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Multiscale Uncertainty 
Quantification based on A 
Generalized Hidden Markov 
Model 

 
Variability is inherent randomness in systems, whereas incertitude is due to lack of 
knowledge. In this paper, a generalized hidden Markov model (GHMM) is proposed to 
quantify aleatory and epistemic uncertainties simultaneously in multiscale system 
analysis. The GHMM is based on a new imprecise probability theory that has the form of 
generalized interval. The new interval probability resembles the precise probability and 
has a similar calculus structure. The proposed GHMM allows us to quantify cross-scale 
dependency and information loss between scales. Based on a generalized interval Bayes’ 
rule, three cross-scale information assimilation approaches that incorporate uncertainty 
propagation are also developed. 

 
 

1. INTRODUCTION 
Multiscale systems are systems consisting of hierarchical 

structures with different sizes and exhibit patterns of behaviors as 
the diagnostics of interactions among subsystems at lower levels 
recursively. Human cells, atmospheric turbulence, ecosystems, 
product-materials hierarchies, etc. are such examples. Among 
other research issues, uncertainty is an unavoidable artifact of 
modeling and observation of physical processes and should be 
assessed in the context of multiscale systems.  

The unique challenge in characterizing uncertainty of 
multiscale systems is how to quantify its propagation across 
scales accurately and efficiently. Most of the existing stochastic 
models only focus on one length scale. For multiscale systems, 
uncertainties propagate between scales and are inter-dependent. 
For instance, distributions of defects in alloy crystals determine 
the reliability of structures. Physical properties of materials are 
manifestations of atomic-level electron densities and distributions. 
Cross-scale correlation should be studied. 

Uncertainty concerns variability and incertitude which 
appear universally. The need to quantify variability and 
incertitude separately has been well-recognized (e.g. [1,2,3]). 
Variability is the inherent randomness in the system because of 
fluctuation and perturbation. Variability is also referred to as 
aleatory uncertainty, stochastic uncertainty, simulation 
uncertainty, and irreducible uncertainty. In contrast, incertitude is 
due to lack of perfect knowledge or enough information about the 
system. It is also known as epistemic uncertainty, reducible 
uncertainty, and model form uncertainty.  

The need of separating aleatory and epistemic uncertainty is 
more noticeable in multiscale system analysis. Measurement data 
for very small (e.g. nanoscale physical properties) or very large 
systems (e.g. global temperature change) are usually scarce, vary 
greatly in terms of forms and quality, or even impossible to 
measure. The effect of epistemic uncertainty thus is more evident 
than in traditional system analysis. The two types of uncertainty 

need to be represented explicitly if we want to increase the 
confidence of modeling or simulation results. Neglecting 
epistemic uncertainty may lead to decisions that are not robust. 
Sensitivity analysis [4] is the typical way to assess robustness, 
which is to check how much variation the analysis result may 
have if input distribution parameters or types deviate away from 
the ones used in the analysis. Mixing epistemic and aleatory 
uncertainties may increase costs of risk management. If extra 
knowledge or information of the collected data is available, they 
can be further clustered into smaller groups or intrinsic 
mathematical relationships can be identified so that variance can 
be reduced, which reflects pure randomness more accurately for 
risk analysis. 

Therefore, aleatory and epistemic uncertainties need to be 
quantified simultaneously in multiscale system analysis. In this 
paper, we propose an imprecise probability approach to represent 
the two types of uncertainties. Instead of a precise value of 
probability ( )P E p=  associated with an event E , a pair of 

lower and upper probabilities ( ) [ , ]P E p p=  are used to include a 

set of values. The range of the interval [ , ]p p  captures the 

epistemic uncertainty component. Imprecise probability thus 
differentiates incertitude from variability both qualitatively and 
quantitatively, which is the alternative to the traditional sensitivity 
analysis in probabilistic reasoning.  

The interval bounds p  and p  can be solicited as the lowest 

and highest subjective probabilities about a particular event from 
a domain expert, where probability represents the degree of belief. 
Different experts may have different beliefs. Even one expert may 
hesitate to offer just a precise value of probability. In these cases, 
the range of probabilities gives the interval bounds. Incorporating 
more beliefs may increase the interval width. When used in data 
analysis with frequency interpretation, the interval bounds can be 
confidence intervals that are calculated from data. For instance, 
the Kolmogorov-Smirnov confidence band to enclose the 
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cumulative distribution function (c.d.f.) can be used, where the 
width of the band captures epistemic uncertainty because of the 
lack of information and knowledge. If extra data are collected, the 
interval width can be reduced, and the confidence band converges 
towards a precise c.d.f.  

The purpose of using imprecise probability in system 
analysis is to improve the robustness of prediction. The existing 
sampling-based simulation mechanism such as second-order 
Monte Carlo [5] cannot provide such information efficiently, 
where a double-loop sampling procedure is used so that the inner 
loop simulates variability and the outer loop simulates the 
uncertainty associated models and parameters. There is a need of 
generic and efficient mathematical framework to study aleatory 
and epistemic uncertainties in multiscale complex systems. In this 
paper we propose a generalized hidden Markov model (GHMM) 
with a new generalized interval probability that is based on 
generalized interval for multiscale uncertainty quantification. The 
generalized interval has good algebraic properties, which 
significantly simplifies the calculus structure of the interval 
probability.  

In the remainder of the paper, overviews of relevant work in 
multiscale simulation, uncertainty quantification, imprecise 
probability, and generalized interval are given in Section 2. In 
Section 3, the new imprecise probability theory based on the 
generalized intervals is described. In Section 4, the GHMM is 
proposed. Three cross-scale information assimilation approaches 
are developed and demonstrated in Section 5.  

2. BACKGROUND 
2.1 Stochastic Models to Simulate with Variability 

Various stochastic models to accommodate variability have 
been developed at different scales. At the traditional macro- or 
bulk-scale of engineering, stochastic or probabilistic finite 
element analysis with random fields has been extensively studied. 
The basic idea is to incorporate variability of geometry, material 
properties, and loads in finite element analysis (FEA) [6], 
numerical approximations [7], spectral approximations by the 
Karhunen-Loève (K-L) decomposition [8] and its generalizations 
[9,10,11], as well as optimization [12]. 

