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a b s t r a c t

Providing nanoengineers and scientists efficient and easy-to-use tools to create geometry conformations
that have minimum energies is highly desirable in materials design. Recently we developed a periodic
surface model to assist the construction of nanostructures parametrically for computer-aided nano-
design. In this paper,wepresent a feature-based approach for crystal construction. Theproposed approach
creates models of basic features with the aid of periodic surfaces followed by operations between basic
features. The goal is to introduce a rapid construction method for complex crystal structures.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Computer-aided nano-design (CAND) is an extension of com-
puter-based engineering design traditionally at bulk scales to
nanoscales. The general target ofmodeling and simulation in nano-
materials design is to search stable and realizable structures and
conformations with the minimal total system energy. Geometry
optimization is the central theme in most of the nanoscale sim-
ulations. For the widely used local search algorithms, simulation
results are sensitively dependent on the initial conformation.
Methods which allow for the efficient construction of initial ge-
ometries that are reasonably close to global optimal solutions
are important to improve both convergence rate and accuracy of
prediction. Thus, enabling efficient structural description and edit-
ing is one of the key research issues in CAND. At the molecular
scale, parametric modeling mechanisms of particle aggregates are
needed to support rapid construction and modification of geome-
tries. At themesoscale, super-porous structures with high surface-
volume ratios in natural and man-made materials also need
effective geometric descriptions.
With the observation that hyperbolic surfaces exist in nature

ubiquitously and periodic features are common in condensed ma-
terials, we recently proposed an implicit surface modeling app-
roach, periodic surface (PS), to represent geometric structures in
nanoscales [1,2]. Periodic surfaces are either loci or foci. Loci sur-
faces are fictional continuous surfaces that pass through discrete
particles in 3D space, whereas foci surfaces can be looked upon
as isosurfaces of potential or density in which discrete particles
are enclosed. The model allows for parametric construction from
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atomic scale to mesoscale. Reconstruction of loci surfaces from
crystals [3] and surface degree operations to support fine-grained
modeling [4,5] were also studied.
In this paper, we propose a new feature-based approach to

create crystal structures based on the PS model. Feature has been
extensively used in traditional computer-aided design (CAD). It
is the basic operational unit that has engineering or functional
implications. We extend the previously developed PS geometric
model and define nanoscale features, which represent some
commonly used structures and patterns in materials design. This
new feature-based crystal modeling approach is to increase the
efficiency and convenience of crystal model construction, which is
particularly important to design complex nanomaterial systems in
the future.
The contributions of this paper include the unique way to

create basic crystallographic features as the operational units using
PS models. In addition, new feature operations are developed so
that complex crystal structures such as polycrystalline and super-
lattice can be constructed efficiently. Moreover, the new feature-
based approach also provides the convenience to modify a crystal
structure parametrically.
In the remainder of the paper, Section 2 gives a brief overviewof

related work in molecular surface modeling and crystal represen-
tation. Section 3 describes the basis of the periodic surface model.
Section 4 defines some basic features of PSmodels for crystals, and
Section 5 presents methods of feature operations.

2. Molecular surface modeling and crystal representation

For visualization purpose, there has been some research on
molecular surface modeling to visualize molecular structures [6].
Lee andRichards [7] first introduced solvent-accessible surface, the
locus of a probe rolling over van der Waals surface, to represent
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the boundary of molecules. Connolly [8] presented an analytical
method to calculate the surface. Recently, Carson [9] represented
molecular surfaces with B-spline wavelets. Edelsbrunner [10] des-
cribed molecules with implicit-form skin surfaces. Bajaj et al. [11]
represented solvent-accessible surfaces by NURBS (non-uniform
rational B-spline). Au and Woo [12] studied the topological cha-
nges ofmacromolecules during foldingwith the aid of ribbons. Ryu
et al. [13] constructed NURBS molecular surfaces with the aid of
Euclidean Voronoi diagrams. Zhang et al. [14] constructed implicit
solvation surfaces from the Gaussian kernel. These research efforts
concentrate on visualization of molecules, whereas construction
support of molecular and atomic structures for design purpose are
not considered. We recently proposed a periodic surface model to
construct nanostructures parametrically. In this paper, a feature-
based approach to parametrically construct crystal structures is
proposed.
For 3D crystals, a point group is a set of symmetry operations

