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Image reconstruction is the transformation process from a reduced-order representation
to the original image pixel form. In materials characterization, it can be utilized as a
method to retrieve material composition information. In our previous work, a surfacelet
transform was developed to efficiently represent boundary information in material images
with surfacelet coefficients. In this paper, new constrained-conjugate-gradient based
image reconstruction methods are proposed as the inverse surfacelet transform. With
geometric constraints on boundaries and internal distributions of materials, the proposed
methods are able to reconstruct material images from surfacelet coefficients as either
lossy or lossless compressions. The results between the proposed and other optimization
methods for solving the least-square error inverse problems are compared.
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1 Introduction

During image transformation, by converting the original image
pixel values to a new data representation in a different domain
(e.g., the reciprocal space), we can utilize the new representation
for different purposes such as retrieving meta-level information
and image compression. The reverse process is to reconstruct
images from other representations.

The transformation can be either physical or non-physical proc-
esses. A well-known physical transformation process is tomogra-
phy. In tomography, a form of ray is radiated from the source and
passes through the scanned object in straight lines. A sensor col-
lects the data in a form of physical quantity, then the data are used
to reconstruct the image. This reconstruction is usually conducted
through the Radon transform [1]. Image transformation can also
be in the form of a non-physical process, such as image analysis
for pattern recognition and material characterization. The purpose
of these applications is usually to find a certain class of geometric
features from images via methods such as the Hough transform
[2,3].

As a generalization of the Radon transform from 2D to 3D with
the additional feature identification capability similar to the
Hough transform, a surfacelet transform [4] converts 3D image
pixels or voxels into surfacelet coefficients, which are the
integrals of voxel values over some small surfaces corresponding
to the external or internal singularities or boundaries of interest,
followed by a 1D wavelet transform, as shown in Fig. 1.

When surfacelet transform is applied in materials characteriza-
tion, it is also desirable that the surfacelet coefficients can be con-
verted back into voxel values. As also shown in Fig. 1, the inverse
1D wavelet transform can easily convert the surfacelet coefficients
back to surface integrals. However, recovering the image voxel
values from the surface integrals is not trivial. Although it is not
necessary to completely retrieve the original images in a lossy
compression scenario, it is required that the information of impor-

tant geometric and material features is not lost. In this paper, we
propose an inverse surfacelet transform method so that the surfa-
celet transform formalism is complete. The inverse transform is
accomplished by solving least-square error problems. Given
enough surfacelet coefficients, the original images can be fully
reconstructed losslessly. Furthermore, important geometric fea-
tures that have been recognized are preserved in the inverse trans-
form by applying constraints on the associated voxels in lossy
compressions.

When the original image data cannot be fully recovered for
lossy compressions during the reconstruction, constraints are usu-
ally added to improve the solution of this under-constrained prob-
lem. Existing approaches usually set up constraints simply as the
non-negativity of pixel values for the purpose of object recogni-
tion. No attempt has been made on geometric constraints which
are important in our applications in materials characterization.
Here the proposed method of inverse surfacelet transform with
geometric constraints from prior knowledge of materials is able to
reconstruct images from much less surfacelet data than the origi-
nal image pixels. The pair of forward and inverse surfacelet trans-
forms provide a feature-based image compression method.
Because this image compression method largely relies on the fea-
ture identification with existing surfacelets, images of various
geometric features of interest that match the existing surfacelets
are suitable for this approach. Compared to the traditional image
compression methods (e.g., Refs. [5] and [6]), the surfacelet trans-
form loses less information on the geometric features and pre-
serves the sharpness of boundaries, similar to the directional
wavelet methods that are reviewed in Sec. 2.3. Therefore, it is
more suitable for processing images of structure and materials
compositions than other generic image processing methods such
as wavelets and Fourier-based approaches.

The overview of the complete process of surfacelet transform
and inverse surfacelet transform is shown in Fig. 1. In the surface-
let transform, surface integrals are obtained from image pixels.
1D wavelet transform is then applied to obtain wavelet coeffi-
cients. In the inverse surfacelet transform, the inverse 1D wavelet
transform easily retrieves surface integrals from wavelet coeffi-
cients. The scope of this paper is denoted by the dashed box in
Fig. 1. The inverse problem of retrieving image pixel values
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from surface integrals is solved based on three constrained conju-
gate-gradient-based methods with combinations of boundary con-
straints and inner constraints on internal distributions. The
features that determine the boundary constraints are identified
from the surfacelet transform process. The locations of internal
pixels in the inner constraints can then be calculated from the fea-
tures. Furthermore, different levels of rigidity associated with the
constraints proposed in this paper provide more flexibility in con-
trolling the constraints than a single-level approach.

In the remainder of the paper, we give a brief introduction of
the surfacelet, surfacelet transform, their origins, and the closely
related methods for image reconstruction in Sec. 2. In Sec. 3, three
numerical methods for the inverse surfacelet transform are
described. Examples are demonstrated and compared in Sec. 4.

2 Related Work

The surfacelet is the basis of the proposed methods in this pa-
per. A surfacelet is a combination of a wavelet and an implicit sur-
face. It is designed for multi-resolution and multi-scale materials
modeling. The surfacelet transform was proposed such that
images are transformed into surfacelet representations and geo-
metric features in images can be identified. In this section, the rel-
evant background information is provided. The surfacelet
transform is a generalization of the Radon transform, which is
introduced in Sec. 2.1. The proposed inverse surfacelet transform
is based on the feature identification result of the surfacelet trans-
form. Existing methods of image transformation for feature identi-
fication are summarized in Sec. 2.2. The surfacelet is also related
to the so-called directional wavelet methods, which are introduced
in Sec. 2.3. The surfacelet and the surfacelet transform are intro-
duced in Sec. 2.4. In this paper, conjugate-gradient-based methods
are used to solve the least-square error problem in the inverse sur-
facelet transform. The related conjugate-gradient-based iterative
algorithms are also discussed in Sec. 2.5.