At the meso-scale, dislocation dynamics [13] is a popular 
tool to simulate plastic deformation of crystalline structures. 
Extended from deterministic models, stochasticity was recently 
introduced in dislocation dynamics simulation to incorporate the 
fluctuation effects of internal stress [14] and spatial distributions 
[15,16] caused by long-range dislocation interaction, and thermal 
dissipation [17] during plastic flow.  

The models reviewed above only consider variability within 
one scale. Assumptions are made such that randomness at macro-
scale is independent from that of micro-scale. This 
homogenization approach does not always model the real world. 
For example, the effective variance of moduli obtained by 
averaging over small domains of composite materials does not 
agree with the one obtained by a sufficiently large representative 
volume element. Furthermore, damage and fracture are highly 
sensitive to very local defects [18]. Decoupling variational 
information between length scales will compromise the accuracy 
of predictions. 
2.2 Multiscale Simulation with Variability 

Plenty of research has been done on deterministic multiscale 

simulation. Relatively little research is focused on stochastic 
information integration. Recently, Choi et al. [19] represented 
variabilities as multiscale Gaussian models on a pyramid graph 
structure. Multiscale information assimilation was achieved by a 
so-called walk-sum analysis for both long-range and local 
dependencies. As an extension of Arlequin coupling framework, 
Chamoin et al. [20] proposed a stochastic coupling approach 
based on homogenization of material properties between length 
scales for Monte Carlo simulation. Ganapathysubramanian and 
Zabaras [21] developed an upscaling approach to derive coarse-
scale probability distributions from fine-scale distributions based 
on sampling in low-dimensional space. Arnst and Ghanem [22] 
took another upscaling approach to approximate fine-scale 
probability distributions by the K-L decomposition. Chen and co-
workers [23,24] also developed an upscaling approach based on 
the K-L decomposition and integrated it with stochastic FEA. 

The above methods are intended to solve the issue of 
multiscale variability information exchange. Domain specific 
assumptions of probability distributions were made so that 
analysis is computationally tractable. More importantly, aleatory 
and epistemic uncertainties were not differentiated. Consequently, 
the effects of lack of information verses fluctuation are 
indistinguishable. Given the very different nature of variability 
and incertitude, independent quantification of the two is useful to 
understand the analysis results and make appropriate decisions 
accordingly. The GHMM proposed here is generic enough to 
support both parametric and non-parametric probabilistic 
modeling without assumptions of distributions, at the same time 
differentiating aleatory and epistemic uncertainties with imprecise 
probability.    
2.3 Imprecise Probability 

Probability theory provides common ground to quantify 
uncertainty and so far is the most popular approach. Uncertainties 
are quantified by precise values of probability measures and their 
parameters (e.g. means and higher-order moments). However, 
precise probability theory has limitations in representing 
epistemic uncertainty. The most significant one is that it does not 
differentiate total ignorance from other probability distributions. 
Total ignorance means that the analyst has zero knowledge about 
the system under study. Based on the principle of maximum 
entropy, uniform distributions are usually assumed when 
traditional probability theory is applied in this case. A problem 
arises because introducing a uniform or any particular form of a 
distribution has itself introduced extra information that is not 
justifiable by the zero knowledge. Different possible values are 
equally likely as in a uniform distribution is not guaranteed to be 
true because we are totally ignorant. This leads to the Bertrand-
style paradoxes such as the Van Fraasen's cube factory [25]. 
“Knowing the unknown” does not represent the total ignorance. In 
imprecise probability [0,1]P =  accurately represents the total 
ignorance.  

Another limitation of precise probability is representing 
indeterminacy and inconsistency in the context of subjective 
probability. When no data are available and people have limited 
ability to determine the precise values of their own subjective 
probabilities, precise probability does not capture indeterminacy. 
When subjective probabilities from different people are 
inconsistent, it does not capture a range of opinions or estimations 
adequately without assuming some consensus of precise values on 



Submitted to ASME Journal of Mechanical Design  

the distribution of opinions. “Agreeing the disagreed” is not the 
best way to capture inconsistency.  

Imprecise probability [ , ]p p  combines epistemic uncertainty 
(as an interval) with aleatory uncertainty (as probability measure), 
which is regarded as a generalization of traditional probability. 
Gaining more knowledge can reduce the level of imprecision and 
indeterminacy, i.e. the interval width. When p p= , the 
degenerated interval probability becomes a traditional precise 
one. Our proposed approach uses imprecise probabilities to 
quantify aleatory and epistemic uncertainties simultaneously. 
Many forms of imprecise probabilities have been developed. For 
example, the Dempster-Shafer evidence theory [26,27] 
characterizes evidence with discrete probability masses associated 
with a power set of values. The behavioral imprecise probability 
theory [1, 28] models uncertainties with the lower and upper 
previsions following the notations of de Finetti's subjective 
probability theory. The possibility theory [29] represents 
uncertainties with Necessity-Possibility pairs. Probability bound 
analysis [30] captures uncertain information with pairs of lower 
and upper distribution functions or p-boxes. F-probability [31] 
represents an interval probability as a set of probabilities with the 
Kolmogorov properties. A random set [32] is a multi-valued 
mapping from the probability space to the value space. Interval 
probability [33] computes imprecision with interval analysis. 
Fuzzy probability [34] considers probability distributions with 
fuzzy parameters. A cloud [35] is a combination of fuzzy sets, 
intervals, and probability distributions.  

One common problem of the above set-based imprecise 
probability theories is that the calculation is cumbersome. Linear 
and nonlinear optimization methods are dependent upon to search 
lower and upper bounds of probabilities during reasoning. 
Different from them, we recently proposed an imprecise 
probability with a generalized interval form [36,37], where the 
calculus structure is greatly simplified based on the algebraic 
properties of the Kaucher arithmetic [38] for the generalized 
interval.  
2.4 Generalized Interval 

Generalized interval [39,40] is an extension of the set-based 
classical interval [41] with better algebraic and semantic 
properties based on the Kaucher arithmetic [38]. A generalized 
interval ( ): [ , ] ,x x x x= ∈x R  is not constrained by ≤x x  any 

more. Therefore, [0.2, 0.1]  is also a valid interval and called 

improper, while the traditional interval [0.1, 0.2]  is called 
proper.  Based on the Theorems of Interpretability [39], 
generalized interval provides more semantic power to help verify 
completeness and soundness of range estimations by logic 
interpretations. A complete range estimation of possible values 
includes all possible occurrences. A sound range estimation does 
not include impossible occurrences. More information of 
generalized interval can be found in [42,43,44]. 