including reflection, rotation, inversion and improper rotation
(inversion after rotation) which leave at least one point fixed
and the appearance of the crystal structure unchanged. The total
number of point groups is 32, each ofwhich is uniquely symbolized
in crystallography. A crystal class is a set of crystals which have
the same point group. Based on the number and type of symmetry
axes for symmetry operations, the 32 point groups are divided
into seven categories. Each category is corresponding to one of the
seven crystal systems (cubic, orthorhombic, tetragonal, triclinic,
monoclinic, rhombohedral and hexagonal) in space lattices, which
describe the translational symmetry (the translation operation
does not change crystal structures). There are totally fourteen
possible unique space lattices. They are called Bravais lattices. Each
lattice point on Bravais lattices may represent a motif, which is
a set of atoms arranged in a particular way. The combination of
the 32 point groups with the fourteen Bravais lattices forms 230
space groups which are operations of both symmetry operations
and translations. The fourteen Bravais lattices are represented by
lattice parameters. They are the lengths of edges of the unit cell a,
b, c , and the angles between them α, β , γ [15,16].
In the existingmaterial simulation software, Bravais lattices are

used to directly create crystal structures. Users need to specify
the desired space lattice and its lattice parameters. Because the
lattice points of the fourteen Bravais lattices are known, once the
lattice parameters are determined, users do not have to specify
the x, y and z coordinates of the lattice points for simple and
small crystals. The lattices are thus generated periodically by the
software. For example, for a face-centered cubic (as also shown
in Fig. 2), the number of lattice points per unit cell is four,
and their positions are (0,0,0), (0, 1/2, 1/2), (1/2, 0, 1/2) and
(1/2, 1/2, 0). The user specifies the values of a, b, c , α, β , and
γ as 1, 1, 1, 90◦, 90◦ and 90◦. The software locates the four
lattice points and repeats them periodically based on the lattice
parameters. However, this method is not efficient for large and
complex crystals because the x, y and z coordinates of motifs in
a unit cell need to be specified one by one manually. Moreover,
this explicit construction approach is not flexible for modifications
when positions need to be changed. In this paper, we propose
a feature-based approach based on PS models so that complex
structures can be constructed by operations on one or more
features. This approach avoids specifying the coordinatesmanually
so that complex crystal systems are easy to be built and modified.

3. Periodic surface

A periodic surface (PS) is generally defined as

ψ(r) =
L∑
l=1

M∑
m=1

µlm cos
(
2πκl(pTm ·r)

)
= 0 (1)

where κl is the scale parameter, pm = [am, bm, cm, θm]T is a basis
vector, such as one of
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which represents a basis plane in the 3-space E3, r = [x, y, z, w]T is
the location vector with homogeneous coordinates, and µlm is the
periodic moment. We usually assume that w = 1 if not explicitly
specified. The degree of ψ(r) in Eq. (1) is defined as the number
of unique periodic basis vectors in the set {pm}, deg(ψ(r)) :=
|{pm}|. The scale of ψ(r) is defined as the number of unique scale
parameters in the set {κl}, sca(ψ(r)) := |{κl}|. We usually assume
that the scale parameters are natural numbers (κl ∈ N). Each basis
vector can be regarded as a set of parallel 2D subspaces in E3, which
plays an important role in interactive manipulation of PS models.
The locations of atoms or particles in the E3 space can be

determined by their simultaneous appearance in three or more
subspaces defined by periodic surfaces. Tiling is the process
of regularly subdividing and discretizing the space. One of the
approaches for tiling is by intersection. Finding the intersection
among ψ1(r) = 0, ψ2(r) = 0, and ψ3(r) = 0 is to solve the
constraint.

ψ(r) = ψ21 (r)+ ψ
2
2 (r)+ ψ

2
3 (r) = 0. (3)

For example, P surfaces (as illustrated in Fig. 1(b)) can be used
to build cage-like structures, such as Sodalite minerals, which are
widely used as molecular sieves and catalysts in pollution control,
detergent, manufacturing, and other fields. Fig. 1 illustrates tiling
by intersection between a P surface with two Grid surfaces to
create a Sodalite framework.