2.1 Radon Transform and Its Inverse in Tomography. To-
mography is a technique to determine the internal structure and
materials composition of an object using different imaging modal-
ities, including X-ray, computed tomography, ultrasound, mag-
netic resonance, microwave, and others. By converting from
linear integrals of sensor data to image pixels, this non-invasive
imaging technique allows for the visualization of the internal

structures of an object. The Radon transform and inverse Radon
transform [1] are the mathematical bases for reconstructing tomo-
graphic images from measured projection. The Radon transform
is given by

pðr;/Þ ¼
ð1
�1

f ðr cos /� s sin /; r sin /þ s cos /Þds

where x and y are the horizontal and vertical coordinates.
x cos /þ y sin /� r ¼ 0 defines a projection line, where r is the
shortest distance from the origin to the line, and / is the angle
formed by the distance vector. It can be rewritten as

pðr;/Þ ¼
ð1
�1

ð1
�1

f ðx; yÞdðx cos /þ y sin /� rÞdxdy

where d is the Dirac delta function.
The geometric interpretation of the Radon transform is the inte-

gral along the straight line projected through the scanned target.
In parallel-beam tomography, r is varied so that a detector
acquires parallel projections. The detector rotates circularly
around the scanned object so that / also varies. Then integrals
over the whole r � / domain can be obtained.

The task of tomographic reconstruction is to find f ðx; yÞ given
pðr;/Þ. Therefore, this process is also called inverse Radon trans-
form or backprojection. Mathematically, the inverse Radon trans-
form is defined as

f x; yð Þ ¼
ð1

0

ðp

0

p r;/ð Þd x cos /þ y sin /� rð Þd/dr

Since Radon obtained the inverse formula of Radon transform
in 1917 [1], many tomographic reconstruction techniques
have been proposed. The most famous one is the Direct Fourier
reconstruction. In this method, the solution to the inverse Radon
transform is based on the projection-slice theorem. The
projection-slice theorem [7] is given by

Pðt;/Þ ¼ Fðt cos /; t sin /Þ

where Fðtx; tyÞ, with parameters tx and ty, is the 2D Fourier trans-
form of f ðx; yÞ. The theorem states that the 2D Fourier transform

Fig. 1 The process of coupled surfacelet transform and inverse surfacelet transform
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of f ðx; yÞ along a direction corresponding to the inclination angle
/ and an orthogonal one to the direction, is given by the 1D Fou-
rier transform of the Radon transform result pðr;/Þ with / fixed
as Pðt;/Þ. Based on the projection-slice theorem, the inverse Ra-
don transform can be realized by three steps: (1) 1D fast Fourier
transform (FFT) along the projection direction to build a polar 2D
Fourier space; (2) polar to Cartesian resampling; and (3) inverse
2D-FFT to obtain the reconstructed slices.

2.2 Image Transformation Methods for Feature
Identification. Image transformation can be applied in feature
identification. Other than tomography, the Radon transform is also
applied in feature identification for materials characterization. For
instance, it has been applied to identify lines in 2D images [8–10].

The Hough transform [2,3] was initially proposed to identify
lines in images. Later it was extended by Ballard [11] to recognize
arbitrarily complex shapes. Recently, the Hough transform was
applied in the recognition of spherical features in 3D microstruc-
tural images [12].

2.3 Directional Wavelets: Wedgelet, Curvelet, and Surflet.
Wavelet or Fourier transform performs well for objects with point
singularities of zero dimension. However, they are not effective in
dealing with edge discontinuities of one dimension. Several
approaches have been proposed to solve this issue, including
wedgelet [13] and curvelet [14], as well as their close relatives
such as ridgelet [15], contourlet [16], beamlet [17,18], and platelet
[19].

The wedgelet approach [13] partitions 2D space into squares as
building blocks bounded by line segments. 2D images then can be

approximated by a collection of specifically chosen wedgelets.
The curvelet [14] is an extension of the standard wavelet function,
which includes the concepts of statistical regression and a Radon
transform. It was developed to compress images containing con-
tinuous line or curve segments, where the standard wavelets are
not efficient. The basic idea is to introduce an angular element in
the wavelet function. If wavelets can be thought of as “fat” points
with certain widths of local support, curvelets are “fat” needles.

In 3D analysis, Ying et al. [20] extended the 2D curvelet trans-
form to 3D with similar frequency space tilings. Similarly, Lu and
Do [21] extended contourlets to three dimensions in a discrete
space. Chandrasekaran et al. [22] extended wedgelets to high-
dimensional space and approximate functions with polynomial
building blocks, called surflets, instead of linear building blocks
in wedgelets.

2.4 Surfacelet and Surfacelet Transform. Recently, a surfa-
celet model [4] was proposed to construct the geometric boundary
and internal material distribution of heterogeneous materials. As
combinations of wavelets and implicit surfaces, surfacelets keep
both the multi-resolution/multi-scale nature of wavelets and the
advantage of implicit surfaces in constructing complex 3D geome-
try. Three examples of surfacelets: 3D ridgelet, cylindrical surfa-
celet (or cylinderlet), and ellipsoidal surfacelet (or ellipsoidlet)
are, respectively, defined as follows.