Compared to the semi-group formed by the classical set-
based intervals, generalized intervals form a group. This property 
significantly simplifies the computational structure. The set of 
generalized intervals is denoted by [ ]{ }= ∈, | ,KR Rx x x x . 

The set of proper intervals is [ ]{ }= ≤, |IR x x x x , and the set 

of improper interval is { }, |x x x x⎡ ⎤= ≥⎣ ⎦IR . The relationship 

between proper and improper intervals is established with the 
operator dual as  
 dual , : ,x x x x⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  (2.1) 

The less than or equal to partial order relationship between two 
generalized intervals is defined as 
 , ,x x y y x y x y⎡ ⎤ ⎡ ⎤≤ ⇔ ≤ ∧ ≤⎣ ⎦ ⎣ ⎦  (2.2) 

Based on the generalized interval, the new form of imprecise 
probability resembles the classical precise probability. 

3. GENERALIZED INTERVAL PROBABILITY 
Definition 1. Given a sample space Ω  and a σ -algebra A  of 
random events over Ω , the generalized interval probability 
∈p KR  is defined as : 0,1 0,1⎡ ⎤ ⎡ ⎤→ ×⎣ ⎦ ⎣ ⎦p A  which obeys the 

axioms of Kolmogorov: (1) ( ) 1,1⎡ ⎤Ω = ⎣ ⎦p ; (2) 

( ) ( )0,0 1,1E E⎡ ⎤ ⎡ ⎤≤ ≤ ∀ ∈⎣ ⎦ ⎣ ⎦p A ; and (3) for any countable 

mutually disjoint events ( )i j
E E i j∩ = ∅ ≠ , 

( ) ( )11

nn

i iii
E E

==
= ∑p p∪ . Here “≤” is defined as in Eq.(2.2).  

 
Definition 2. The probability of union is defined as 
( ) ( ) ( ): dual A S

S A
A S−

⊆
= −∑p p  for A ⊆ Ω . 

 
The most important property of the generalized interval 

probability is the logic coherence constraint (LCC): for a 

mutually disjoint event partition 
1

n

ii
E

=
= Ω∪ , ( )1

1
n

ii
E

=
=∑ p .  

The LCC ensures that generalized interval probability is logically 
coherent with precise probability. For instance, given that 

( ) 0.2,0.3down ⎡ ⎤= ⎣ ⎦p , ( ) 0.3,0.5idle ⎡ ⎤= ⎣ ⎦p , 

( ) 0.5,0.2working ⎡ ⎤= ⎣ ⎦p  for a system’s working status, we can 

interpret it as   

 ( ) ( ) ( )
( )

1 2 3

1 2 3

[0.2,0.3] [0.3,0.5] [0.2,0.5]

1

p p p

p p p

∀ ∈ ∀ ∈ ∃ ∈

+ + =
  

Accordingly, we differentiate non-focal events (“working” in this 
example) from focal events (“down”, “idle”). An event E  is focal 

if the associated semantics for ( )Ep  is universal. Otherwise, it is 

non-focal if the associated semantics is existential. While the 
epistemic uncertainty associated with focal events is critical to the 
analyst, the one associated non-focal events is not.  

The concepts of conditional probability and independence 
are essential for the classical probability theory. With them, we 
can decompose a complex problem into simpler and manageable 
components. Similarly, they are critical for imprecise 
probabilities. Different from all other forms of imprecise 
probabilities, which are based on convex probability sets, our 
conditional probability is defined directly from marginal 
probability. 
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Definition 3. If ( ) 0C >p , the conditional probability ( )|E Cp  

for all ,E C ∈A  is defined as  

 ( ) ( )
( )

( )
( )

( )
( )

| : ,
dual

E C p E C p E C
E C

C p C p C

⎡ ⎤∩ ∩ ∩
⎢ ⎥= =
⎢ ⎥⎣ ⎦

p
p

p
 (3.1) 

Thanks to the unique algebraic properties of generalized 
intervals, this definition can greatly simplify computation in 
applications. Only algebraic computation is necessary.  

 
Definition 4. For , ,A B C ∈A , A  is said to be conditionally 
independent with B  on C  if and only if  
 ( ) ( ) ( )| | |A B C A C B C∩ =p p p  (3.2) 

 
Definition 5. For ,A B ∈A , A  is said to be independent with 
B  if and only if  
 ( ) ( ) ( )A B A B∩ =p p p  (3.3) 

The independence in Definition 5 is a special case of 
conditional independence in Definition 4, where C  is the 
complete sample space Ω . The conditional independence in 
Eq.(3.2) can also have a second form, as shown in Theorem 3.1. 
The proofs of theorems are included in the appendices. 

 
Theorem 3.1. ( ) ( ) ( )| | |A B C A C B C∩ =p p p  ⇔  

( ) ( )| |A B C A C∩ =p p . 

4. GENERALIZED HIDDEN MARKOV MODEL 
(GHMM)   

We propose a new and generic probabilistic model to account 
for multiscale aleatory and epistemic uncertainties in hierarchical 
systems. The proposed GHMM essentially captures spatial and 
scale dependency. As illustrated in Figure 1, the spatial domains 
in three length scales xΩ , yΩ , and zΩ  ( x y z⊂ ⊂Ω Ω Ω ) are 

subdivided into cells. The state of each cell is represented as a 
random variable, denoted as ix , jy , kz  respectively at three 

scales. If the state value of a cell is dependent on those values of 
neighboring cells, the dependencies or correlations are denoted by 
the connections between cells in the graphic model.  

The spatial dependency or correlation relationships are 
expressed as conditional probabilities. For instance, 

( ),1 1 ,2 2 ,| , , ,i i i i l lx a x b x b x b= = = =p …  is the probability that 

the state variable ix  has value of a  given that its l  neighboring 

cells have the respective state values of ( )1, lb b… . In the example 

of Figure 1, ix  has 4l =  neighbors. Notice that neighbors do 
not necessarily mean that they are spatially close. If long-range 
couplings exist, one cell could be dependent on or correlated with 
another even they are spatially far apart. 

Observable 

i,x 1

Hidden 

i,x 4

i,x 3

i,x 2

ix

yΩ

xΩ

Scale Z 

Scale Y 

Scale X 

k,1zkz
zΩ

jy
j,1y

j,2y

iX

jY

kZ

 
Figure 1: The generalized hidden Markov model for hierarchical 

systems to capture spatial and scale dependency 

 
Between different scales, there are also dependency 

relationships. The scale dependency is also represented as a 
conditional probability. For instance, in Figure 1, the state of cell 

jy  at Scale Y is dependent on the state values of corresponding 

subdomain xΩ , i.e. ( )1 9| , , , ,j iy x x xp … … . 