4. Basic features

Here, the basic features we define are Bravais lattices. The
basic features are the fundamental building blocks for complex
structures. They are simple cubic, body-centered cubic, face-
centered cubic, simple orthorhombic, base-centered orthorhom-
bic, body-centered orthorhombic, face-centered orthorhombic,
simple tetragonal, body-centered tetragonal, simple monoclinic,
base-centered monoclinic, triclinic, rhombohedral and hexagonal.
All crystalline materials recognized until now (not including qua-
sicrystals) fit in one of these arrangements.
Consider the basic features in a unit block domain

D1 = [−0.5 ≤ x ≤ 0.5,−0.5 ≤ y ≤ 0.5,−0.5 ≤ z ≤ 0.5, 1]. (4)

By means of the intersection operation among three periodic
surfaces, all of the fourteen basic features can be built as shown
in Fig. 2.
Table 1 lists the corresponding PS models of the fourteen basic

features. Feature A is called an extended feature of Feature B if the
lattice points in B is a subset of the ones in A. Body-centered, face-
centered and base-centered features are extended features from a
simple basic feature, and they are in the same category as that of
the simple basic feature. A simple basic feature can be simple cubic,
simple orthorhombic, simple tetragonal or simple monoclinic. The
fourteen basic features are then grouped into seven categories
which are cubic, orthorhombic, tetragonal, monoclinic, triclinic,
rhombohedral and hexagonal. As can be seen, the degree of each
periodic surface is one so that all of these basic features could
be represented by intersections among three periodic planes in
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(a) Sodalite lattice of 14-sided
cages. Vertices correspond to Si(Al)
and edges represent Si–O–Si
(Si–O–Al) bonds.

(b) P surface φA(r) = 0. (c) Grid surface φX1(r) = 0. (d) Grid surface φX2(r) = 0.

(e) Surface intersection.

Fig. 1. Tiling by intersection of P surface with Grid surfaces to create Sodalite framework.
Table 1
Periodic surface models of the fourteen basic crystal features.

Crystal structure Implicit periodic surface model

Simple cubic cos2(πx)+ cos2(πy)+ cos2(πz) = 0

Body-centered cubic cos2(π(x− y+ 0.5))+ cos2(π(x+ y+ 0.5))+ cos2(π(y+ z + 0.5)) = 0

Face-centered cubic cos2(π(x+ y+ z))+ cos2(π(−x+ y+ z))+ cos2(π(−x− y+ z)) = 0

Simple orthorhombic cos2(πx/a)+ cos2(πy/b)+ cos2(πz/c) = 0, a 6= b 6= c

Base-centered orthorhombic cos2(π(x/a− y/b+ 0.5))+ cos2(π(x/a+ y/b+ 0.5))+ cos2(πz/c) = 0, a 6= b 6= c

Body-centered orthorhombic cos2(π(x/a− y/b+ 0.5))+ cos2(π(x/a+ y/b+ 0.5))+ cos2(π(y/b+ z/c + 0.5)) = 0, a 6= b 6= c

Face-centered orthorhombic cos2(π(x/a+ y/b+ z/c))+ cos2(π(−x/a+ y/b+ z/c))+ cos2(π(−x/a− y/b+ z/c)) = 0, a 6= b 6= c

Simple tetragonal cos2(πx/a)+ cos2(πy/a)+ cos2(πz/c) = 0, a 6= c

Body-centered tetragonal cos2(π(x/a− y/a+ 0.5))+ cos2(π(x/a+ y/a+ 0.5))+ cos2(π(y/a+ z/c + 0.5)) = 0, a 6= c

Simple monoclinic cos2(π(−x/(1− ctgα)+ z/(tgα − 1)))+ cos2(πy)+ cos2(πz) = 0, α 6= 90◦

Base-centered monoclinic cos2(2π(x/(ctgα − 1)+ z/(tgα − 1)+ 0.75))+ cos2(π(x/(1− ctgα)+ y− z/(tgα − 1)+ 0.5))+ cos2(πz) = 0, α 6= 90◦

