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a b s t r a c t

Recently a periodic surface model was developed to assist geometric construction in computer-aided
nano-design. This implicit surface model helps create super-porous nano structures parametrically and
supports crystal packing. In this paper, we propose a new approach for pathway search in phase transition
simulation of crystal structures. The approach relies on the interpolation of periodic loci surface models.
Respective periodic plane models are reconstructed from the positions of individual atoms at the initial
and final states, and surface correspondences are found. With geometric constraints imposed based on
physical and chemical properties of crystals, two surface interpolation methods are used to approximate
the intermediate atom positions on the transition pathway in the full search of theminimum energy path.
This hybrid approach integrates geometry information in the configuration space and physics information
to allow for an efficient transition pathway search. The methods are demonstrated by examples of FeTi,
VO2, and FePt.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

With the observation that hyperbolic surfaces exist in nature
ubiquitously and periodic features are common in condensed
materials, we recently proposed an implicit surface modeling
approach, periodic surface (PS), to represent geometric structures
at nano scales [1]. Periodic surfaces are applied as either loci or foci
in geometry construction. Loci surfaces are fictional continuous
surfaces that pass through discrete particles in 3-dimensional (3D)
space, whereas foci surfaces can be regarded as isosurfaces of
potential or density in which discrete particles are enclosed. The
surface model allows for parametric construction of highly porous
structures from atomic scale to meso scale. A new feature-based
approach to construct crystal structures based on loci surfaces
was proposed [2]. Reconstruction of loci surfaces from crystals [3],
complexity control [4], and Minkowski sum [5] of PS models were
also studied.

In addition, we developed a metamorphosis approach based
on foci surfaces that models the structural change in phase tran-
sitions [6]. A phase transition is a geometric and topological
transformation process of materials from one phase to another,
each of which has a unique and homogeneous physical property.
Understanding and controlling phase transition is critical in de-
signing various functional materials, such as for information
storage (e.g. magnetic disk, phase-change memory, CD-ROM)
and energy storage (e.g. battery, shape-memory alloy, solid-state
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materials for hydrogen storage). More generally, a tool which al-
lows engineers to visualize and gather information about phase
transitions would be an asset for the application of the functional
materials as part of a solution to engineering problems. The cre-
ation of such a tool is themotivation behind the research presented
in this paper.

Traditionally, phase transition is described from a top-down
viewpoint as the transformation of a thermodynamic system from
one phase to another. A phase is a state where all physical
properties are uniform throughout the material, and the system
has a particular level of free energy. When external conditions
are altered, such as a change in temperature or pressure, one or
more properties of the material change and a phase transition
occurs. The systemmoves from one free energy level to another as
a result of these external influences. The external conditions and
the amount of energy input required are quantitative measures
that are used to define the phase transition. It is not necessary
for the material to undergo a change in its state of matter, for
example from liquid to solid. Material properties can change while
remaining in the same state throughout the transition. Yet the
complete understanding of phase transitions is not available, even
the classifications of first-, second-, and infinite-order [7,8].

Phase transition describes awide variety of processes in diverse
domains, such as liquid, ferromagnetic, superconducting, and
others. In this paper, we take a bottom-up viewpoint and refer to
phase changes as geometric and topological reconfiguration, rather
than the top-down classical thermodynamic viewpoint. With this
approach, we are interested in changes in thematerial structure on
an atomic scale. Structural changes in phase transitions have been
found to be more common than previously thought. For instance,
ferromagnetic phase transition was recently found to be related
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Fig. 1. Steps of computer-aided transition pathway design.

to crystal shape changes [9,10]. The modeling of materials and
phase changes from this bottom-up viewpoint have beendiscussed
frequently in literature (e.g. [11,12]). The purpose of this paper
is to present a new geometry-guided approach to provide good
initial guesses of the transition path for crystals aided by the PS
models so that the model construction for design and the pathway
search for first-principles simulation can be effectively integrated.
Good initial guesses reduce the risk of being trapped in the paths
of saddle points with local minimum energy. Thus the accuracy of
the true pathway prediction can be improved.