In general, the true state values of cells may or may not be 
directly observable. Theoretically, all observed values in 
experiments contain the effects of aleatory and epistemic 
uncertainties. Therefore, the observed states are just another set of 
random variables that are dependent on true state values. Here, 
the observation dependency is included in the GHMM. Without 
loss of generality, we assume that each of the cells in different 
scales has its corresponding observable state. For instance, in 
Figure 1, the true states of the cells on the left-hand side are 
hidden, and the corresponding observations are on the right-hand 
side. The probability of observing iX b=  given that ix a=  is 

( )|i iX b x a= =p . Similarly, we have ( )|j jY yp  and 

( )|k kZ zp  at other length scales. If there are states that are not 

observable, the number of observation dependency relationships 
is reduced. 

The proposed GHMM is a generalization of hidden Markov 
models (HMM) [45,46] to consider hierarchical complex systems 
and uncertainties related to models and parameters. Even though 
there has been some research to extend HMM to hierarchical 
models and apply to pattern recognition such as natural language 
[47] and image classifications [48,49], epistemic uncertainty is 
not explicitly captured in these Markov models. The most 
important and unique generalization of the proposed GHMM is 
that imprecise probabilities based on generalized intervals are 
used in the model. With imprecise probabilities, both types of 
uncertainties can be explicitly incorporated. With generalized 
intervals, inference and reasoning can be significantly simplified. 
Therefore, the proposed model improves computational efficiency 
while gaining more information from analysis results. Notice that 
the model illustrated in Figure 1 shows spatial-dependency only. 
To capture temporal dependency, state transitions can also be 
achieved. That is, a GHMM with one-dimensional neighborhood 
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relationships will represent state transition history within one cell 
in Figure 1. 

We call the GHMM generalized because of three levels of 
generalizations. First, our multiscale Markov model is a 
generalization of commonly used Markov chains and hidden 
Markov models. Second, our Markov model with imprecise 
probabilities is a generalization of traditional models with precise 
probabilities. Third, our new form of imprecise probability based 
on generalized intervals is also a generalization of interval 
probabilities. The GHMM is generally applicable to various 
uncertainty quantification problems. In this paper, we apply it in 
multiscale system design and analysis. 

With the incorporation of generalized interval probability, a 
concise form of GHMM properties similar to the traditional 
precise probability can be achieved. The most important 
properties are localities. These include the locality of observation 
and the locality of scale. 

 
Theorem 4.1 (locality of observation) For two disjoint 
subdomains iA  and jA  at Scale X, if the hidden states 

ii
x ∈A  

and 
jj

x ∈A  are independent and the corresponding observations 

are also independent, then 

 ( ) ( ) ( ), | , | |
i j i j i i j ji j i j

X X x x X x X x∈ ∈ ∈ ∈=p p pA A A A A A A A  

Theorem 4.1 provides the algebraic convenience to 
decompose a complex system into smaller subsystems within one 
scale. Independent experimental measurements can be performed 
without losing the grand picture of aleatory and epistemic 
uncertainties of the whole system.  

 
Theorem 4.2 (locality of scale) If iA , jB , kC  are subdomains 

at Scales X, Y, Z respectively with i j k⊂ ⊂A B C , then 

( ) ( )| , |
i j k i j
x y z x y=p pA B C A B  and 

( ) ( )| , |
k j i k j
z y x z y=p pC B A C B . 

Theorem 4.2 allows us to simplify multiscale uncertainty 
analysis. The propagation of uncertain information between scales 
is only limited to those two that are adjacent or closely related. It 
also indicates that the information exchange in the GHMM is in 
both top-down and bottom-up directions. For instance, in a 
polycrystalline piezoelectric ceramic material the variation of 
lattice distortion for individual unit cells is correlated with the 
polarization of the grain which the cells belong to. Given that the 
dependency between lattice-level and grain-level uncertainties has 
been considered, the variation of lattice-level local distortion can 
be regarded as being independent of the overall anisotropic 
electromechanical properties of the whole piezoelectric disk, 
because the macroscopic properties of the polycrystalline solid 
are the homogenization of all grains, whereas those of each grain 
in turn are the manifestation of average structural properties from 
all cells within it.   

The simplicity of the scale and observation localities is due 
to the definition of conditional probability in Eq.(3.1) as well as 
the group properties of the generalized interval.  

5. CROSS-SCALE INFORMATION 
ASSIMILATION 

When small-scale (or large-scale) experiments are not 
possible, or the measurements are not feasible or dependable at 
one particular scale, we may conduct experiments at a larger (or 
smaller) scale to measure system properties so that information 
can be combined to validate models or assumptions. For instance, 
in design of new devices using nano-materials, instead of direct 
measuring atomic-level properties which is usually expensive or 
even impossible, the measurement of aggregated properties at 
macro-scale can be easier and more accurate. In contrast, it is 
impossible to measure global temperature change. We only 
depend on regional ocean water temperature changes to predict 
the global picture. Cross-scale information assimilation thus is an 
important tool in studying multiscale systems, which is based on a 
generalized interval Bayes’ rule (GIBR). 

 
Theorem 5.1 (GIBR). The generalized interval Bayes’ rule states 
that  

 ( ) ( ) ( )
( ) ( )1

|
|

dual | dual

i i

i n

j jj

A E E
E A

A E E
=

=
∑

p p
p

p p
 (5.1) 

where ( )1, ,
i
E i n= …  are mutually disjoint event partitions of 

Ω  and ( )1
1

n

jj
E

=
=∑ p .  

 
Based on the GIBR, the problem of cross-scale information 

assimilation under aleatory and epistemic uncertainties can be 
formulated in several ways, including single-point observation, 
multi-point observation, and multi-point multiscale observation. 
The general process of cross-scale information assimilation based 
on the GIBR is illustrated in Figure 2. Prior probabilities and 
likelihoods are constructed or solicited. If data are available, we 
may use the Kolmogorov-Smirnov confidence bands as p-Boxes 
and calculate interval probabilities. If no data are available, 
domain experts may give estimates of interval probabilities. In 
either case, the logic coherence constraint in Section 3 should be 
satisfied. If no knowledge is available at all, [0,1]=p  should be 
used.  