Triclinic cos2
[

π
sin γ−cos γ−k1

(x sin γ + y cos γ − zk1)
]
+ cos2

[
π
k2−1

(−y+ zk2)
]
+ cos2(πz) = 0, α, β, γ 6= 90◦

k1 =
cosα+cosβ cos γ

√
−[cosβ+cos(α−γ )][cosβ+cos(α+γ )] , k2 =

cosβ+cosα cos γ
√
−[cosβ+cos(α−γ )][cosβ+cos(α+γ )] ,

Rhombohedral cos2[π(x/a+ y/a tan γ − zk1/a sin λ)] + cos2
[

π
a sin γ (−y+ zk2)

]
+ cos2

[
πzk2 sin γ

a(cosβ+cosα cos γ )

]
= 0, α, β, γ 6= 90◦

k1 =
cosα+cosβ cos γ

√
−[cosβ+cos(α−γ )][cosβ+cos(α+γ )] , k2 =

cosβ+cosα cos γ
√
−[cosβ+cos(α−γ )][cosβ+cos(α+γ )]

Hexagonal cos2(π(2x/
√
3a+ 0.5))+ cos2(πy/c)+ cos2(π(x/

√
3a+ z/a+ 0.5)) = 0, a 6= c
E3 space. Transformation operations [3] on a single periodic
surface, such as rotation, translation and scaling, can be applied to
adjust the positions.
Simultaneous transformation operations of the three periodic
planes are equivalent to applying the operations to the correspond-
ing basic feature.
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Fig. 2. Fourteen basic crystal features.
5. Feature operations

In previous work [1,2], approaches of particles tiling such as
loci surface intersection were discussed. In this section, we extend
the tiling to feature-based operations to rapidly locate particles
in crystal structures. The new feature-based approach provides
a more efficient way to create crystal structures than direct loci
surface intersection, especially when structures become complex
and the number of loci surfaces increases accordingly.
The feature operations that are described here include: center

symmetry, translation, scaling, masking, demasking, imposing,
union and insertion.
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5.1. Center symmetry

Let Ssym =

[
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

]
be the center reflection

transformationmatrix, which is symmetric, orthonormal, and self-
inverse, i.e. Ssym = STsym = S−1sym. The center symmetry operation of
a feature ψ(r) = ψ21 (r)+ ψ

2
2 (r)+ ψ

2
3 (r) = 0 is defined as

Tsym [ψ(r)] := ψ(S−1sym ·r). (5)

Lemma 1. The fourteen basic features in Table 1 are self-center
symmetric.
Proof. Apply the center symmetric transformation to the surface
models in Table 1, we receive

Tsym [ψ(r)] = ψ21 (S
−1
sym ·r)+ ψ22 (S

−1
sym ·r)+ ψ23 (S

−1
sym ·r)

= cos2(2πκl1(pTm1 ·STsym ·r))

+ cos2(2πκl2(pTm2 ·STsym ·r))

+ cos2(2πκl3(pTm3 ·STsym ·r))

= cos2(2πκl1(−pTm1 ·r))+ cos2(2πκl2(−pTm2 ·r))
+ cos2(2πκl3(−pTm3 ·r))

= cos2(2πκl1(pTm1 ·r))+ cos2(2πκl2(pTm2 ·r))
+ cos2(2πκl3(pTm3 ·r))

= ψ(r).
Therefore, the fourteen basic features are self-center symme-

tric. �

5.2. Translation

Given a basic feature ψ(r) = ψ21 (r)+ ψ
2
2 (r)+ ψ

2
3 (r) = 0, the

translation operation is defined as

Ttran[ψ(r), r1] = ψ(r− r1) = ψ(T−1 ·r) (6)
which is equivalent to translating periodic surfaces ψ1(r), ψ2(r)
and ψ3(r) simultaneously, where

T =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 , (
T−1

)T
=

 1 0 0 0
0 1 0 0
0 0 1 0
−tx −ty −tz 1

 ,

r1 =

txtytz
1

 .
5.3. Scaling

Given a basic feature ψ(r) = ψ21 (r)+ ψ
2
2 (r)+ ψ

2
3 (r) = 0, the

scaling operation is defined as

Tscal[ψ(r), sx, sy, sz] = ψ(S−1 ·r) (7)
which is equivalent to scaling the periodic surfaces ψ1(r), ψ2(r)
and ψ3(r) simultaneously, where

S = ST =

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 ,

and S−1 =

1/sx 0 0 0
0 1/sy 0 0
0 0 1/sz 0
0 0 0 1

 .
Fig. 3. A tetragonal masked by a simple cubic (m = 5).

