¼ (1,1,1). We will know that the
second constraint becomes infeasible too.

The total infeasibility change with the variation ai 7! ai,
denoted by DU(ai 7! ai), is computed as

DUðai 7! aiÞ ¼
Xm

j¼1

Dujðai 7! aiÞ (3.13)

When DU(ai 7! ai)> 0, the variation ai 7! ai introduces infeasibil-
ity to the problem. A design parameter with DU(•)> 0 has more
impact than the one with DU(•)¼ 0. For example, if
u(a, x)¼ (1, 0, 1), u(a~i,ai,x)¼ (1,1,1) and u(a~k,ak,x)¼ (1,0,1), we
have DU(ai 7! ai)> 0 and DU(ak 7! ak)¼ 0. Then ai has more
impact than ak. Because ai can be either one of the three represen-
tative values, three values of DU(•) need to be obtained in the
comparison, similar to I j(•i) and Qj(•). The lower and upper
bounds of the total feasibility change are obtained as

migðDUðai 7!aiÞÞ
¼minfDUðai 7! infðaiÞÞ; DUðai 7!midðaiÞÞ; DUðai 7! supðaiÞÞg

(3.14)
and

magðDUðai 7!aiÞÞ
¼maxfDUðai 7! infðaiÞÞ; DUðai 7!midðaiÞÞ; DUðai 7! supðaiÞÞg

(3.15)
respectively.

SA includes two metrics. One is based on I(•) that specifies the
total information gain of design parameters quantitatively. The
other is based on DU(•) that provides the infeasibility change for
the problem qualitatively. The values in DU(•) will be used if the
sensitivity levels cannot be decided based on the rules in Table 1.
In this case, if mig(DU(ai 7! ai)) P mag(DU(aj 7! aj)), then
S(ai) P S(aj). If mag(DU(ai 7! ai))�mig(DU(aj 7! aj)), then S(ai)
� S(aj). Otherwise, the sensitivity is not comparable.

3.3 Procedure of Interval Based GSA With the QCSP
Formulation. Suppose that functional relationships f(a, x)¼ b
exist in a design problem, with design parameters a 2 Rn, design
variables x 2 Rl, and target performances b 2 Rm. The nominal or
ideal value of the target performances are denoted as b0. The
ranges of possible values for design parameters and variables are
given as intervals in the QCSP formulation. The procedure of the

proposed GSA approach starts with the QCSPSP formulation and
produces a ranked list of design parameters based their sensitivity
zones with each target performance. The SA procedure is
described as follows:

Step 1. Formulate the given problem as a QCSP with con-
straints F(a,x)¼b, where interval-valued x2KRl, a 2 KRn, and
b 2 KRm are the variational value ranges. a and x are assigned to
be proper when they are not controllable by the designer, other-
wise improper when they can be controlled and modified. b is cal-
culated from a and x.

Step 2. Select a design parameter ai to be studied, and calculate
the main information gain Im(ai) with respect to each target perform-
ance for its variation from an interval to a representative value based
on Eq. (3.2). The corresponding initial indeterminacy M(b) and
remaining indeterminacy M(b|ai) are calculated based on Eq. (3.1).
If the computable conditions in Eqs. (3.3) and (3.4) are not satisfied,
compute quantifier mutation gain Q(ai) based on Eq. (3.5).

Step 3. Calculate the joint information gain Ijt(ai,ak) between
the selected design parameter ai and another one ak in the rest of
the parameters by Eq. (3.6). Then calculate the interaction
between the two parameters Iin(ai,ak) by Eq. (3.7) from Ij

m(ai),
Ij

m(ak), and Ijt(ai,ak). Repeat until the interactions between the
selected parameter ai and all other parameters are obtained. Here,
only the interactions between two parameters are demonstrated.

Step 4. Calculate total information gains from the selected
design parameter ai by Eq. (3.8) for all three representative values.
Generate the sensitivity zone based on the minimum and maxi-
mum of total information gains by Eqs. (3.9) and (3.10). If the
main information gain of a parameter is not available, steps 3 and
4 are omitted for this parameter.

Step 5. Repeat steps (2)–(4) for all design parameters and rank
the sensitivity of the parameters based on the rules in Table 1. If
the ranking cannot be decided, continue to step 6 and rank them
based on DU(•).