In our metamorphosis approach, PS models of the start and
end crystal structures are built based on loci surfaces. Loci surface
construction is used because intersections of loci surfaces present
a convenient method of defining atom locations in a crystal
structure. A detailed investigation of basic crystal feature and
crystal structure construction using this method can be found in
previously published work [2]. The initial guess of the transition
path is represented as the interpolation between the start and
end PS models in the parameter space. We will present a method
of finding the correspondence between atoms in the initial and
final states and use this information to construct PS models.
Two methods of PS model interpolation are also developed.
Fig. 1 shows an outline of the foreseen computer-aided transition
pathway design process. It is hoped that the closed-loop process
can iteratively find a good design of materials structure and
composition with the desirable transition rate. The shaded boxes
show the new method presented in this paper.

In the remainder of the paper, Section 2 summarizes some ex-
isting methods and concepts in geometric modeling and transi-
tion pathway search as a background to our proposed methods.
Section 3 gives an introduction of the periodic surface model.
Section 4 provides an overview of our geometry-guided transition
pathway search and describes the method of feature-based crystal
construction. It also details the aforementioned morphing of sur-
faces between states. Section 5 discusses the searching of the sur-
face correspondence based on aminimumenergy change approach
as well as constraints that can be applied. Section 6 gives demon-
strations of the methods, and Section 7 summarizes the findings.

2. Background

The most important step involved in modeling phase transition
is the knowledge of the activation energy barrier during the
transition, which can be found by traversing the transition
pathway. A number of methods already exist to search transition
paths and saddle points on a potential energy surface (PES), where
configurations with local minimal energy correspond to the stable
ormetastable states of thematerials system. The energy difference
between the initial state and the saddle point with the lowest
possible energy barrier on a PES, which corresponds to the highest
energy level along the minimum energy path (MEP), gives the
estimate of the transition rate constant. The lower the energy
difference is, the easier or faster the transition could be. Most of
these pathway and saddle-point search methods, which will be

summarized in Sections 2.2 and 2.3, rely on an initial guess of
the transition path from the initial state (or phase) to the final
one. The search usually is a local refinement process of which the
final path passes through the saddle point with the lowest possible
energy barrier. Thus the accuracy of these methods sensitively
depends on the initial guesses of paths. Existing methods give
the initial guesses by either simple linear interpolation of atoms’
positions or case-by-case empirical approaches. New approaches
systematically providing initial guesses that are reasonably close
to theMEP are needed. In the remainder of this section, we present
a brief summary of existing transition path and saddle point search
methods and molecular scale geometric modeling techniques.

2.1. Geometric modeling of molecular structures

As part of research efforts in computer aided molecular design,
modeling the geometry and topology of molecular structures has
attracted researchers’ attention. Edelsbrunner developed a novel
method formodeling smooth surfaces based on skins specified by a
set of weighted points [13]. Similarly, a method for reconstructing
surfaces from a finite set of points was also proposed [14]. Bajaj
et al. represented the surface boundary of molecules using a set
of non-uniform rational B-spline patches [15]. Other efforts in
geometry modeling include the construction of quality meshes
for implicit salvation models of biomolecular structures [16] and
computation and triangulation of themolecular surface of a protein
with beta shapes [17–19]. Topology of ribbons [20], frequently
used for modeling of DNA and proteins, was described in terms
of the ‘‘knottiness’’ or link between two curves. An approach for
computing the Euclidean Voronoi diagram for spheres [21] has also
been presented. The Voronoi diagramwas further used as a tool for
meshing of particle systems within bounded regions [22].