 

Solicit or Construct Prior Probabilities under LCC [e.g. ( )xp ] 
- if no knowledge: ( ) [0,1]⋅ =p  
- if data are available, use Kolmogorov-Smirnov confidence 

bands to build p-Boxes 

Solicit or Construct Likelihoods under LCC [e.g. ( | )y xp , ( | )Y yp ]
- if no knowledge: ( ) [0,1]⋅ =p  
- if data are available, use Kolmogorov-Smirnov confidence 

bands to build p-Boxes 

Calculate Posterior Probabilities with GIBR: [e.g. ( | )x Yp ] 
 

Figure 2: The illustration of cross-scale information assimilation 
based on GIBR 
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5.1 Single-Point Observation 
The simplest cross-scale assimilation is through the single-

point observation. This approach allows that the uncertainty 
estimation at one scale is used to either validate the model 
prediction or update the information at a different scale. Suppose 
the states of one or more variables 

1
, ,

l
x x"  at Scale X are not 

directly observable. Instead, the system can be observed via the 
variable Y  corresponding to the unobservable y  at Scale Y. 
Then the estimation is calculated as follows. 
Theorem 5.2. Given ( )1

| , ,
L

y x xp …  for variables 
1
, ,

L
x x"  at 

Scale X and y  at Scale Y, ( )|Y yp  for observable Y  

corresponding to y , and the prior estimate ( )1
, ,

L
x xp … , the 

posterior imprecise probability ( )1
, , |

L
x x Yp …  is obtained as 

 
( )

( ) ( ) ( )
( ) ( ) ( )

1

1 1

1 1 1

, , |

, , | | , ,

dual | | , , , ,

L

L L

L L L

x x Y

x x Y y y x x dy

Y y y x x x x dydx dx
= ∫

∫ ∫∫

p

p p p

p p p

…
… …

" … … "

 

5.2 An Example of Single-Point Observation 
Carbon nanotubes (CNTs) have unique electrical and 

mechanical properties, and CNT polymer composites have been 
applied in various designs of sensors and actuators. In design of 
biomimetic actuators based on ionic polymer composite, the 
incorporation of CNT in polymer matrix can improve the 
electromechanical property. In the design of Deshmukh and 
Ounaies [50] as shown in Figure 3, significant forces can be 
generated with CNTs when low DC voltages are applied on the 
polymer composite actuators. The amount of CNT, conductivity 
of polymer composites, and the level of induced strain are 
correlated.  

Designer may want to know whether the electrical 
conductivity of the nanotube itself in composites meets the 
specification, experimental studies are needed. Instead of directly 
measuring the resistivity of individual CNTs with diameters of 
about 10 nm, we can measure those from CNT composites with 
the sizes of 1 μm or more, which is much easier and more 
accurate. The electrical conductivity of CNTs is sensitively 
dependent on the geometry of tubes, particularly diameter and 
helicity. Because of variations of geometries and defects during 
the fabrication process, the measured quantities are stochastic in 
nature. At the same time, epistemic uncertainty is associated with 
measurement because of the lack of data, inconsistent 
observations, and measurement errors.  

Relatively limited data are available for direct measurement 
of individual CNTs’ resistivity. Table 1 lists two sets of samples 
that published in Refs. [51,52]. Notice that the first paper as 
shown in the left column reported measurement errors or 
uncertainty with the ± ranges. The second paper used a different 
form and did not record ranges. Yet the first and fifth samples are 
right-censored and recorded with “≥” sign. The imprecise and 
incomplete information is the source of epistemic uncertainty. 
Both of the sample sizes (6 and 8) are small. It is obvious that 
these two sets of data are inconsistent, which also shows the 
importance of imprecise probability in such applications. 

 

microscale  

z=bending strain rate 
of actuator 
(Z=observable)  

y1=conductivity of 
composite (1%CNT) 
(Y1=observable) 
y2=conductivity of 
composite (2%CNT) 
(Y2=observable)  

x=resistivity 
of single CNT

major contributors of epistemic uncertainty in multiscale analysis:
- lack of data 
- inconsistent observations 
- measurement errors

mesoscale nanoscale  

 
Figure 3: CNT composite in design of biomimetic actuator [50] 

Table 1: Resistivity measurements of individual CNTs  

Resistivity (Ω·m) [51]  
ρ δ±  ― 6 samples 

Resistivity (Ω·m) [52] 
ρ  ― 8 samples 

19.5±2.0 
  7.8±1.0 
46.0±1.8 
37.6±1.0 
48.9±4.3 
 117±19 

≥ 80 
0.012 
0.0075 
580 
≥ 0.4 
0.00051 
0.098 
0.020 

 

 
Figure 4: Empirical c.d.f.’s and the distributions of data from Ref. 

[51] 

 
We can use observations of CNT composite conductivity at 

mesoscale to assess the individual CNT’s resistivity at nanoscale. 
First, we construct prior probabilities of individual CNT’s 
resistivity. For simplicity only the data in the first column of 
Table 1 is used. The empirical c.d.f. for each of the lower, middle, 
and upper observations are shown in Figure 4. They are solid lines 
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in the colors of green, red, and blue respectively. If a parametric 
distribution is required, we can fit the data by the Lognormal 
distributions, plotted as dotted curves in Figure 4, for three sets of 
data (lower bound, middle, and upper bound) in terms of 
maximum likelihood. However, given the very limited number of 
samples, the parametric models are not plausible. We would rather 
use a non-parametric model with the empirical c.d.f.’s without the 
assumption of distribution type. Therefore, the empirical interval 
c.d.f. or p-box is constructed based on the Kolmogorov-Smirnov 
confidence band [30]. The 95% confidence lower and upper limits 
from the middle observation (red line) are shown as the blue and 
green dashed lines respectively in Figure 4. They are calculated 
by ( )( )αρ ±

,
min 1,max 0,

n
D  where 

α ,n
D  depends on the sample 

size n and confidence level α. Here, n = 6, α = 0.025, and D0.025,6 
= 0.51926. This confidence band ensures that the probability of 
the unknown distribution function being within the band is at least 
95%.  