Fig. 4. A hexagonal masked by a body-centered cubic (m = 10).

Fig. 5. Sodalite framework masked by a body-centered cubic (m = 10).

5.4. Masking

It is known in crystallography that each lattice point of a Bravais
lattice represents the same group of atoms which fit in one of the
fourteenBravais lattices in a smaller scale. That is, each lattice point
of Bravais lattices can be further expanded and becomes a unit
of the lattice itself. Therefore, we propose a masking operation to
support such a structure expansion.
Given basic features ψA(r′) = ψ211(r

′)+ ψ212(r
′)+ ψ213(r

′) = 0
and ψB(r′) = ψ221(r

′) + ψ222(r
′) + ψ223(r

′) = 0 in the domain D1,
the masking operation is defined as

Tmask[ψA(r′), ψB(r′),m](r)

:= ψA(r′)+ Tsym[Ttran[Tscal[ψB(r′),m,m,m], r]] (8)

where ψA(r′) is the main feature, ψB(r′) is the mask feature and m
is the mask index. The operation of masking expands each lattice
point of the basic feature ψA(r′), each of which becomes the basic
feature ψB(r′). Figs. 3 and 4 illustrate the feature expansion effect
of the masking operation.
The masking operation can also be applied when the main

feature is any structure other than a basic feature. Fig. 5 illustrates
the effect of the masking operation between a Sodalite framework
and a body-centered cubic.

Lemma 2. The scaling operation of a masked structure is equivalent
to the masking operation applied to both of the scaled main feature
and the scaled mask feature by the same scaling operation.

Proof.

Tscal[Tmask[ψA(r′), ψB(r′),m,m,m](r), sx, sy, sz]
= Tscal[ψA(r′)+ Tsym[Ttran[Tscal[ψB(r′),m,m,m], r]], sx, sy, sz]
= Tscal[ψA(r′), sx, sy, sz]
+ Tscal[Tsym[Ttran[Tscal[ψB(r′),m,m,m], r]], sx, sy, sz]
= ψA(S−1 ·r′)+ Tsym[Ttran[Tscal[ψB(S−1 ·r′),m,m,m], r]]
= Tmask

[
Tscal[ψA(r′), sx, sy, sz, ],

Tscal[ψB(r′), sx, sy, sz, ],m,m,m
]
(r). �
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Fig. 6. Demasking operation by a simple cubic (m = 10).

Fig. 7. Demasking operation by a body-centered cubic (m = 10).

5.5. Demasking

Given an original structure ψA(r′) and a mask feature ψB(r′) =
ψ221(r

′)+ψ222(r
′)+ψ223(r

′) = 0, a demasking operation is defined
as

Tmask[ψA(r′), ψB(r′),m](r) := ψA(r′)

+ Tsym[Ttran[Tscal[ψB(r′),m,m,m], r]] (9)

wherem is the demasking index. The operation of demasking col-
lapses any of the mask feature ψB(r′) which is available in the
structure ψA(r′) into a single lattice point. The demasking opera-
tion can be looked upon as the inverse operation of the masking
operation. Figs. 6 and 7 illustrate the feature collapse effect of the
demasking operation.

Lemma 3. The demasking operation collapses not only the mask
feature but also its extended features which are available in the
original feature.

Proof. Assume thatψA(r′) is an original structure andψB1(r′) is an
extended feature of a mask feature ψB(r′). Since ψB(r′) is a subset
of ψB1(r′), ∀r, ψB(r′) = 0⇒ ψB1(r′) = 0. Therefore,

Tdem[ψA(r′), ψB1(r′),m](r)
=
{
r|∀r′, Ttran[Tscal[ψB1(r′),m,m,m], r] = 0, ψA(r′) = 0

}
⊆
{
r|∀r′, Ttran[Tscal[ψB(r′),m,m,m], r] = 0,

ψA(r′) = 0
}
= Tdem[ψA(r′), ψB(r′),m](r). �

Fig. 8 illustrates the subset effect of demasking. An expanded
structure is created by masking a hexagonal with a body-centered
cubic.When the expanded structure is demasked by a simple cubic,
the hexagonal can be recovered.