2.2. Transition path search

Transition path searchmethods are classified either as chain-of-
statesmethods, including nudged elastic band and stringmethods,
or as one of the other methods. Chain-of-states methods rely on
a collection of images that represent intermediate states of the
atomic structure as it transforms from initial to final configurations
along the transition path. These discrete states are chained to each
other after the search converges, and the transition pathway and
saddle point are obtained. The most common of these methods
is the NEB [23], which relies on a series of images connected by
springs. To increase the resolution at the region of interest (ROI)
and the accuracy of saddle point energy estimates, the NEBmethod
omits the perpendicular component of the spring force, as well as
the parallel component of the true force due to the gradient of
the potential energy. In some cases, this method produces paths
with unwanted kinks, or may not have any images that are directly
on the saddle point. The improved tangent NEB [24] and doubly
nudged elastic band [25] methods reduce the appearance of kinks
by generating a better estimate of the tangent direction of the
path and re-introducing a perpendicular spring force component,
respectively. Free-end NEB [26] only requires knowledge of either
the initial or final state, rather than both, and climbing image NEB
[27] allows the image with the highest energy to climb in order
to locate the saddle point. Eigenvector following optimization can
be applied to the result of NEB to locate actual saddle points, and
the resolution of ROI can be increased by using adaptive spring
constants [28].

String methods [29,30] represent the transition path continu-
ously as splines that evolve and converge to theMEP. As opposed to
NEB, the number of points used in the String method can be modi-
fied dynamically. The Growing Stringmethod [31] takes advantage
of this by startingwith points at the reactant and product, and then
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Fig. 2. Periodic surface models of cubic phase and mesophase structures.

adding points whichmeet at the saddle point. The Quadratic String
method [32] is a variation that uses a multi-objective optimization
approach.

Methods that are not classified as chain-of-states include the
accelerated Langevin dynamics method [33] and the conjugate
peak refinement method [34], which finds saddle points and the
MEP by searching the maximum of one direction and the minima
of all other conjugate directions iteratively. The Hamilton–Jacobi
method [35] relies on the solution of a Hamilton–Jacobi type
equation to generate the MEP.

2.3. Saddle point search

Instead of searching the complete MEP, saddle point search
methods only locate the saddle point on the MEP. They are catego-
rized into local and global searchmethods. One of the original local
methods is the automated surface walking algorithm [36,37]. It is
based on eigenvectors of the Hessian matrix with local quadratic
approximations of the PES. The more recent ridge method [38]
and dimer method [39] use a pair of images to search for the
saddle point. Reduced Gradient Following [40] and Reduced
Potential Energy Surface Model [41] methods use intersections of
zero-gradient curves and surfaces, with saddle point search occur-
ring within the subspace of these curves or surfaces. Finally, the
Synchronous Transit method [42] estimates the transition state
and refines the saddle point estimate through conjugate gradient
optimization.

Local search methods may locate the saddle point which
does not have the maximum energy on the MEP if there are
multiple saddle points. Global search methods have the advantage
that the saddle point with the maximum energy is located if
the search converges. The Dewar–Healy–Stewart method [43]
searches for the saddle point by iteratively reducing the distance
between reactant and product images. The Activation–Relaxation
technique [44] can travel between many saddle points using a
two step process; an image first jumps from a local minimum to
a saddle point, and then back down to another minimum. The
Step and Slide method [45] uses an image from the initial and
final state. Energy levels of each are increased gradually, and the
distance between them isminimizedwhile remaining on the same
isoenergy surface. The interval Newton’s method [46] is capable of

finding all stationary points by solving the equation of vanishing
gradient.

The proposed geometry guided approach in this paper is to
provide an initial guess of the transition pathway that is reasonably
close to the MEP in order to accelerate the searching of the chain-
of-statemethods, particularly thewidely used climbing image NEB
method. The geometry of crystals is constructed by a periodic
surfacemodel. The initial guess is computed by themetamorphosis
of the surface model.

3. Periodic surface model

The periodic surface model has the implicit form and is defined
as

ψ(r) =

L
l=1

M
m=1

µlm cos(2πκl(pT
m · r)) = 0 (1)

where κl is the scale parameter, pm = [am, bm, cm, αm]
T is a basis

vector, such as one of
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which represents a basis plane in the Euclidean space R3, r =

[x, y, z, w]
T is the location vector with homogeneous coordinates,

andµlm is the periodicmoment.We assumew = 1 if not explicitly
specified. The degree of ψ(r) in Eq. (1) is defined as the number
of unique vectors in the basis vector set {pm}. The scale of ψ(r) is
defined as the number of unique scale parameters in {κl}. We can
assume scale parameters are natural numbers (κ ∈ N).