A 3D ridgelet that represents plane singularities is defined as

wa;b;a;b rð Þ¼a�1=2w a�1 cosbcosa �xþcosbsina �yþsinb �z�bð Þ
� �

A cylindrical surfacelet is defined as

wa;l;a;b;r1;r2
rð Þ ¼ a�1=2w

a�1½r1ðcos b cos a � xþ cos b sin a � yþ sin b � z� lÞ2

þ r2ð� sin a � xþ cos a � yÞ2�

 !
(1)

And an ellipsoidal surfacelet is defined as

wa;b;a;b;r1;r2 ;r3
rð Þ ¼ a�1=2w a�1

r1 cos b cos a � xþ cos b sin a � yþ sin b � z� bð Þ2

þr2 � sin a � xþ cos a � yð Þ2

þr3 � sin b cos a � xþ sin b sin a � yþ cos b � zð Þ2

2
664

3
775

0
BB@

1
CCA

where r ¼ x; y; zð Þ is the location in the Euclidean space, w is a
wavelet function, r1, r2, and r3 are shape parameters that are fixed
during transformation, a and b are orientation parameters, a is the
scale parameter, and l is the position parameter. The geometric
interpretations of the isosurfaces for the three surfacelets for
plane, cylindrical, and ellipsoidal singularities are shown in
Fig. 2.

The surfacelet transform constructs the surfacelet model from
3D materials images. Using a cylindrical surfacelet as the exam-
ple, the surface integrals on surfacelets are calculated and
arranged in a 3D matrix with a, b, and l as indices, as illustrated
in Fig. 1. Then a 1D wavelet transform along the l axis direction
is performed for all a’s and b’s. The results are surfacelet coeffi-
cients for a particular angle. In general, the dimension of the

Fig. 2 Geometric interpretation of surfacelets
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matrix in the transformed space corresponds to the number of ori-
entation and position parameters used in the surfacelet.

We are also interested in reconstructing the original material
images so that we are able to visualize the generated material dis-
tribution before physical experiments. In other words, we need the
method of inverse surfacelet transform. As shown in Fig. 1, the
surface integrals can be directly obtained from the surfacelet coef-
ficients via the inverse 1D wavelet transform. However, it is not
as straightforward to retrieve the individual image pixel values
from the surface integrals. In this paper, we propose numerical
algorithms to calculate individual image pixel values from surface
integrals by solving constrained least-square error problems based
on an iterative scheme. The relevant existing conjugate-gradient
algorithms to solve constrained least-square error problems for
image reconstruction are summarized next.

2.5 Conjugate-Gradient-Based Iterative Algorithms. The
conjugate gradient method is a well-known numerical method for
solving least-square error problems by iteratively minimizing the
squared norm of the difference between the measured and the esti-
mated data. However, such methods are not widely applied in
image reconstruction. Limited development has been made in this
class of methods [23–26]. One possible reason for the limitation is
that the conjugate-gradient-based methods can only solve over-
constrained problems. For image reconstruction in tomography,
the number of projections should be larger than the number of pix-
els. However, the available data of projections are usually
incomplete.

Because of the incomplete data of projections, additional con-
straints are needed to find reasonable solutions of the linear equa-
tion system. Tam and Perez-Mendez [5] and Kawata and
Nalcioglu [6] used the so-called object-boundary constraint for
geometric information. However, these two methods have three
major disadvantages. First, the pixels are simply classified to be
those inside and outside the object, and there are no independent
constraints applied on the boundary pixels. These methods are,
therefore, not suitable for image reconstruction in materials char-
acterization, where boundaries and interfaces that are often found
in materials should be clearly defined. Second, the pixels outside
the object in these methods were simply constrained to be zero,
leading to the result that the image information of outer portion is
completely lost and not reconstructed. More importantly, the pixel
positions are manually assigned in both methods, which is not ap-
plicable for complex and random object distributions, such as in
the images of composites.

In this paper, we develop a new constraint-based conjugate-gra-
dient iterative approach for image reconstruction. Our method is
able to identify and reconstruct the external or internal boundaries
in materials. Based on the constrained conjugate gradient
approach, we propose a method of inverse surfacelet transform to
retrieve the image pixel values from the surface integrals so that
the surfacelet transform formalism is complete. Through matching
the geometries of surfacelet primitives, this method is able to
automatically identify the position and orientation of the object
boundary and apply different constraints on the boundary, which
provides more control on the constraints according to material
properties. The forward and inverse surfacelet transforms provide
a method for knowledge-based image compression that is espe-
cially suitable for images of materials with microstructures, since
the components in such materials are usually known to us.

3 Inverse Surfacelet Transform

In the surfacelet transform, the surface integrals can be obtained
by the summation of all the pixel values on the surfacelets. For
instance, for each integral tqða;b;lÞ corresponding to a cylinderlet
with the orientation parameters a and b, and the position parameter
l, there exists a simple linear relationship of summation to approxi-
mate the integral. Here, l is the translation along x-axis. a 2 ½0; 2pÞ
and b 2 ½�p=2;p=2� are the angular parameters corresponding to

rotations around z- and y-axes in the Euclidean space, respec-
tively. When this summation is applied to all of the surface inte-
grals with P pixels and Q surfacelets, we can obtain