Step 6. Calculate the infeasibility for each constraint with a
given variation for the selected parameter by Eq. (3.11). It is a
variation when ai is chosen as one of the representative values of
ai. Obtain the infeasibility change by Eq. (3.12), the total infeasi-
bility change for the whole constraint system by Eq. (3.13).
Repeat step 5 for all three representative values of the selected
parameter ai and generate the lower bound mig(DU(ai 7! ai)) and
upper bound mag(DU(ai 7! ai)) by Eqs. (3.14) and (3.15). Rank
parameters based on mig(DU(ai 7! ai)) and mag(DU(ai 7! ai)). If
the ranking cannot be decided, continue to step 7.

Step 7. Provide a suggested ranking based on Table 2. A sug-
gested ranking is the one that is likely to occur given the overlaps
between sensitivity zones and the lack of further information.

Table 2 The rules for suggested ranking

Condition Rules

Both Ij(ai) and Ij(ak) are computable;
and steps 5 and 6 fail to decide the ranking

Sj(ai) � Sj(ak), if mig(I j(ai)) P mig(I j(ak)) and mag(I j(ai)) P mag(I j(ak)); or
if [mig(I j(ai))þmag(I j(ai))]/2 P [mig(I j(ak))þmag(I j(ak))]/2 and
mag(I j(ai)) P mag (I j(ak))

Sj(ai) � Sj(ak), if mag(I j(ai))<mag(I j(ak)) and mig(I j(ai))<mig(I j(ak)); or
if [mig(I j(ai))þmag(I j(ai))]/2< [mig(I j(ak))þmag(I j(ak))]/2 and
mag(I j(ai))<mag(I j(ak))

Cannot be decided, otherwise

Neither Ij(ai) nor Ij(ak) is computable;
and steps 5 and 6 fail to decide the ranking

Sj(ai) � Sj(ak), if mig(Qj(ai)) P mig(Qj(ak)) and mag(Qj(ai)) P mag(Qj(ak)); or
if [mig(Qj(ai))þmag(Qj(ai))]/2 P [mig(Qj(ak))þmag(Qj(ak))]/2
and mag(Qj(ai)) P mag(Q(ak))

Sj(ai) � Sj(ak), if mag(Q j(ai))<mag(Qj(ak)) and mig(Qj(ai))<mig(Qj(ak)); or
if [mig(Qj(ai))þmag(Qj(ai))]/2< [mig(Qj(ak))þmag(Qj(ak))]/2,
and mag(Qj(ai))<mag(Qj(ak))

Cannot be decided, otherwise

Note: �, suggested to rank higher and �, suggested to rank lower.
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Note that the cost of the above SA procedure depends on the
number of design parameters n. Because the variation is made one
variable at a time, and three representative values are needed for
each design parameter, the number of calculations is bounded by
O(3n).

The obtained result includes two outputs, a parameter ranking
and the respective sensitivity zones. The ranking gives the relative
importance of design parameters with respect to target performan-
ces. It provides an overview of which parameter is more sensitive
than the other in one problem. The sensitivity zones provide quan-
titative measures of sensitivity that can be compared in different
problems. When sensitivity zones do not overlap, the ranking can
be decided based on the rules in Table 1. When there are overlaps,
the suggested rankings are given based on Table 2.

In the current method, total information gain Ij(ai) computed as
in Eq. (3.8) is used to construct sensitivity zones. This can be eas-
ily modified based on specific needs from users. For example, if
we would like to rank based on the main information gain, the
rules in Table 1 can be applied similarly to Ij

m(ai). That is, if
Ij

m(ai) and Ij
m(ak) are both computable, mig(Ij(ai)) and mag(Ij(ak))

can be computed as the minimum among Ij
m(inf(ai)), Ij

m(mid(ai)),
and Ij

m(sup(ai)) and the maximum among Ij
m(inf(ak)), Ij

m

(mid(ak)), and Ij
m(sup(ak)), respectively. The ranking then is for

the main information gain.