Fig. 2 lists some examples of periodic surface models. Triply
periodic minimal surfaces, such as P-, D-, G-, and I-WP cubic
morphologies that are frequently referred to in chemistry and
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(a) Body-centered cubic. (a) Face-centered cubic.

Fig. 3. Body centered and face centered cubic structures constructed by loci periodic surfaces.

polymer literature, can be adequately approximated. Besides
the cubic phase, other mesophase structures such as spherical
micelles, lamellar, rod-like hexagonal phases can also be modeled.
The lamellar structure, for example, can be represented as a
periodic surface model using the equation
cos(2πz) = 0 (2)
and the P-structure is described using
cos(2πx)+ cos(2πy)+ cos(2πz) = 0. (3)
Equations corresponding to the other structures in Fig. 2 are more
involved. They are discussed in greater detail in [1].

4. Loci surface model construction

The searching process in computer-aided transition pathway
design starts with a unit cell of a crystal material in its initial
state before it undergoes phase transition. The desirable locations
of the atoms that make up this unit cell are known, and a
loci surface model is reconstructed. Similarly, loci surface model
reconstruction is also used for the final state to which the material
will transition. The next step is to find intermediate steps between
the known initial and final states. Using the atoms in the unit cell,
the location of each atom in the initial state is compared to all the
atoms in the final state. The correspondence between the states
is determined based on the minimum distance approach or the
minimum energy change, which will be discussed in Sections 4.2
and 4.3, respectively. Once it is known to which location each
atom transitions, interpolation of corresponding PS models is
used to find the atom locations at intermediate states. At each
intermediate state, interpolated loci surfaces are used tomodel the
geometry. Particularly for crystals, the simplest loci surfaces are
periodic planes. This information about the geometric transition
process of the unit cell, as a more accurate initial guess of the
transition path, can be fed into the transition pathway search
methods.

4.1. Crystal construction by loci surfaces

A process of tiling by intersection as described in [2] can be
used to construct crystal structures. They are built with 14 Bravais
lattices, each of which can be constructed via intersections of
periodic surfaces. For three periodic surfaces ψ1(r) = 0, ψ2(r) =

0, ψ3(r) = 0, the intersection is found by solvingψ(r) = ψ2
1 (r)+

ψ2
2 (r) + ψ2

3 (r) = 0. This provides a method for generating each
of the points in a lattice. For instance, Fig. 3 shows a body centered
and a face centered cubic structures. They are generated by
cos2(π(x − y + 0.5))+ cos2(π(x + y + 0.5))

+ cos2(π(y + z + 0.5)) = 0 (4)
and
cos2(π(x + y + z))+ cos2(π(−x + y + z))

+ cos2(π(−x − y + z)) = 0 (5)

respectively. The markers in the figure indicate atom positions
generated by intersections of periodic surfaces. In the same way,
all types of lattices can be constructed.

The most generic approach to reconstruct loci surface models
from crystals is by constructing y–z, x–z, and x–y planes for each
atom. Given a unit cell with the size of a, b, and c in the respective
x, y, and z direction, the y–z, x–z, and x–y planes that go through
the origin (0, 0, 0) have the respective basis vectorspyz(0) = [1, 0, 0, a/2]
pxz(0) = [0, 1, 0, b/2]
pxy(0) = [0, 0, 1, c/2]

(6)

and the respective scale parameters
κx = 1/(2a)
κy = 1/(2b)
κo = 1/(2c).

(7)

If an atom in the unit cell has the coordinates x, y, and z, then the
respective basis vectors for the y–z, x–z, and x–y planes that go
through the atom arepyz(x) = [1, 0, 0, a/2 + x]
pxz(y) = [0, 1, 0, b/2 + y]
pxy(z) = [0, 0, 1, c/2 + z]