AV ¼ T (2)

where A is a Q� P matrix with coefficient components aqp as ei-
ther 1 or 0, V ¼ ðvpÞ is a P-dimensional vector for pixel values
vp’s (p ¼ 1;…;P), and T ¼ ðtqÞ is a Q-dimensional vector for sur-
face integrals tq’s (q ¼ 1;…;Q). aqp ¼ 1 if the corresponding
pixel is on the surfacelet; and aqp ¼ 0 otherwise. Suppose that the
numbers of discretized l, a, and b are u, f, and g, respectively.
The number of surface integrals is Q ¼ u� f � g. At the same
time, if the dimension of each image is L�M and there are N par-
allel images, then the total number of pixels is P ¼ L�M � N. It
should be noted that the number of pixels on a surfacelet varies
from surfacelet to surfacelet, which means that the numbers of
ones and zeros on each row of matrix A vary. Furthermore, a zero
integral will be obtained if the surfacelet is positioned or oriented
such that it is out of the image domain. In this case, it does not pro-
vide useful information and should be avoided if possible. When a
surfacelet only covers the pixels that are also covered by other surfa-
celets, dependency between rows in the coefficient matrix A occurs,
which is very likely to occur. As a result, the Q linear equations with
non-zero integrals are not necessarily linearly independent.

The solution of Eq. (2) depends on the relationship between P
and Q. It is obvious that when P ¼ Q and the Q linear equations
with non-zero integrals are independent, there is only one exact
real solution. When P < Q, the unknown vp’s are over-
constrained and there is no exact solution. When P > Q, the
unknown vp’s are under-constrained and there are an infinite num-
ber of solutions. Even in the ideal case of P ¼ Q, it is possible
that a zero integral occurs or the equations are dependent. Then
the coefficient matrix A is singular, and the equation will have an
infinite number of solutions.

Our proposed approaches solve both cases of P < Q and
P > Q. The case of P < Q applies when we need to restore image
data losslessly. In contrast, P > Q is the case when the surfacelet
transform is used in lossy compression, which is more common in
applications. In the inverse surfacelet transform, classic numerical
methods are utilized to solve the case of P < Q. A new prior-
knowledge-based image reconstruction method is proposed here
for the case of P > Q, where the boundaries of the key geometric
features known a priori are automatically identified and located by
the primitives of surfacelets. Then the boundary and/or inner pix-
els are constrained based on the prior knowledge in order to add
more conditions to those from surfacelets. A constrained conju-
gate gradient algorithm is used to treat these conditions as inde-
pendent constraints. In addition, a new semi-rigid constrained
conjugate gradient algorithm is also proposed to provide a more
flexible way to constrain pixels.

We will describe the inverse surfacelet transform without con-
straints in Sec. 3.1, and the inverse surfacelet transform with con-
straints in Sec. 3.2.

3.1 Inverse Surfacelet Transform Without Constraints.
Solving the linear equation BX ¼ b is equivalent to solving

min FðXÞ ¼ 1

2
XTBX� XTb

which can be done by convex quadratic programming.
In the case of P < Q, approximation methods are available to

numerically solve the over-constrained problems. The two most
used ones are the general least-square and conjugate gradient
methods. Both are based on the minimization of least-square
errors. Equation (2) is then formulated as

min
XQ

q¼1

ðAq�V� tqÞ2
 !
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where Aq� is the qth row of matrix A. The solution of the general
least-square method is obtained by V ¼ ðATAÞ�1

ATT, where A is
not necessarily a square matrix.

The conjugate gradient method is an iterative approach to
search for the numerical solution of linear equation systems with a
symmetric and positive-definite coefficient matrix. The idea is
that we iteratively search for V as the solution of

min
V

1

2
VTBV� VTb (3)

corresponding to BV ¼ b, where B is a symmetric and positive-
definite matrix. Since matrix A in Eq. (2) is not symmetric and
positive-definite, we cannot directly apply to the method. Rather,
we transform the equation to

ATAV ¼ ATT (4)

and let ATA ¼ B and ATT ¼ b, since ATA is symmetric. Addi-
tionally, because ti � 0, TTT ¼ ðAVÞTAV ¼ VTATAV > 0.
Therefore, ATA is also positive-definite. Thus, by applying the
conjugate gradient method to Eq. (4), we can solve the linear
equations.

Although we are able to obtain a numerical solution for the
case of P < Q, it contradicts to our initial intention of surface-
lets, which is designed for image compression. As a result, we
also need to cope with the case of P > Q, where there are many
solutions of the minimization problem in Eq. (3). Extra knowl-
edge with respect to the materials applications acting as con-
straints can help us to narrow the scope of solutions, as
discussed in Sec. 3.2.

3.2 Inverse Surfacelet Transform With Constraints

3.2.1 General Procedure. The main goal of inverse surfacelet
transform with constraints is to add more equations as constraints
in an under-constrained system so as to reduce the number of pos-
sible solutions and convert it to an over-constrained system. In
order to make P < Q possible, even when limited surfacelets are
available, additional constraints based on the prior knowledge of
materials can be added. One possible type of constraint is based
on geometry, or the shape of the object of interest that is already
known in the images. Take fibrous porous media as an example.
Suppose we already know the geometry of the fibers, and we are
generally more interested in obtaining the information of orienta-
tions and positions of the fibers than the detailed microstructures
of the fibers and matrix from reconstruction. As a result, the pixels
on the surfaces of the fibers are more important than others. By
properly restricting the pixel values of the interested object based
on prior knowledge, the additional constraints provide more infor-
mation of the object. Since the object is identified as a geometric
feature in the inverse surfacelet transform, hereafter, we call the
object feature.