With the p-box formed by the Kolmogorov-Smirnov 
confidence band and the Dempster-Shafer’s structure of basic 
probability assignment (BPA) : 2 [0,1]m →A , we can 
determine the lower and upper probabilities of the resistivity. 
Specifically, the p-box is viewed as a stack of rectangles. The 
width of each rectangle is the focal element that defines the 
interval range of a BPA, whereas the height of the rectangle is the 
value of the BPA. The BPAs are 

( ) 0.025,6
0 46.0 3 / 6 0.1474m Dρ≤ < = − = , 

( )0 48.9 1/ 6m ρ≤ < = , ( )0 117 1/ 6m ρ≤ < = , 

( ) ( )0.025,6 0.025,6
0 1 0.0385m D Dρ≤ < ∞ = − − = , 

( )7.8 1/ 6m ρ≤ < ∞ = , ( )19.5 1/ 6m ρ≤ < ∞ = , and 

( ) 0.025,6
37.6 1 2 / 6 0.1474m Dρ≤ < ∞ = − − = .  

Based on the Dempster-Shafer’s belief function 

 ( ) ( )⊆
= ∑ : i ii A A

p A m A  (5.2) 

and plausibility function 

 ( ) ( )∩ ≠∅
= ∑ : i ii A A

p A m A  (5.3) 

we can find the lower and upper probabilities. For instance, the 
lower and upper probabilities that the individual CNT resistivity 
is less than 50 Ω·m are 

( ) ( ) ( )50 0 46.0 0 48.9 0.3140p m mρ ρ ρ< = ≤ < + ≤ < =  and 

( )50 1p ρ < =  respectively. Thus the prior probability is 

( ) [0.3140,1]x =p .  
Compared to individual CNT measurement, the measurement 

for CNT polymer composite is much easier to achieve. More than 
200 publications have reported on the electrical property of CNT 
polymer composite. Bauhofer and Kovacs [53] recently 
summarized those experimental results. The conductivity of 
composite with CNT concentration 1.0 wt% is compiled and 
listed in Table 2. The empirical c.d.f. is plotted in Figure 5 as the 
red line. Similarly, the 95% Kolmogorov-Smirnov confidence 
limits (dash lines) are calculated as lower and upper probability 

bounds.  

Table 2: Conductivity measurements of CNT polymer composites 
with CNT concentration of 1.0wt% 

Maximum 
conductivity  
σ (Ω·m−1) 

Number of 
Samples 

Maximum 
conductivity  
σ (Ω·m−1) 

Number of 
Samples 

1.0×10−4 
1.0×10−3 
5.0×10−3 
2.0×10−2 
1.0×10−1 
2.0×10−1 
3.0×10−1 

1 
1 
1 
2 
3 
1 
1 

4.0×10−1 
2.0 
5.0 
1.0×101 
5.0×101 
1.0×102 

1 
1 
1 
2 
1 
1 

 

 
Figure 5: Empirical c.d.f. of composites conductivity with 1.0 

wt% of CNT from Ref. [53] 

 
Similarly, the lower and upper probabilities can be 

determined based on Eqs.(5.2) and (5.3). For instance, we have 

  ( )
( )1

 with 1%CNT 0.1 | 50

| 0.1526,0.6121

conductivity

p y x

ρ< <
⎡ ⎤= = ⎣ ⎦

p
 

which is the probability that the CNT composite conductivity is 
less than 0.1 Ω·m−1 given that the resistivity of the used individual 
CNTs is less than 50 Ω·m. 

No information is available for the composite conductivity if 
the individual CNT resistivity used is greater than 50 Ω·m. That 
is, ( )1

| 0,1Cy x ⎡ ⎤= ⎣ ⎦p , and it represents the total ignorance. In 

addition, ( ) ( )1 dual 0.6860,0Cx x ⎡ ⎤= − = ⎣ ⎦p p , 

( ) ( )1 1
| 1 dual | 0.8474,0.3879Cy x y x ⎡ ⎤= − = ⎣ ⎦p p , and 

( ) ( )1 1
| 1 dual | 1,0C C Cy x y x ⎡ ⎤= − = ⎣ ⎦p p . Further, we can 

reasonably assume the measurement of composite conductivity is 
fairly reliable with ( )1 1

| 0.8,0.9Y y ⎡ ⎤= ⎣ ⎦p  and 

( )1 1
| 0.8,0.9C CY y ⎡ ⎤= ⎣ ⎦p . Thus ( )1 1

| 0.2,0.1CY y ⎡ ⎤= ⎣ ⎦p  and 
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( )1 1
| 0.2,0.1CY y ⎡ ⎤= ⎣ ⎦p .  

If an additional observation of 
1
Y  (conductivity < 0.1) is 

obtained, then based on Theorem 5.2 we can assert that 

 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 1 1

1

1 1 1

1 1 1

1 1 1

1 1 1

| | | |
|

| |

| |
dual

| |

| |

0.4002,1

C C

C C

C C

C C C C

x Y y y x Y y y x
x Y

Y y y x x

Y y y x x

Y y y x x

Y y y x x

⎡ ⎤+⎣ ⎦=
⎡ ⎤
⎢ ⎥
+⎢ ⎥
⎢ ⎥
+⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣ ⎦

p p p p p
p

p p p

p p p

p p p

p p p

 

This posterior probability shows that the epistemic uncertainty 
level of individual CNT property is reduced to 
1 0.4002 0.5998− =  from the prior estimate of 
1 0.3140 0.6860− = .  

Notice that interval probability allows us to calculate 
posterior probabilities even no data are available. When the total 
ignorance of [0,1]=p  is applied, there is no risk of assuming 
certain prior probabilities. In addition, the calculation of interval 
posterior probabilities based on our generalized interval 
probability has a much simpler form than other forms of 
imprecise probabilities.  

In summary, the example in this section demonstrates that 
the observation or measurement at one scale can be used to update 
and assess uncertainty of a relevant quantity at a different scale. 
Notice that all random variables with imprecise probabilities 
include both aleatory and epistemic uncertainties. This process is 
also useful to validate models or hypotheses concerned with 
quantities that are difficult or costly to measure if intrinsic 
dependencies between quantities of two scales exist. 