(8)

with the same scale parameters as in Eq. (7).
Obviously, when special knowledge about atoms is available,

the periodic planes to construct atoms are not necessarily y–z, x–z,
or x–y planes, such as the ones in Fig. 3(b). The number of planes
can be reduced because of the correlation between atoms. Similar
to Eq. (6), the information required to build a plane is the normal
direction of the plane and its distance between the atom and the
new origin of reference along the normal direction. For an atom
in the unit cell with the coordinates x, y, and z, the basis vector of
a periodic plane with the normal vector n̂ = (nx, ny, nz) (where
n2
x + n2

y + n2
z = 1) is either p(x, y, z) = [nx, ny, nz, a/2 − (nxx +

nyy + nzz)], p(x, y, z) = [nx, ny, nz, b/2 − (nxx + nyy + nzz)], or
p(x, y, z) = [nx, ny, nz, c/2 − (nxx + nyy + nzz)] corresponding
to the rotated plane with respect to x-, y-, or z-axis. The respective
scale parameter for the plane is κ = nx/(2a), κ = ny/(2b), or
κ = nz/(2c).

One important question that needs to be answered for the
transition searching process is how atoms in initial and final states
are corresponding to each other. Searching the correspondence
between atoms is described in Section 4.2.

4.2. Searching correspondence of atoms

In general, there are two steps in modeling surface morphing.
First, the location correspondence of atoms is identified. Then
the PS models of the corresponding atoms are paired and the
interpolation is made between them. To compare atom locations
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between the initial and final states, we may use a matrix form
for the locations, with rows 1, 2, and 3 containing the x, y, and z
coordinates, respectively. For example, a cubic structure with one
corner at (0, 0, 0) and size of a, b, and c is represented by thematrix0 a a 0 0 a a 0
0 0 b b 0 0 b b
0 0 0 0 c c c c


.

It is assumed that each atom will transition to the nearest
position in the final state. Data for atom locations in the final state is
listed in a matrix with identical dimensions. Starting with the first
column in the matrix of the initial phase, the Euclidean distance is
calculated between this location and each location in the matrix of
the final phase. The process is then repeated for all other columns
in the initial matrix. The correspondence between locations in
the initial and final phases is determined based on the minimum
distance between them. That is, if [q1, . . . , qn] is the initial matrix
containing n locations and the final matrix is [q′

1, . . . , q
′
n], then the

distance dij between the ith location in the initialmatrix and the jth
in the final one is dij = |qi −q′

j|where 1 ≤ i ≤ n and 1 ≤ j ≤ n. For
the ith location at the initial stage, the corresponding iF th location
at the final stage is determined by

iF = arg min
1≤j≤n

dij. (9)

However, for complex crystal structures it becomes inconve-
nient to track all points individually. Inaccuracy can be introduced
if there is a significant amount of rotation or scaling in the crystal,
as the assumptionmay no longer be valid that each atommoves to
the nearest position. Therefore, some improvements and simplifi-
cations can be introduced for certain structures. These include the
classification approach described in Section 4.2.1 and the correla-
tion approach introduced in Section 4.2.2.

4.2.1. Classification of positions
In many crystal structures, more than one type of element is

present in the unit cell. In these cases it is not necessary to compare
the locations of all atoms in the initial and final states because an
atom of one element cannot move into a location occupied by a
different element. The data in the location matrices needs to be
sorted so that the atoms of each element are grouped together. In
general, if certain atoms are not likely to be in certain positions,
those positions can be excluded in the pair-wise comparison. The
available positions are classified and grouped into several subsets.
For example, in a body centered cubic structure, the first eight
columns of the matrix can represent the corner atoms which are
all the same element, and a final ninth columnwould represent the
location of the central atom. Each atom in the initial configuration
would then only be compared to atoms of the same element in the
final phase, reducing the amount of computation needed in multi-
element structures.

Suppose that there are a total of T different types of elements.
The column indices of the location matrix can be grouped into T
subsets as

(1, . . . , n1)(n1 + 1, . . . , n2) · · ·

(nt−1 + 1, . . . , nt) · · · (nT−1 + 1, . . . , n).

The computation of the minimal distance for type t element then
is based on

iF = arg min
nt−1+1≤j≤nt

dij (10)

instead of Eq. (9).