4 Numerical Examples and Results

In this section, the proposed GSA method for interval-valued
quantified constraints is demonstrated with three examples. Ishi-
gami function [66] as an analytical example is used to compare
our method with the variance based GSA. The dynamic perform-
ance analysis of a battery-electric vehicle (BEV) [67] is used to
compare our method with the gradient based local SA. A third
example of pump family design [68] is used to illustrate the SA
with logic quantifier change that is unique in our method. Among
the three examples, the first one is a numerical example, whereas
the second and third ones are for specific design problems. The
second example has two constraints. The third example is the
most complex one with multilevel attributes. Our approach is
generic enough to solve problems with multiple constraints.

4.1 Example 1: Ishigami function. Ishigami function is an
analytical function, as

Y ¼ sin X1 þ a sin2 X2 þ bX4
3 sin X1 (4.1)

where X1, X2, and X3 are design parameters with values varying
within the range from –p to p. a¼ 7 and b¼ 0.1 are constants. In
our approach, no further assumptions of probability distributions
about design parameters are made as in Ref. [66]. Because any
numerical constraint can be treated as a quantified one, in which
all variables are proper intervals. Therefore, Eq. (4.1) is formu-
lated as quantified interval constraint Y¼ sinX1þ 7sin2

X2

þ 0.1X3
4sinX1, where X1¼X2¼X3¼ [–p,p] are proper intervals.

For the variance based GSA approach, the total and
partial variances can be obtained analytically from Eq. (4.1).
Hence, the global sensitivities of design parameters are in a
decreasing order when the values of a and b are plugged into the
analytical expressions of the variances, as shown in the first row
of Table 3.

In the proposed approach, the sensitivity zones of the three
design parameters are calculated and shown as vertical bars in
Fig. 2. The sensitivity zone consists of the minimum and maxi-
mum values of total information gain calculated based on Eqs.
(3.9) and (3.10). The dots in Fig. 2 denote the total information
gain calculated from the representative values. For this example,
the computed lower and upper bounds of total information gain
for X1 are equal to each other, so as for X3, i.e.,
I(inf(X1))¼ I(sup(X1)) and I(inf(X3))¼ I(sup(X3)). The values of
total information gain for X2 from the three representative values
are exactly the same, which is about 0.1.

The sensitivity ranking from the proposed approach is shown in
the second row of Table 3. The sensitivity of design parameters
are ranked based on the sensitivity zones and infeasibility as
stated in steps 5–7 in Sec. 3.3. From Fig. 2, it can be seen that Y is
more sensitive with respect to X1 than to X2 because mig(I (X1))
P mag(I (X2)) based on the first rule in Table 1. Again, a higher
total information gain indicates a higher sensitivity if sensitivity
zones do not overlap. However, the ranking between X1 and X3,
and the ranking between X2 and X3 cannot be decided based on
Table 1 because there are overlaps between their sensitivity zones.
Then, DU(•)’s are used to rank as described in step 6. However,
the ranking still cannot be decided, because the values of DU(•)’s
are equal. As a further step, a suggested ranking between X1 and
X3 is provided in Table 3, which is marked by stars (*). That is, Y
is likely to be more sensitive with respect to X1 than to X3,
because of the first rule in Table 2. For X2 and X3, mig(I (X2))
P mig(I (X3)), mag(I (X2))<mag(I (X3)), and the midpoint of
I (X3) is larger than the midpoint of I (X2). Then Y is likely to be
more sensitive with respect to X3 than to X2. The suggested rank-
ing between X2 and X3 is also marked by * in Table 3.

It is seen that our method is more conservative than the var-
iance based approach. Here, we only assert that X1 is more sensi-
tive than X2, and suggest that X1 is likely to be more sensitive than
X3 and X3 is likely to be more sensitive than X2, given that we use
less information in the analysis, without probability distributions.
Sensitivity zones intend to include all possible values of sensitiv-
ities for the parameters. Based on the information obtained from
the proposed method, designers may choose to adjust X3, between
X2 and X3, to change the target performance as an optimistic strat-
egy. Yet, as a conservative strategy, X2 may be chosen instead. In
other cases, designers may choose to adjust X1 among X1, X2, and
X3 to test the robustness of the system in the presence of uncer-
tainty. When a model simplification with dimensionality reduction
is needed, designers may choose to fix the value of X2 because it
potentially has the smallest effect on Y.