In the forward surfacelet transform, the type and parameters of
surfacelets are determined by the geometric similarity between
the material compositions and some surfacelet primitives, such as
3D ridgelet, cylinderlet, and ellipsoidlet. For instance, images for
fibers in composites can be reconstructed by the cylinderlet,
whereas those for nano ellipsoidal fillers in nano-reinforced com-
posites can be reconstructed by the ellipsoidlet. In grey scale
images, white pixels have the value of 255, black ones have 0,
and grey ones have intermediate values according to the corre-
sponding grey scales. Usually, the geometry in the images of
materials that we are interested in is brighter than other regions.
The surfacelets that cover the feature boundary thus have the larg-
est integral values. The shape and dimension of the surfacelet
should be chosen to simulate the reconstructed geometry bound-
ary with the largest integral value achieved when the surfacelet is
overlapped with the feature boundary.

Boundary features are identified as follows. If there is more
than one target feature to be reconstructed, such as many fibers in
composite materials, it is likely that the largest integrals for each
target are very close to each other and it is difficult to differenti-
ate. In this case, the integrals can be grouped into different clus-
ters according to their positions and orientations, and the largest
integral in each cluster determines a feature boundary.

Once the corresponding pixels are identified by the rule of the
largest surface integral described above, their values are set to be
equal based on the fact that the grey scale of the geometry is rela-
tively uniform. The equal values are transformed into additional
linear equations by each two adjacent pixels forming an equation,
such as vp ¼ vpþ1. The set of newly formed equations is repre-
sented in a matrix form as CV ¼ 0, where C is the S� P con-
straint coefficient matrix for S constraints with components cspas
�1, 0, or 1. csp ¼ 1 when the corresponding voxel is on the left of
the equation. csp ¼ �1 when the corresponding voxel is on the
right of the equation, and csp ¼ 0 when the corresponding voxel is
not in the equation. The S linear equations are from the Sþ 1 pix-
els with equal values on the boundary. Since the number Sþ 1 is
usually very large, when these equations are combined with Q
equations from surface integrals, the number of conditions we
know can be dramatically increased. When the total number of
equations is larger than the number of unknowns, the number of
solutions is no longer infinite. As a result, fewer surfacelets are
required so that the surface integral data needed for image recon-
struction can be reduced and compression can be achieved.

Furthermore, if the inner structure or geometry of the feature is
not of interest, or it has identical grey scale with the boundary
such as the inside portion of fibers, the constraint can be further
extended such that both the boundary pixel values and the inner
ones are set to be equal. Thus, the number of constraint equations
can be further increased and the data needed for image reconstruc-
tion can be further compressed.

3.2.2 Inverse Surfacelet Transform With Soft Constraints. If
the constraint equations are directly added to the ones from sur-
face integrals to form a new set of equations, all equations are
treated equally. The equation set is formulated as

A

C

" #
V ¼

T

0

" #

The requirement is that after the addition of constraints, the total
number of equations is larger than the number of pixels. In other
words, all equations have the same weight. In this case, we call
the constraints soft, because these constraints will not necessarily
be all satisfied in solving the over-constrained system by the least-
square methods.

3.2.3 Inverse Surfacelet Transform With Rigid Constraints. If
the constraint equations are treated separately from the ones from
surface integrals and more rigidly restricted, the constraints weigh
more. In other words, the constraints are stronger than otherwise
being directly added to the equations from surface integrals. In
this case, we call the constraints rigid. It is solved by the con-
strained conjugate gradient method with constraints separate from
the equation system, similar to Ref. [27]. This is an extension of
the conjugate gradient method described in Sec. 3.1. The problem
can be described as

min
V

1

2
VTATAV� VTATT

s:t: CV ¼ 0

(5)

The conjugate gradient algorithm under rigid constraints to
solve Eq. (5) is listed in Table 1. The main procedure is an
Arnoldi style iteration. The enforcement of rigid constraints is by
a projection of the residual r to z through an orthogonal projection
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matrix H ¼ ZðZTZÞ�1
ZT , where Z forms a basis for the null

space of C that is CZ ¼ 0. It should be noted that in this method,
it is not required that P<Q for matrix A.

3.2.4 Inverse Surfacelet Transform With Semi-rigid
Constraints. The method with soft constraints in Sec. 3.2.2 does
not enforce the constraints, whereas the one with rigid constraints
in Sec. 3.2.3. requires all constraints to be satisfied. Here we also
provide a third option with more flexibility about the constraints,
which is called semi-rigid. The semi-rigid constraints are realized
through an exterior penalty function, which includes constraints in
the objective function. The rigidity of the constraints can be con-
trolled by their weights in the objective function. With the exterior
penalty function, Eq. (5) can be transformed into an optimization
problem with the objective function only as

1

2
VTATAV� VTATTþ

XS

i¼1

wiðCi�VÞ2

where Ci� is the ith row vector of the constraint coefficient matrix
C. When all weights are set to be equal, the objective function can
be further simplified as

1

2
VTATAV� VTATTþ wVT

XS

i¼1

CT
i�Ci�V (6)

In order to use the conjugate gradient method to solve the new
objective function in Eq. (6), it needs to be further transformed
into

VTGV� VTATT

where G ¼ 1
2

ATAþ w
PS

i¼1 CT
i�Ci�.

In our method of semi-rigid constrained conjugate gradients,
some constraints can be treated in a different way other than
strictly soft or rigid. For instance, in a fiber, the constraints on the
internal pixels can be softer than the ones for the boundary pixels.
Then the weights associated with the constraints for the internal
pixels are smaller than the ones for the boundaries. Once the rigid-
ity is controlled by assigning different weight values, softer con-
straints can be introduced based on the inner pixels in addition to
the boundaries. With more constraints, the number of required

surfacelets can be potentially further reduced without losing the
information of pixels outside the object boundary.