5.6. Impose

Given two basic featuresψA(r) = ψ211(r)+ψ
2
12(r)+ψ

2
13(r) = 0

and ψB(r) = ψ221(r)+ ψ
2
22(r)+ ψ

2
23(r) = 0 in the domain D1, the

impose operation is defined as

Timp[ψA(r), ψB(r)] := ψA(r) ·ψB(r). (10)

The impose operation overlaps one feature onto another one.
Fig. 9 illustrates the feature overlap effect of the impose operation.
A diamond structure can be created by an impose operation

between two face-centered cubics, one of which is translated
along x, y and z directions. More specifically, if ψ(r) is a face-
centered cubic structure, a diamond structure can be constructed
Tmask(

, ,

m)=

Tdem(

, ,

m)=

Fig. 8. An example of the subset effect in Lemma 3 (m = 10).

,

Fig. 9. A body-centered cubic imposed by a face-centered cubic.

,

,

Fig. 10. An illustration of the construction of the diamond structure.

by Timp[ψ(r), Ttran[ψ(r), r1]], where r1 = (0.25,−0.25, 0.25, 1)T.
Fig. 10 illustrates the construction of the diamond lattice.
It is easy to verify that a basic feature keeps itself unchanged

after an impose operation with itself. An extended basic feature
keeps itself unchanged after an impose operation with a simple
basic feature in the same category. Scaling an imposed structure
is equivalent to imposing two scaled features.

5.7. Union

The union operation joins two basic features in the same
category. By union of two basic features, the two are joined
together by sharing lattice positions on their edge cut surfaces.
Fig. 11 illustrates the union operation between two features,where
the red block and the blue block represent the two basic features.
Joined by the union operation, the two features are mixed and
appear periodically in 3D space. It is obvious that the union of a
basic feature with itself keeps the feature unchanged.
Notice that if the structure in Fig. 11 is demasked by the red

block, the result of this demasking operation is a face-centered
basic feature if the red block is not a subset of the blue block.
Based on this observation,we generalize the definition of the union
operation as follows. If ψC (r) is the face-centered basic feature in
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Layer 1

Layer 2

Layer 3

Fig. 11. An illustration of union operation.

Fig. 12. A three-layer view of the union structure in Fig. 11.

the same category as the basic features ψA(r) and ψB(r)(ψA(r) 6=
ψB(r)), the union operation is defined as

Tun[ψA(r), ψB(r)] := Tmask[ψC (r), Timp[ψA(r), ψB(r)], 2]. (11)

Fig. 12 gives a top view of the three different layers in Fig. 11.
Each cell with a center point represents a red block. The union
operation is equivalent to replacing each of the blue center points
with the imposed structure between ψA(r) and ψB(r) which also
reduced the scale by a half.
The union operation can be looked upon as a special case of the

masking operation where the mask index m always equals to 2.
Apply the union operation defined in Eq. (11), we receive:
1. If ψA(r) is a simple basic feature and ψB(r) is a base-centered
basic feature,

Tun[ψA(r), ψB(r)] = Tscal[ψB(r), 2, 2, 2].
2. If ψA(r) is a simple basic feature and ψB(r) is a face-centered
basic feature,

Tun[ψA(r), ψB(r)] = Tscal[ψB(r), 2, 2, 2].
3. If ψA(r) is a base-centered basic feature and ψB(r) is a face-
centered basic feature,

Tun[ψA(r), ψB(r)] = Tscal[ψB(r), 2, 2, 2].
4. If ψA(r) is a simple basic feature and ψB(r) is a body-centered
feature,

Tun[ψA(r), ψB(r)] = Tmask[ψC (r), ψB(r), 2]
where ψC (r)is a face-centered basic feature in the same
category as ψA(r) and ψB(r).
Fig. 13 illustrates the effect of the union operation between

the simple cubic and the body-centered basic features.
5. If ψA(r) is a body-centered basic feature and ψB(r) is a face-
centered basic feature,

Tun[ψA(r), ψB(r)] = Tmask[ψB(r), Timp[ψA(r), ψB(r)], 2].
Fig. 14 illustrates the effect of the union operation between
these two basic features.