4.2 Example 2: Application in BEV Dynamic Perform-
ance. Maximum speed umax and acceleration time t are two pri-
mary indices of the dynamic performance for a vehicle, which are
mainly influenced by the mass of the vehicle m, the coefficient of

Table 3 Sensitivity ranking in example 1

Sensitivity ranking

Output Methods highest !lowest

Y Variance based approach [66] X1 X2 X3

The proposed approach X1
* X3

* X2
*

Fig. 2 Sensitivity zones of X1–X3 with respect to Y
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rolling resistance f, the mechanical efficiency of the transmission
system gt, and the factor of air resistance CdA. umax is calculated
as

umax ¼
 
� q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r !1=3

þ
 
� q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r !1=3

(4.2)

where p¼ 21.15mgf/CdA, q¼�76140Pmgt/CdA, g is the gravity
coefficient, and Pm is the rated power of motor. The acceleration
time is calculated by

t ¼ dm

ðu2

u1

ðFt � Ff � FxÞ�1du (4.3)

where Ft¼ Tmigt/r, Ff¼mgf, Fw¼CdAu2/21.15, d is the conver-
sion coefficient of rotating mass, r is the wheel radius, and i is the
transmission ratio.

The data used in this example are given in Table 4 in which m, f, gt,
and CdA vary between 69% of the initial values while others are fixed
real values. Similar to example 1, two constraints in Eqs. (4.2) and
(4.3) can be formulated as quantified interval-valued constraints while
preserving the original design intent, which have a solution set with
the interpretation (8Xq�XqD)(8Aq�AqD)(9Bq�BqD)f(Aq,Xq)¼Bq
with the target performance, design parameter, and design variable as
Bq¼ (umax,t), Aq¼ (CdA,f,m,gt), and Xq¼ (Tm,Pm,r,i,d), respectively.

The comparison between the results from the proposed approach
and the ones from the traditional local SA method in Ref. [67] is
shown in Fig. 3. In this example, some sensitivity zones of design
parameters are not clearly shown as the bars in Fig. 2, because the
values of total information gain computed from the representative val-
ues are very close to each other. The sensitivity ranking between input
parameters gt and m with respect to constraint t cannot be decided in
the proposed approach and a suggested ranking is provided and
marked with * in Table 5, because their sensitivity zones overlap, as
shown in Fig. 3(b). In the figure, three markers for each design param-
eter indicate min, max, and middle values, respectively. The sensitiv-
ity zone of gt is slightly higher than that of m. It indicates that gt

could be more sensitive than m, which matches the result obtained by
the traditional local SA method, as in the second row in Table 5. The
similar situation also occurs for the rankings of parameters gt and CdA
with respect to constraint umax. Moreover, for those design parameters
where rankings cannot be decided by the proposed method, their sen-
sitivities are also very close to each other in traditional local SA
method. Thus, it is likely that their sensitivities are too close to decide
when the uncertainty associated with the data is considered. The
results in Fig. 3 show that the proposed approach works well for the
problem and it is compatible to traditional local SA method.

Based on the results from the proposed method, engineers can
find that gt is the most sensitive parameter for both umax and t.
Thus, gt can be adjusted when both performances need to be
improved. When only umax needs to be improved, CdA can be
adjusted. Similarly, when only t needs to be improved, m can
be adjusted.

4.3 Example 3: Application in Finger Pump Design. In the
pump family design problem in Ref. [68], tube width Tw, the

number of fingers Nf, and finger width Fw are chosen to be the
design parameters for customization. Their commonality within
the family is analyzed by conducting SA with respect to a multi-
attribute utility function U(x). Voltage v is a design variable and
not considered for SA, because it is allowed to vary such that the
desired flow rate is achievable.