4 Examples and Results

In this section, examples and results for the methods described
in Sec. 3 are demonstrated and compared. Experiments were con-
ducted in Matlab. For all examples, nine images of a small portion
of a nano-fiber composite are used. The images are in the format
of JPEG, one of them is shown in Fig. 3(a). The full size of the
picture is 80� 80. Thus, the total number of pixels is
P ¼ 80� 80� 9 ¼ 57; 600, and the dimension of the coefficient
matrix A is large. The original images are down sized to 20� 20,
as shown in Figs. 3(b) and 3(c), and used in the demonstration.
Although the blurring image in Fig. 3(b) and the non-blurring
image in Fig. 3(c) are visually different, they are exactly the same
in terms of pixel values. The images are then converted into grey
scale in Matlab. The total number of pixels used in the following
examples is P ¼ 20� 20� 9 ¼ 3600. The nine resized images
are shown in Fig. 4. They are slightly different from each other.

To quantitatively compare the results of different methods, we
introduce the error measurement

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P

XP

i¼1

ðVi � V0
i Þ

2

vuut

where V0
i is the ith pixel value in the original images and Vi is the

one from the reconstructed images.

Table 1 Rigid constrained conjugate gradient algorithm

INPUT: matrix A, constraint matrix C, initial guess V0 OUTPUT: Vkþ1

1 T :¼ T0

2 H :¼ ZðZTZÞ�1
ZT where CZ ¼ 0

3 r0 :¼ ATAV0 � ATT

4 z0 :¼ Hr0

5 d0 :¼ z0

6 k :¼ 0
7 Repeat
8 tk :¼ �rT

k dk

dT
k ATAdk

9 Vkþ1 :¼ Vk þ tkdk

10 rkþ1 :¼ rk þ tkATAdk

11 xk :¼ rT
kþ1zkþ1

rT
k zk

12 dkþ1 :¼ �zkþ1 þxkdk

13 If dT
kþ1dkþ1 is sufficiently small

14 Exit loop
15 End If
16 k :¼ k þ 1
17 End repeat
18 Return Vkþ1

Fig. 3 The full and down-sized images of nano-fiber
composites

Fig. 4 The original nine parallel images of nano-fiber compo-
sites for reconstruction
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The cylinderlet is used to reconstruct the material images for
all examples. The shape parameters of the cylinderlet are r1 ¼ 1
and r2 ¼ 2. The ranges of the orientation parameters are set to
be l 2 ð�D=2;D=2Þ ¼ ð�14:84; 14:84Þ, a 2 ½0; 2pÞ and
b 2 ½�p=2;p=2� to ensure that the surfacelets cover all of the pix-
els, where D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
202 þ 202 þ 92
p

is the diagonal length of the 3D
images.

4.1 Without Constraints. Reconstruction with both the least-
square and conjugate gradient methods without constraints was
conducted. The result shows that the full reconstruction of the
original images occurs when u ¼ 80, f ¼ 80, and g ¼ 5. The total
number of surfacelets are Q ¼ u� f � g ¼ 32; 000 and Q > P.
These threshold values of u, f , and g allow all of the pixels in the
images to be covered by the surfacelet boundaries without missing
any. With a careful comparison between pixel values, it is con-
cluded that the least-square and conjugate gradient methods pro-
vide the same reconstruction result with these 32,000 surfacelets.
The original images are retrieved losslessly.

4.2 With Constraints

4.2.1 Method of Automatic Fiber Boundary Identification.
For the example of the nano-fiber composites, the positions and
orientations of the fibers are of interest. Geometric information of
the fibers, such as the shape and size as prior knowledge to us, can
be utilized as additional constraints. The constraints are imposed
by examining the surfacelet integrals. As shown in Fig. 5, the cyl-
inderlet denoted by the solid circle is overlapped with a fiber sur-
face and has a larger integral value than others such as the two
denoted by the circles of dashed line. Therefore surface integrals
help determine the positions and orientations of the nano-fibers. If
there is only one nano fiber, its position and orientation can be
directly estimated by the cylinderlet with the largest integral. This
can be realized by sorting the surface integrals from the results of
forward surfacelet transform. If there is more than one fiber, the
largest integral for one fiber can be very close to the one for
another fiber, because some surfacelets are overlapped with multi-
ple fibers. In this case, the integrals are grouped into different
clusters according to their positions and orientations, and the larg-
est integral in each cluster determines a fiber. As the constraints,
the pixel values on the surfacelets can be set to be equal to each
other.

As can be seen from Fig. 3, there are four fibers in the images.
However, there is only one complete fiber. As a result, the bound-
ary integrals for other fibers are much smaller than that of the
complete one. The nano fibers are close to each other, so the small
surfacelet clusters of the partial fibers could be mixed with the
complete one. Therefore, it is not easy to identify those partial
fibers. This problem will be addressed in future work. In this

paper, we only identify complete fibers, and there is only one in
this example.