4.2.2. Correlation of atoms
Depending on the types of bonds in the crystal, there may

be groups of atoms that remain equidistant from each other on

Fig. 4. Correlation of atoms: (a) hexagonal unit cell with face correlation, (b) two
strongly bonded atoms with edge correlation.

the same plane throughout the phase transition process. With
graphite, for example, the bonds between carbon atoms along each
plane are stronger than the bonds that connect planes to each
other. The weaker bonds are more likely to separate, leaving the
planes intact. This type of property can be taken into consideration
when modeling the phase transition process. Atoms that are
located on the same plane and remain in the same position relative
to each other do not have to be considered individually during
the process outlined in Section 4.2.1. Only the position of one of
the atoms on the plane must be found, and the rest are placed
in the same positions with respect to the coordinates of the first.
This reduces the amount of computation when comparing atom
coordinates because the corresponding position must be found for
only one reference atom on the plane.

In the graphite example, the structure can be modeled with
hexagonal unit cells where atoms in the individual planes are
connected with covalent bonds, while the planes are connected to
each other by the van der Waals force. This indicates that atoms
which are in the same plane are likely to remain on that plane. We
call this special case face correlation. An example of a hexagonal
structure is shown in Fig. 4(a)where the colored surfaces represent
planes along which the atoms are covalently bonded. We can take
advantage of these characteristics when modeling the structure
by reducing the number of periodic surfaces required to construct
it. Normally each of the 14 atoms in the unit cell of Fig. 4(a)
would be represented by three perpendicular planes, meaning that
the interpolation must be performed on 42 individual periodic
surfaces. However, because the atoms in each layer have a common
periodic surface, this number is reduced to 30. Twounique surfaces
are required for each point, with the third being the common
planes on the top and bottom of the hexagonal unit cell, shown
in Fig. 4(a).

In caseswhere only two atoms have a bond that is stronger than
other bonds in the structure, these atoms are less likely to break
apart during the phase transition. The number of surfaces required
for modeling can be reduced again because of shared intersection
planes. The two planes that intersect to form the line along which
the atoms are bonded are used to generate the locations of both
atoms. Thus, instead of using six planes to model these two atoms,
the number can be reduced to four. If the two atoms in Fig. 4(b)
have a strong bond and can be assumed to remain in the same
position relative to each other, they can be modeled using the four
planes shown. The two vertical planes are common to both atoms.
Their intersection represents the line along which the atoms are
bonded. In addition, the two horizontal planes are used to define
each atom’s position along the z-axis. This special case of periodic
surfaces is called edge correlation.

In summary, we find correspondence of atoms between initial
and final states so that the respective periodic planes can be con-
structed. The interpolation of the planes then locates intermediate
positions of atoms during the transition process. If all three planes
for each atom are fully constructed, the correlation and energy ex-
change between atoms are ignored. Pair-wise comparison between
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individual atoms is used in searching the correspondence, which
is purely based on the geometry. Instead, if the number of planes
is reduced because of the face correlation or edge correlation, the
interaction among atoms is implicitly considered. Geometry and
physics become more integrated. Yet, this atom correspondence
approach assumes corresponding planes between initial and final
states only translate during the transition process, whereas the ro-
tation of planes is not considered. For instance, in the most gen-
eral case, all planes are in either y–z, x–z, or x–y direction. A y–z
plane in the initial state only translates to a y–z plane in the fi-
nal state, similar for the other two. More importantly, when the
number of planes increases, the exhaustive searching method of
the atom correspondence becomes combinatorially expensive. In
Section 4.3, we present a different approach to find the correspon-
dence of periodic planes directly by a heuristic searching method
without the need for computing the correspondence of atoms.

4.3. Correspondence of periodic planes by minimum potential energy
change

Different from the atom correspondence method in Section 4.2
where each plane will simply move to the nearest available
position, an alternative approach is to find the correspondence of
planes directly by considering the total potential energy change
of the system. We define the total potential energy change as
a function of both displacement and rotation of each plane. The
pair-wise correspondence between the initial and final planes is
found by searching the minimum potential change. This method
yields better results in more general structures where the planes
undergo both rotation and translation. Since searching the global
minimum of the potential energy change has the combinatorial
complexity, heuristic optimization methods can be used for large
systems. Here, we use a Monte Carlo simulation or simulated
annealing (SA) like algorithm. The potential energy change is
defined in Section 4.3.1, and the SA search algorithm is described
in Section 4.3.2.