The pump efficiency g and volume vol are two attributes
to evaluate the overall performance of the pump family, but
with conflicting goals. A tradeoff is formulated as the utility
function

UðxÞ ¼ kguðgÞ þ kvoluðvolÞ (4.4)

where kg and kvol are weight constants (here kg¼ kvol¼ 0.5), and

uðgÞ ¼ �16:54g2 þ 8:12g� 0:001;

uðvolÞ¼ 0:0002vol2 � 0:01volþ 1:4508

The average efficiency g and volume vol of the product family are
calculated as the average of the efficiencies and volumes for each
product variant, which are

Table 4 Data used in example 2

Name Value Name Value

CdA 0.63 m2 Tm 120 N M
f 0.013 Pm 16 KW
gt 0.9 g 9.8 N/kg
m 1030 kg d 1.4
i 4.87 r 0.28 m
u1 50 km/hr u2 70 km/h

Fig. 3 Result comparison between the (a) proposed method
and (b) traditional local SA method

Table 5 Sensitivity ranking in example 2

Sensitivity ranking

Methods Constraints highest !lowest

Local SA U gt CdA m f
T gt m f CdA

Proposed U gt
* CdA* m f

T gt
* m* f CdA
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g ¼ 1

n

Xn

i¼1

Fpi
=Bpi

; vol ¼ 1

n

Xn

i¼1

Di �Wi � Hi (4.5)

where n is the total number of variants. For each product variant,
Fp is the fluid power, Bp is the brake power, and D, W, and H are
the pump’s depth, width, and height, respectively. The fluid power
and brake power can be calculated as

FP ¼ 0:785� Sq � Fw � Nf � Nc;Bp ¼ I2 � Ur � Sq � Cr � Lr

where Nc is the number of cycles (one cycle is from the first finger
to the last finger compression), I is the battery current, Ur is the
unit resistance of flexinol, Cr is the contraction ratio of flexinol,
and Lr is the lever ratio. The pump depth D, width W, and height
H are calculated by

D ¼ Nf � Fw þ a;W ¼ 2� ðSq þ bÞ;H¼Tw þ c

where Sq is the squeeze distance, a, b, and c are the additional
lengths due to the frame of the pump, which are predetermined
when a particular setting is desired. Here, they are set to be zeroes.
The numerical values are given in Table 6. Two scenarios are
used to illustrate the proposed method.

Scenario 1: Only one type of quantifiers, either 8 or 9, is associ-
ated with interval-valued parameters. In order to compare with the
result in Ref. [68], consider the solution set with the interpretation of
(8Xq � XD

q )(8Aq � AD
q )(9Bq � BD

q )f(Aq,Xq)¼Bq, where Bq¼ (U(x))
is target performance, Aq¼ (Tw,Nf,Fw) is design parameter, and
design variable Xq denotes all other interval variables used in the
problem, such as Sq, Cr, Lr, etc. Note that universally quantified Eqs.
(4.4) and (4.5) correspond to the classical interval constraints without
quantifiers.

Scenario 2: Two types of quantifiers, 8 and 9, are associated
with the interval-valued parameters so that the impact of quanti-
fier change on the sensitivities can also be evaluated. Consider the
solution set with the interpretation (8Xq � XD

q )(8Aq � AD
q )

(9Bq � BD
q )(9Ai � AD

l )f(Aq,Ai,Xq)¼Bq where Bq and Xq are the
same as the ones in scenario 1, Aq¼ (Tw,0,Fw) is the proper set of
parameters, and Ai¼ (0,Nf,0) is the improper set.

The global sensitivity result in Ref. [68] and the suggested sen-
sitivity rankings provided by the proposed approach are shown in
Table 7. The total information gains when parameters are associ-
ated with different quantifiers are shown in Fig. 4. As marked by
* in the second and third rows of Table 7, the sensitivity rankings
of design parameters cannot be decided for sure because of their
overlapped sensitivity zones, as shown in Fig. 4. In scenario 1
where all parameters are universally quantified, the upper bound
of the sensitivity zone for Fw is higher than the one for Tw. It indi-
cates that Fw could be more sensitive than Tw, which matches the
result obtained in Ref. [68], as in the first row of Table 7. The sim-
ilar situation also occurs to the rankings of Tw and Nf. In scenario
2 where the existential quantifier is associated with Nf, the upper
bound of the sensitivity zone for Nf becomes higher than it is in
scenario 1, as shown Fig. 4. In addition, a design parameter may
have influences on the sensitivities of the other design parameters
when it is associated with different quantifiers. For instance,
because design parameters Fw and Tw are involved in the same
constraint as Nf, their sensitivity rankings are changed when the

quantifier of Nf is changed from universal to existential. The
enlarged sensitivity zones indicate that Nf is more sensitive than
Fw, and Fw is more sensitive than Tw.