6. If ψA(r) is a base-centered basic feature and ψB(r) is a body-
centered basic feature,

Tun[ψA(r), ψB(r)] := Tmask[ψC (r), Timp[ψA(r), ψB(r)], 2]
where ψC (r) is a face-centered basic feature in the same
category as ψA(r) and ψB(r).
Fig. 15 illustrates the effect of the union operation between

these two basic features.
,

Fig. 13. A simple cubic union with a body-centered cubic.

,

Fig. 14. A body-centered cubic union with a face-centered cubic.

,

Fig. 15. A base-centered orthorhombic union with a body-centered orthorhombic.

Lemma 4. Scaling a unioned structure is equivalent to the union of
two features after scaling them first.

Proof.

Tscal[Tun[ψA(r), ψB(r)], sx, sy, sz]
= Tscal[Tmask[ψC (r), Timp[ψA(r), ψB(r)], 2], sx, sy, sz]
= Tmask

[
Tscal[ψC (r), sx, sy, sz],

Tscal[Timp[ψA(r), ψB(r)], sx, sy, sz], 2
]

= Tmask
[
ψC (S−1 ·r), Timp

[
Tscal[ψA(r), sx, sy, sz],

Tscal[ψB(r), sx, sy, sz]
]
, 2
]

= Tmask[ψC (S−1 ·r), Timp[ψA(S−1 ·r), ψB(S−1 ·r)], 2]
= Tun[ψA(S−1 ·r), ψB(S−1 ·r)]

where ψA(r) 6= ψB(r).

5.8. Insertion

The insertion operation also deals with the two basic features in
the same category. By insertion, the two basic features are sepa-
rated layer by layer in the x-, y- or z-axis direction. Fig. 16 shows
the effect of the insertion operation in the z axis. The red block
layers are separated by the blue layer after the insertion operation
between the red block and the blue block.
Notice that if the structure in Fig. 16 is demasked by the red

block, the result of this demasking operation is a tetragonal basic
feature where c = 2a if the red block is not a subset of the blue
block. The tetragonal basic feature can also be looked upon as a
scaled simple cubic feature in the z-axis direction. Therefore, we
generalize the definition of the insertion operation in the z-axis
direction as follows. If ψC (r) is the simple basic feature, ψD(r) is
the body-centered basic feature, ψE(r) is the base-centered basic
feature and ψF (r) is the face-centered basic feature in the same
category as the basic features ψA(r) and ψB(r)(ψA(r) 6= ψB(r)),
the insertion operation in the z direction is defined as in Box I.



C. Qi, Y. Wang / Computer-Aided Design 41 (2009) 792–800 799
Tun[ψA(r), ψB(r)]

:=

{Tmask[Tscal[ψA(r), 1, 1, 0.5], ψB(r), 1] if ψA(r) = ψC (r)
Timp [Tmask[Tscal[ψC (r), 1, 1, 0.5], ψB(r), 1], Ttran[Tscal[ψC (r), 1, 1, 0.5], 0, 0, c]] if ψA(r) = ψD(r) and ψB(r) 6= ψC (r)
ψB(r) if ψA(r) = ψE(r) and ψB(r) = ψF (r)

Box I.
Tun[ψA(r), ψB(r)]

:=

{Tmask[Tscal[ψA(r), 0.5, 1, 1], ψB(r), 1] if ψA(r) = ψC (r)
Timp [Tmask[Tscal[ψC (r), 0.5, 1, 1], ψB(r), 1], Ttran[Tscal[ψC (r), 0.5, 1, 1], a, 0, 0]] if ψA(r) = ψD(r) and ψB(r) 6= ψC (r)
Timp [Tmask[Tscal[ψC (r), 0.5, 1, 1], ψB(r), 1], Ttran[Tscal[ψC (r), 0.5, 1, 1], a, 0, 0.5c]] if ψA(r) = ψE(r) and ψB(r) = ψF (r)

Box II.
Tun[ψA(r), ψB(r)]