4.3.1. Translational and rotational potential change
As illustrated in Fig. 5, plane i used in the construction of a unit

cell in the initial state is represented by a point and a vector, a⃗i and
p⃗i respectively. If there are two ormore atoms located on the plane,
a⃗i can be placed at the center of the convex polygon formed by the
atoms; otherwise it is simply placed at the location of the atom. p⃗i is
a unit vector indicating the normal direction of the plane. Similarly,
points b⃗i and vectors q⃗i are placed on the unit cell for the final state.

The points a⃗i and b⃗i are used to calculate the displacement of the
planes. We use the Euclidean distance formula to find the distance
di between a⃗i and b⃗i, which is then used to find the translational
potential change1Vi(di) between the two locations for pair i, given
by

1Vi(di) = sd2i (11)

where s is a constant coefficient.
In addition to the translational potential change, a rotational

potential change is also defined for the transition of each plane.
The angle θi between p⃗i and q⃗i is found and used to calculate the
rotational potential change1Ui(θi), given by

1Ui(θi) = c(1 − cos(θi)) (12)

where c is a constant coefficient. 1Ui(θi) is added to 1Vi(di) to
receive the combined potential change for the plane’s transition.
In a structure with n planes, the total potential change is obtained
by the summation of all planes as

1Wtotal =

n
i=1

(1Ui +1Vi). (13)

Fig. 5. Correspondence between locations and directions of planes.

Searching the correspondence of periodic planes is to find an
arrangement with the minimum total potential change between
the initial and final states. In each iteration, a⃗i and p⃗i remain
unchanged, but they are used in combination with a different pair
of b⃗i and q⃗i to find the total potential change. The combination that
yields the lowest 1Wtotal is used to determine to which location
each plane transitions. After the correspondence between planes
is determined, each of the atom locations in the final state is found
using the intersection of the planes.

When the total number of planes is low such as in simple crys-
tals, all combinations can be checked. For complex crystal struc-
tures with a large number of basis atoms in one unit cell, the
effects of combinatorial complexity make it highly impractical to
check all possible combinations. Even a structurewith ten plane lo-
cations presents billions of possibilities. It becomes computation-
ally expensive to go through more than a few thousand iterations,
so a heuristic global optimization approach is preferred. The al-
gorithm discussed in the following section provides a method of
optimizing the solution without searching through all possible
combinations. Although individual iterations of the algorithm are
more involved than the simple exhaustive searching technique,
the overall searching process is less computationally expensive for
cases where the structure is more complex.

4.3.2. Simulated annealing (SA) algorithm
In order to generalize the method and make it applicable to a

wider range of structures, we use a SA like optimization method
to find the match with the minimum total potential change. The
pseudo-code of the SA algorithm is listed in Table 1. In each
iteration, pairs of planes in the final state are switched. Two
randomly chosen q⃗i and b⃗i values are switched and a new total
potential change1Wtotal,new is found using the new arrangement.
Using the Metropolis criterion, if (1Wtotal,new − 1Wtotal) < 0, the
switch is accepted. Otherwise, the switchmay still be accepted, but
with a certain probability. That is, a random number u ∈ [0, 1)
is generated. If u ≤ exp((1Wtotal − 1Wtotal,new)/T ) where T is
a temperature variable, then the switch is accepted, otherwise,
it is rejected. The value of T is decreased over time, after either
every iteration or every a few iterations, to simulate cooling of the
material. Table 1 lists the pseudo-code of the algorithm.

4.3.3. Plane constraints for strongly bonded pairs
In the cases where a pair of atoms has a bond that is much

stronger than other bonds in the structure, as discussed in Sec-
tion 4.2.2, some constraints must be placed on the correspond-
ing planes to prevent the bond from breaking or elongating.
Using Fig. 5 as a reference, the two horizontal planes must remain
equidistant from each other throughout the transition. The dis-
tance between the two planes is kept unchanged and specified as

(a⃗1 − a⃗2) · p⃗1/|p⃗1| = (b⃗1 − b⃗2) · q⃗1/|q⃗1| (14)

where a⃗1 and p⃗1 correspond to one plane and a⃗2 corresponds to the
other at the initial state, whereas b⃗1, q⃗1 and b⃗2 correspond to the
final state.