5.3 Multi-Point Observation 

If there are multiple points of observation 
1
, ,

m
Y Y…  

available instead of just one, the estimates of 
1
, ,

l
x x…  may be 

more accurate.  
Theorem 5.3. Given ( )1 1

, , | , ,
M L

y y x xp … …  for variables 

1
, ,

L
x x"  at Scale X and 

1
, ,

M
y y…  at Scale Y, 

( )1 1
, , | , ,

M M
Y Y y yp … …  for observable 

m
Y ’s corresponding to 

m
y ’s ( 1, ,m M= … ), and the prior estimate ( )1

, ,
L

x xp … , the 

posterior imprecise probability ( )1 1
, , | , ,

L M
x x Y Yp … …  is 

obtained as 

 

( )

( ) ( )
( )

( )
( )

( )

1 1

1
1 1

11

1

1 1 11

1

, , | , ,

|
, ,

| , ,

|

dual | , ,

, ,

L M

M

m mm
ML M

m Lm

M

m mm
M

m L M Lm

L

x x Y Y

Y y
x x dy dy

y x x

Y y

y x x dy dy dx dx

x x

=

=

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥×⎣ ⎦=

⎡ ⎤
⎢ ⎥
⎢ ⎥×
⎢ ⎥
×⎢ ⎥
⎣ ⎦

∏∫ ∫ ∏
∏
∏∫ ∫

p

p
p

p

p

p

p

… …

… " "
…

" … " "
…

 

5.4 An Example of Multi-Point Observation 
We still use the CNT composite example in Section 5.2 to 

illustrate. The conductivity of the composite material is correlated 
with the concentration of CNT or the ratio of weights between 
CNT and polymer. The general trend for low concentrations is 
that more CNT leads to higher conductivity. Therefore, if the 
conductivities of two composites with different CNT 
concentrations, e.g. 1.0% and 2.0%, are measured as 

1
Y  and 

2
Y  

respectively, the estimate ( )xp  can be updated based on Theorem 
5.3. 

From the data in Ref. [53], the conductivity of composite 
with CNT concentration 2.0% is compiled and listed in Table 3. 
The c.d.f. and p-Box are plotted in Figure 6, where 

  ( )
( )2

 with 2%CNT 0.1 | 50

| 0.5412,1

conductivity

y x

ρ< <
⎡ ⎤= = ⎣ ⎦

p

p
 

is calculated based on Eqs.(5.2) and (5.3). 
 

Table 3: Conductivity measurements of CNT polymer composites 
with CNT concentration of 2.0wt% 

Maximum 
conductivity  
σ (Ω·m−1) 

Number of 
Samples 

Maximum 
conductivity  
σ (Ω·m−1) 

Number of 
Samples 

3.0×10−6 
1.0×10−4 
1.0×10−3 
1.0×10−2 
3.0×10−2 

1 
1 
1 
2 
1 

4.0×10−2 
5.0×10−2 
1.0×10−1 
1.0 

1 
2 
2 
1 

 

 
Figure 6: Empirical c.d.f. of composites conductivity with 2.0 

wt% of CNT from Ref. [53] 

 
With combined information including the one gained in 

Section 5.2, i.e. ( ) 0.3140,1x ⎡ ⎤= ⎣ ⎦p , 

( )1
| 0.1526,0.6121y x ⎡ ⎤= ⎣ ⎦p , ( )2

| 0.5412,1y x ⎡ ⎤= ⎣ ⎦p , 

( )1
| 0,1Cy x ⎡ ⎤= ⎣ ⎦p , ( )2

| 0,1Cy x ⎡ ⎤= ⎣ ⎦p , ( )| 0.8,0.9
i i
Y y ⎡ ⎤= ⎣ ⎦p , 
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and ( )| 0.8,0.9C C
i i
Y y ⎡ ⎤= ⎣ ⎦p  for = 1,2i  and, we can find 

 

( )

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2

1 1 2 2 1 2

1 1 2 2 1 2

1 1 2 2 1 2

1 1 2 2 1 2

1 1 2 2 1 2

1 1 2 2 1 2

1 1 2 2 1

| ,

| | | |

| | | |

| | | |

| | | |

| | | |

| | | |

| | |

dual

C C

C C

C C C C

C C

C

x Y Y

Y y Y y y x y x

Y y Y y y x y x
x

Y y Y y y x y x

Y y Y y y x y x

Y y Y y y x y x x

Y y Y y y x y x x

Y y Y y y x

⎡ ⎤
⎢ ⎥
+⎢ ⎥
⎢ ⎥
+⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦=

+

+

p

p p p p

p p p p
p

p p p p

p p p p

p p p p p

p p p p p

p p p ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

1 1 2 2 1 2

1 1 2 2 1 2

1 1 2 2 1 2

1 1 2 2 1 2

1 1 2 2 1 2

|

| | | |

| | | |

| | | |

| | | |

| | | |

0.6364,1

C

C C C C

C C C

C C C C C

C C C C C

C C C C C C C

y x x

Y y Y y y x y x x

Y y Y y y x y x x

Y y Y y y x y x x

Y y Y y y x y x x

Y y Y y y x y x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥+
⎢ ⎥
+⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣ ⎦

p p

p p p p p

p p p p p

p p p p p

p p p p p

p p p p p
 

Compared to the single-point observation in Section 5.2, the 
epistemic uncertainty level is reduced faster with more 
information of observation used to assess the small scale property. 
This multi-point observation is an enhancement of the single-
point observation and provides more information.  

5.5 Multi-Point Multiscale Observation 
As a further extension of the multi-point observation 

approach, the experimental measures can be conducted at two or 
more scales for data analysis.  

 
Theorem 5.4. Given ( )1 1

, , | , ,
M L

y y x xp … …  for variables 

1
, ,

L
x x"  at Scale X and 

1
, ,

M
y y…  at Scale Y, 

( )1 1
, , | , ,

N M
z z y yp … …  for variables 

1
, ,

M
y y…  at Scale Y and 

1
, ,

N
z z"  at Scale Z, ( )1 1

, , | , ,
m m

Y Y y yp … …  for observable 

m
Y ’s corresponding to 

m
y ’s ( 1, ,m M= … ), 

( )1 1
, , | , ,

n n
Z Z z zp … …  for observable 

n
Z ’s corresponding to 

n
z ’s ( 1, ,n N= … ), and the prior estimate ( )1

, ,
L

x xp … , the 

posterior probability ( )1 1 1
, , | , , , , ,

L M N
x x Y Y Z Zp … … …  is 

obtained as 

 

( )

( )
( )
( )
( )
( )

( )
( )
( )
( )