:=

{Tmask[Tscal[ψA(r), 1, 0.5, 1], ψB(r), 1] if ψA(r) = ψC (r)
Timp [Tmask[Tscal[ψC (r), 1, 0.5, 1], ψB(r), 1], Ttran[Tscal[ψC (r), 1, 0.5, 1], 0, a, 0]] if ψA(r) = ψD(r) and ψB(r) 6= ψC (r)
Timp [Tmask[Tscal[ψC (r), 1, 0.5, 1], ψB(r), 1], Ttran[Tscal[ψC (r), 1, 0.5, 1], 0, a, 0.5c]] if ψA(r) = ψE(r) and ψB(r) = ψF (r)

Box III.
Layer 1

Layer 2

Layer 3

Fig. 16. An illustration of the insertion operation in the z axis.

,

Fig. 17. Insertion between a simple cubic and a body-centered cubic in the z axis.

,

Fig. 18. Insertion between a simple cubic and a face-centered cubic in the z axis.

Fig. 17 illustrates the effect of insertion operation between a
simple cubic and a body-centered cubic in the z-axis direction.
Fig. 18 illustrates the effect of the insertion operation between a
simple cubic and a face-centered cubic. Fig. 19 illustrates the effect
of insertion operation between a body-centered cubic and a face-
centered cubic.
Insertion operation along x or y axis is similar to its definition in

the z axis except when one of ψA(r) and ψB(r) is a base-centered
basic feature and the other is a face-centered basic feature. Fig. 20
shows the effect of the insertion operation in the x or y axis.
Similarly, we generalize the definition of the insertion opera-

tion in the y-axis direction as follows. If ψC (r) is the simple basic
,

Fig. 19. Insertion between a body-centered cubic and a face-centered cubic in z
axis.

Fig. 20. An illustration of the insertion operation in x or y axis.

feature,ψD(r) is the body-centered basic feature,ψE(r) is the base-
centered basic feature andψF (r) is the face-centered basic feature
in the same category as the basic featuresψA(r) andψB(r)(ψA(r) 6=
ψB(r)), the insertion operation along the x axis is defined as in
Box II.
The insertion operation along the y axis is defined as in Box III.

6. Discussion

The objective of CAND is to open possibility for nanoscientists
and engineers to design new materials with desirable properties
with the aid of computers. Physical properties are directly
determined by structures at nanoscales. Computer-aided design
tools to build complex crystal structures are needed. The feature-
based approach proposed in this paper provides an alternative
method to build crystal structures. The method of feature
operations is particularly useful for constructing complex crystal
structures such as polycrystalline and superlattice. For example,
Si–Ge superlattice is proved to have an electrical conductivity
comparable to the SiGe alloy while having a thermal conductivity
smaller than that of the alloy [17]. Its unique periodic structure
with alternating layers of Si and Ge can be efficiently modeled by
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the insertion operation described in Section 5.8. Since complex
structures are parametrically modeled with the help of feature-
based approach, redesigns and modifications become convenient.
Zero points in the implicit form of our PS model are needed in

order to build crystal structures. The computation is based on the
discretized space. If each one of the x, y and z directions is equally
divided into n intervals, n3 voxel-like cells are created. Thus, zero
points are found by searching through all the cells. Those cells
whose values are less than a small threshold will be determined as
particle positions. Therefore, the time complexity of the feature-
based approach is O(n3). This automatic searching process is of
advantage over manually specifying positions in the traditional
approach.

7. Summary

In this paper, rapid construction of crystal structures based on
basic features is studied. The basic features, known as fourteen
Bravais lattices, are createdwith the aid of implicit periodic surface
models. Several feature operations are defined as an efficient
approach to construct complex structures from the basic features.
This new feature-based approach provides us an alternative
method to build complex crystal structures frombasic features and
it helps us to generate complex crystal structures efficiently in an
interactive CAND environment.
Compared to the existing crystal construction approach that

locates the atoms one by one, the feature-based approach enables
us to create crystal structures with building blocks. This feature-
based approach is helpful if we need to build complex structures
because the only inputs fromusers are parameters of basic features
and feature operations. User-defined features can be created
based on these operations. Therefore, similar to the feature-based
parametric modeling in current CAD systems for macro scale
engineering design, themost important advantage of the proposed
approach for nanoscale design is to provide an easy-to-use tool to
build complex crystal structures.
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