Based on the results obtained in the SA, engineers can adjust
the values of design parameters according to their sensitivities
with respect to some particular target performances. In a product
family, the commonality of product variants is a result of reuse
and asset sharing of components, processes, technologies, interfa-
ces, and infrastructure. The most sensitive design parameter which
also has the least commonality within a product family is easy to
be isolated for adjustment. In contrast, the least sensitive parame-
ter which also has the most commonality provides the robustness
baseline of design. In scenario 1, when all design parameters are
universally quantified, any possible combination of their values as
the variation is considered in the analysis. In order to ensure the
compatibility of the product family, engineers need to be careful
when adjusting Fw, which is the most sensitive parameter. In
scenario 2, when the design requirement of Nf is flexible and can
be modified as more information is available during the design
process, it needs to be existentially quantified. Yet engineers need
to be careful when specifying its values, because existentially
quantified Nf is likely to become the most sensitive one among all
parameters as a result of the change of design intent.

5 Conclusions

In engineering design, functional relationships among design
parameters, design variables, and target performances are usually
expressed as constraints. SA for design parameters in the con-
straints is a critical problem for engineers when they want to
know which design parameter contributes the most to the variation
of target performances when uncertainty is involved. In this paper,
a new global SA method was developed for interval-valued quan-
tified constraints, in which an interval specifies the range of varia-
tion. Different from statistical SA, only the lower and upper
bounds of uncertain design parameters are needed in the proposed
approach, without assuming probability distributions of the
parameters. Generalized intervals with logical quantifiers are
applied to represent the design parameters and variables, with the

Table 6 Data used in example 3

Name Value Name Value

Tw (cm) [1.0,2.5] Cr [0.011, 0.013]
Nf (discrete) [5,15] Lr [10, 20]
Fw (cm) [0.3,1] Sq (cm) [0.1, 1]
Nc (discrete) [10,38] I (A) [0.1, 0.2]
N 3 Ur (X/cm) 0.5

Table 7 Sensitivity ranking comparison in example 3

Sensitivity ranking

Methods highest !lowest

Ref. [68] Fw Tw Nf

Proposed
method

Scenario 1: All universal Fw
* Tw

* Nf
*

Scenario 2: Nf existential Nf
* Fw

* Tw
*

Fig. 4 Sensitivity zones of design parameters in scenario 1 (all
universal) and scenario 2 (Nf existential)
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advantage of capturing more design intent than the classical inter-
val. A generalized Hartley like measure is used to characterize the
indeterminacy associated with the interval-valued design parame-
ters. The effects of both quantifiers and numerical values on the
constraints are analyzed qualitatively and quantitatively. Based on
the proposed metrics of information gain and infeasibility, we can
efficiently assess the effect of design parameter variations on the
target performances of the constraints.

This approach provides an efficient alternative to the classical
variance-based statistical SA with a much lower computational
cost using interval arithmetic. The major limitation of this
approach is that closed form analytical constraints need to be
available. In addition, the sensitivity zone in the proposed method
is intended to improve the robustness of SA without exhaustive
computation. As a result, the estimation of sensitivity zones based
on the three representative values may not be the actual lower and
upper bounds of sensitivity. The lower, upper, and midpoint val-
ues of an interval-valued design parameter are chosen because of
their practical meanings in engineering design. The midpoint is
the nominal or ideal value of a design parameter, whereas the
lower and upper bounds correspond to the limits of its value. Fur-
thermore, the absolute rankings of sensitivities may not be avail-
able when the sensitivity zones overlap. In the future, we will
investigate different options of choosing representative values and
reducing the possibility of underestimating sensitivity zones while
maintaining reasonable computational loads.

The focus of this paper is the SA for feasible design space
searching problems. In the future, the proposed approach will be
extended to problems with inequality constraints, as well as
design optimization problems, such as the sensitivity of searching
directions if analytical relations between the searching directions
and variables are available, or the sensitivity of optimality if the
exact lower or upper bounds of objective functions within the
searching domain can be estimated.
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