1 1 1

1 1

1 1
1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

, , | , , , , ,

, , | , ,

, , | , ,
, ,

, , | , ,

, , | , ,

, , | , ,

, , | , ,

dual , , | , ,

, , | , ,

L M N

N N
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L N M

N M

M L

N N

M M

N M

M L

x x Y Y Z Z

Z Z z z

Y Y y y
x x dz dz dy dy

z z y y

y y x x

Z Z z z

Y Y y y

z z y y

y y x x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
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( )

1 1 1

, ,

N M L
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dz dz dy dy dx dx

x
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫ " " "

…

 

5.6 An Example of Multi-Point Multiscale 
Observation 

In the design of actuator in Figure 3, a bending strain rate 
(M2/mV2) is used as one of the major metrics to measure the 
extent of bending movement for an actuator with respect to the 
squared electric field intensity. With the data in [50] and 
following the same procedure used in Sections 5.2 and 5.4, it is 
found that  

1

_ _ 0.06 |
( | ) [0.2924,1.0]

 with 1%CNT 0.1

bending strain rate
P z y
conductivity

⎛ ⎞<
= =⎜ ⎟⎜ ⎟<⎝ ⎠
p  

and 

2

_ _ 0.06 |
( | ) [0.3761,1.0]

 with 2%CNT 0.1

bending strain rate
P z y
conductivity

⎛ ⎞<
= =⎜ ⎟⎜ ⎟<⎝ ⎠
p .  

With ( ) 0.3140,1x ⎡ ⎤= ⎣ ⎦p , ( )1
| 0.1526,0.6121y x ⎡ ⎤= ⎣ ⎦p , 

( )2
| 0.5412,1y x ⎡ ⎤= ⎣ ⎦p , ( )1

| 0,1Cy x ⎡ ⎤= ⎣ ⎦p , ( )2
| 0,1Cy x ⎡ ⎤= ⎣ ⎦p , 

1
( | ) [0.2924,1.0]z y =p , 

2
( | ) [0.3761,1.0]z y =p , 

( )1
| 0,1Cz y ⎡ ⎤= ⎣ ⎦p , ( )2

| 0,1Cz y ⎡ ⎤= ⎣ ⎦p , ( )| 0.8,0.9
i i
Y y ⎡ ⎤= ⎣ ⎦p  and 

( )| 0.8,0.9C C
i i
Y y ⎡ ⎤= ⎣ ⎦p  for = 1,2i , ( )| 0.8,0.9Z z ⎡ ⎤= ⎣ ⎦p  and 

( )| 0.8,0.9C CZ z ⎡ ⎤= ⎣ ⎦p , we can find 
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( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

1 1 2 2 1 2 1 2

1 1 2 2 1 2 1 2
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Compared to the multi-point observation in Section 5.4, the 

epistemic uncertainty level is increased, which indicates that 
inconsistency of observations exists. 

6. CONCLUDING REMARKS 
The proposed GHMM is to represent aleatory and epistemic 

uncertainties simultaneously in analyzing multiscale systems, 
which is not available in existing multiscale uncertainty 
quantification methods. It captures coupling and dependency 
relationships between variables across different length scales in a 
generic way. The GHMM supports both parametric and non-
parametric models of distributions. When size or quality of data is 
not reasonable to build parametric models, the non-parametric 
approach can be used without the assumption of distribution 
types.  

The GHMM is based on a new theory of imprecise 
probability that has the form of generalized interval, where proper 
and improper intervals capture epistemic uncertainty in addition 
to probabilistic distributions for aleatory uncertainty. No 
assumptions of precise probability models and distribution types 
are required in imprecise probability if there is limited or no 
knowledge available. With an algebraic structure similar to the 
precise probability, the new generalized interval probability 
significantly simplifies the inference and reasoning compared to 
other forms of imprecise probabilities. The precise probability 
becomes a special case of the generalized interval probability, 
where the widths of interval probabilities are reduced to zeros. 
The proposed GHMM allows us to compute the propagation of 
uncertainty across length scales efficiently. Cross-scale 
information assimilation is enabled by a new definition of 
generalized interval Bayes’ rule.   

The proposed model and inference mechanisms help 
quantify multiscale uncertainty in systems design and analysis. 
The simplicity of the reasoning based on the proposed model 
shows the advantages and potentials for a wide variety of 
applications. However, further investigation of fundamental 
properties of the generalized interval probability and GIBR is 
required in order to understand the completeness and soundness 
of interval estimations with respect to epistemic uncertainty. One 

limitation of the GIBR is that completeness of the posterior 
probability cannot be checked directly by logic interpretation. In 
Eq.(5.1), ( )|

i
A Ep  and ( )iEp  appear twice (the original and 

its dual). One associated interpretation is ∀ , and the other is ∃ . 
The concatenation of the two predicates will be always ∃ . As a 
result, completeness of the epistemic component of ( )|

i
E Ap  

cannot be checked directly, even though soundness can be done 
efficiently [37]. Therefore, some algorithmic approaches are 
required.  
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APPENDICES 
A. Proof of Theorem 3.1 

Proof. ( ) ( ) ( )| | |A B C A C B C∩ =p p p  ⇔  

( ) ( ) ( ) ( ) ( )/ dual | / dualA B C C A C B C C∩ ∩ = ⋅ ∩p p p p p  

⇔   ( ) ( ) ( )/ dual |A B C B C A C∩ ∩ ∩ =p p p  ⇔   

( ) ( )| |A B C A C∩ =p p  . 

□ 
B. Proof of Theorem 4.1 

Proof. By the definitions of conditional probability in Eq.(3.1) 
and independence in Eq.(3.3), we have  
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□ 
C. Proof of Theorem 4.2 
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Proof. By the definitions of conditional probability and 
independence, we have 

( ) ( )
( )

( ) ( )
( ) ( ) ( )

, ,
| ,
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|

dual dual
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since ( ) ( )/ dual 1
k k
z z =p pC C . Similarly we derive 

( ) ( )| , |
k j i k j
z y x z y=p pC B A C B . 

□ 
D. Proof of Theorem 5.1 

Proof.  
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□ 
E. Proof of Theorem 5.2 

Proof.  ( ) ( )
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because of Theorems 3.1. 
□ 

F. Proof of Theorem 5.3 
Proof.  
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because of Theorems 3.1. If 
1
, ,

M
y y…  and their measurements 

1
, ,

M
Y Y…  are mutually independent, from Theorem 4.1, the 
above can be simplified further to 
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□ 
G. Proof of Theorem 5.4 is similar to the proof of Theorem 

5.3. 
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