4.2.2 Soft Constraints. In the case of soft constraints, the con-
straints of equal pixel values at the fiber boundaries are directly
added to the original set of equations. The number of pixels on the
identified fiber boundary is 340. Therefore, 339 constraint equa-
tions are added. In other words, the dimension of the constraint
matrix C is 339� 3600. As stated in Sec. 3, the requirement is
that the total number of equations is larger than the number of pix-
els. The results with the least-square method are shown in Fig. 6,
where the number of surfacelets used from the forward surfacelet trans-
form is Q ¼ 58� 58� 4 ¼ 13; 456, Q ¼ 60� 60� 4 ¼ 14; 400,
and Q ¼ 70� 70� 5 ¼ 24; 500, respectively. Since the nine
resulting images are similar, only one image is shown in Fig. 6 for
comparison. It can be seen that when Q ¼ 70� 70� 5 ¼ 24; 500,
the error e¼ 4.8 is the smallest among the three. The images in
this case are very close to the original ones. Similar results are
obtained with the conjugate gradient method, as shown in Fig. 7.
Thus, with the soft boundary constraints, the number of surface-
lets required to retrieve the original images is smaller than the one
in the methods without constraints in Sec. 4.1. However, the num-
ber of surfacelets is still larger than the number of pixels.

In order to further increase the number of constraints, the inner
pixels of the surfacelets are also set to be equal but different from
the boundary ones. Therefore, the problem can be formulated as

A

C1

C2

2
64

3
75V ¼

T

0

0

2
64

3
75

where C1 is the constraint coefficient matrix for fiber boundary
pixels and C2 is the constraint coefficient matrix for fiber inner
pixels. Since the number of inner pixels is large, the increase of
the number of constraint equations is significant. The number of
pixels inside the identified fiber boundary is 995. Therefore, the
dimension of the constraint matrix C2 is 994� 3600. The results
of the method are shown in Fig. 8. When the number of surface-
lets is too small as in the case of Fig. 8(a), the effective (linear in-
dependent) equations can be fewer than the unknown. Therefore,
the solution is actually not unique.

From the results, it can be seen that the number of surfacelets
can be further reduced from the ones with only boundary

Fig. 5 The cylinderlet overlapped with a fiber surface has the
maximum integral

Fig. 6 Reconstruction results of soft boundary constraints
with the least-square method

Fig. 7 Reconstruction results of soft boundary constraints
with the conjugate gradient method
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constraints as in Figs. 6 and 7 to achieve similar results. After the
addition of constraining equations, the equation system becomes
over-constrained. The numerical solutions by minimizing the
errors provide approximations of the true values.

4.2.3 Rigid Constraints. When rigid constraints of boundaries
are applied, the results are shown in Fig. 9. Compared to the
method with soft fiber boundary and inner constraints, the method
with rigid boundary constraints is able to reconstruct the image by
much fewer surfacelets with similar errors. More importantly, this
method realizes image compression, which is one of the important
intentions of the surfacelet transform. It can be seen in Fig. 9(c)
that as few as 1875 surfacelets can be used to reconstruct 3600
pixels with a small error. The compression rate is approximately
50% in this example. All of the resulting nine images are shown
in Fig. 10.

Further compression may be realized if the inner pixels are also
constrained. In other words, equality constraints are separately
applied on both fiber boundary and fiber inner pixels. The problem
can be formulated as the objective function of Eq. (5) with con-
straints C1V ¼ 0 and C2V ¼ 0. The results are shown in Fig. 11.
It can be seen that the number of surfacelets is significantly
reduced.

The drawback of this method is that although the key features
of the complete fiber remain, the detailed information about the
partial fibers is lost. The reason is that the constraints have a sig-
nificant influence on the solution. Therefore, weaker constraints
may provide better results.

4.2.4 Semi-rigid constraints. From the results of Sec. 4.2.3, it
can be seen that some tradeoffs are needed in selecting the recon-
struction methods. When the rigid constraints are applied on the
boundary only, the number of surfacelets is greater than when the
rigid constraints of boundary and inner pixels are both applied,
where the number of constraints increases. However, the errors
with the rigid boundary constraints are smaller. Here, we show
that the method of semi-rigid constraints provides a third option
with more flexibility.

The results for semi-rigid fiber boundary and inner constraints
with different combinations of weights are shown in Figs. 12–14,
respectively. It can be seen that when penalty weights for bound-
ary pixels are equal to 1� 1010, the results have the smallest error.
Compared to the method with rigid fiber boundary and inner con-
straints, the results of the semi-rigid method have clearer fiber
boundaries. Compared to the method with only rigid fiber boundary

constraints, although the error is similar, the pixels inside the fiber
have smoother transition, which increases the contrast between
the pixels on and off the fiber. Although the contrast is also
increased if rigid constraints are added on both boundaries and
inner pixels as in Fig. 12, the boundary is not as clear as in
Fig. 13.

The new constrained conjugate gradient methods developed in
this paper can be generalized to the image reconstruction of any
composite material with emphasis on the locations and orienta-
tions of the boundaries of the fillers.

5 Evaluation and Comparison

The quasi-Newton method with line search is used as a compar-
ison with the proposed constrained conjugate gradient methods.
When the constraints are only applied on the boundary, the results
for different numbers of equations are as shown in Fig. 15.

The comparison of the results from the different methods is
shown in Table 2. The experiments are conducted on a personal
computer (PC) with 2.00 GHz central processing unit (CPU) and
4.00 GB random-access memory (RAM). The number of equa-
tions used in the comparison is 25� 25� 3 ¼ 1875, and the con-
straints are for the boundary pixels only.

The robustness of the methods is evaluated by using four differ-
ent initial guesses (0, 1, 100, and 255) for all pixel values to start
the optimization algorithms. The initial guesses of 0 and 255 are
the lowest and highest possible pixel values. Therefore, they
are the worst cases as initial guesses. The initial guesses of 1 and
100 are two samples of intermediate values. If the optimization

Fig. 8 Reconstruction results of soft fiber boundary and inner
constraints

Fig. 9 Reconstruction results of rigid fiber boundary
constraints

Fig. 10 Full reconstruction results of rigid fiber boundary
constraints in the case of Q 5 25 3 25 3 3 5 1875. The error is
e 5 13.2.

Fig. 11 Reconstruction results of rigid fiber boundary and
inner constraints
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results of an algorithm are nearly the same for those four guesses,
the algorithm is regarded as being robust. Our results show that
the differences between the resulting errors from the different ini-
tial guesses in our methods are all less than 5. Therefore the meth-
ods are robust. As can be seen in Table 2, the conjugate gradient
algorithm with rigid constraints and the quasi-Newton method
with line search show the best results in terms of error and time ef-
ficiency. Between the quasi-Newton method and the constrained
conjugate gradient algorithm, the latter shows slightly worse
results with greater error but much better computational effi-
ciency. The constrained conjugate gradient method is 20 times
more efficient than the quasi-Newton method. The constrained

conjugate gradient method realizes image compression with good
reconstruction results. It can be seen that 1875 surfacelets can
reconstruct 3600 pixels reasonably well with small errors. The
rigid and semi-rigid constrained conjugate gradient methods both
show similar and good precision, but they also have different
advantages. The rigid method has significantly higher computa-
tional efficiency, whereas the semi-rigid method produces more
distinguishable boundaries of objects. It should be noted that, with
similar boundary pixels, when the contrast between the pixels of
inner object and the ambient pixels is larger, the object is more
distinguishable. In this paper, this contrast is mathematically
defined as the standard deviation difference. In the above exam-
ple, the rigid method has the absolute standard deviation differ-
ence value of 0.34. In contrast, the semi-rigid method has the
absolute standard deviation difference value of 4.38. The geomet-
ric information of inner boundaries is of particular interest to ma-
terial engineers for the purpose of material modeling or property
estimation. Although all methods discussed above are able to
automatically identify the boundaries, more distinguishable boun-
daries in reconstruction are very important to engineers for easy
identification with human eyes from the image reconstruction
point of view. It should be noted that, for the soft constraints with
the least-square method, because the number of equations is
smaller than the number of unknown pixels, no specific recon-
struction result is available.

The proposed methods for inverse surfacelet transform are
based on solving a quadratic optimization problem from linear
equations. The computational time is related to the number of pix-
els in the images. The CPU time of 219 s for the rigid constrained

Fig. 13 Reconstruction results of semi-rigid constraints with
penalty weights for boundary pixels equal to 1 3 1010 and for
inner pixels equal to 1 3 103. The error is e 5 12.9.

Fig. 15 Reconstruction results of Quasi-Newton method with
line search with fiber boundary constraints

Fig. 12 Reconstruction results of semi-rigid constraints with
penalty weights for boundary pixels equal to 1 3 1010 and for
inner pixels equal to 10. The error is e 5 13.2.

Fig. 14 Reconstruction results of semi-rigid constraints with
penalty weights for both boundary and inner pixels equal to
1 3 1010. The error is e 5 16.5.
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conjugate gradient algorithm is not short for the small example
images. Yet, if implemented in other generic machine-oriented
languages such as C/Cþþ in real applications, the computational
time can be reduced.

With the same number of surfacelets, we also compare our con-
straint imposition approach with the one used by Kawata and Nal-
cioglu [6]. The first of the nine reconstructed images based on the
object-boundary constraint in Kawata and Nalcioglu [6] is shown
in Fig. 16. As can be seen, there is no clear differentiation
between the boundary and inner pixels. In addition, all ambient
pixels are blacked out. Therefore, a large amount of microstruc-
tural information is lost during the reconstruction process.

6 Conclusion and Future Work

In this paper, we proposed a constrained conjugate-gradient
based strategy for the inverse surfacelet transform to complete the
surfacelet transform formalism. By identifying and applying con-
straints on important pixels of interest, features can be preserved
and retrieved during reconstruction. The proposed methods of
inverse surfacelet transform with constraints are able to recon-
struct images with fewer surfacelets than image pixels for the pur-
pose of compression, by utilizing the prior knowledge of
geometric features. Compared to the generic image compression
methods, our method allows us to preserve boundary information
of features more efficiently in material images, in addition to the
integrated capability of feature identification.

In the future, the proposed algorithm will be further optimized
for the improvement of computational efficiency, which will enable
larger images of more complex material microstructures to be proc-
essed. Parallel computing and a machine-oriented language can be
utilized. Additionally, in this paper, we only demonstrated features
similar to the cylinderlet primitives. In future, techniques for recon-
structing more complex features with combination of different
types of surfacelet primitives will be developed. Furthermore, the
prior knowledge of microstructure characteristics other than feature
geometry, such as mechanics of materials, can also be considered.
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Table 2 The comparison among different methods with boundary constraints

Optimization method Average error CPU time Iterations (generations) Robustness

Direct linear equations solution 31 (But with 7 times
more equations required)

186 s N/A N/A

Rigid constrained conjugate
gradient algorithm

13.2 219 s 522 Robust

Quasi-Newton method
with line search

8 4230 s 139 Robust

Semi-rigid constrained
conjugate gradient algorithm

12.9 2025 s 2512 Robust

Soft constraints with the
least square method

N/A 198 s N/A N/A

Fig. 16 Reconstruction result (the first image only) based on
the object-boundary constraint in Kawata and Nalcioglu [6]
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