E. Crnkic et al. / Computer-Aided Design ( ) – 7

Table 1
Pseudo-code of the algorithm to search the correspondence of planes with the minimum potential change.

INPUT: initial points {a⃗i}, final points {b⃗i}, initial vectors {p⃗i}, final vectors {q⃗i}, temperature T
OUTPUT: Combination of switches that yields the lowest1Wtotal
size = number of planes in the structure;
1T = Interval of temperature change;
1Wtotal =

size
i=1(1Ui +1Vi);

WHILE (T > 0)
m = random integer between 1 and size
n = random integer between 1 and size
q(old)1 = qm; q

(old)
2 = qn; b

(old)
1 = bm; b

(old)
2 = bn;

qn = q(old)1 ; qm = q(old)2 ; bn = b(old)1 ; bm = b(old)2 ;
1Wtotal,new =

size
i=1(1Ui +1Vi);

IF (1Wtotal,new −1Wtotal) > 0
u = random number between 0 and 1;

g = exp(−(1Wtotal,new −1Wtotal)/T );
IF u > g
qm = q(old)1 ; qn = q(old)2 ; bm = b(old)1 ; bn = b(old)2 ;
1Wtotal,new = 1Wtotal;

END
END
1Wtotal = 1Wtotal,new;
T = T −1T ;

END

Table 2
Extension of the pseudo-code in Table 1 for the plane constraint enforcement.

. . .
IF u > g OR p⃗1 · p⃗2 ≠ q⃗1 · q⃗2 OR p⃗3 · p⃗4 ≠ q⃗3 · q⃗4 OR
(a⃗1 − a⃗2) · p⃗1/|p⃗1| ≠ (b⃗1 − b⃗2) · q⃗1/|q⃗1|

qm = q(old)1 ; qn = q(old)2 ; bm = b(old)1 ; bn = b(old)2 ;

1Wtotal,new = 1Wtotal;

END
. . .

Additionally, the angle between the two horizontal planes may
remain constant. That is, for eachpair of planes i and j, the condition

p⃗i · p⃗j = q⃗i · q⃗j (15)

must be satisfied. For the searching process outlined in Sec-
tion 4.3.2, the constraints in Eqs. (14) and (15) are enforced by re-
jecting any switch that does not meet the criteria. After a switch is
made, we check if the resulting plane positions adhere to all of the
constraints. If so, the process continues and 1Wtotal,new is calcu-
lated. If not, the switch is rejected and a new combination is found.
These constraints are further enforced as in the pseudo code in
Table 2.

Plane-constrained structures, such as the graphite unit cell
discussed in Section 4.2.2, have groups of atoms that remain in
the same plane throughout the transition. The p⃗i that represents
this plane in the initial state must transition to a specific q⃗i which
represents that plane’s location in the final state. If a switch is
made that causes this plane to transition to a different location,
that combination is rejected and a new switch is made.

5. Morphing of loci surface models

After the correspondence of periodic surfaces between the
initial and final states is found, interpolation of surfaces is used to
find the locations of each atom for a number of intermediate states.
Each atom moves along a transition path to its final position in a
predetermined number of steps. Interpolation is only applied to
the surfaces, yielding a new set of surfaces at each step. Each atom
location at any stage is found by the intersection of three surfaces.

A simple surface linear interpolation approach is used to define
the intermediate basis vectors between the initial and final vectors
by a linear interpolation between the two. Suppose that there are
K stages during themorphing process. If a basis vector in the initial
state (stage 1) is p(1)m and the corresponding one in the final state

(stage K ) is p(K)m , then the basis vector p(k)m for the intermediate kth
stage is given by
p(k)m = (1 − λ(k))p(1)m + λ(k)p(K)m

(0 < λ(k) < 1 for k = 2, . . . , K − 1) (16)
with the interpolation coefficients λ(k)’s for all basis vectors m =

1, . . . ,M . Particularly, λ(1) = 0 and λ(K) = 1. The intervals
of interpolation coefficients λ(k)’s are chosen depending on how
many intermediate states are desired.

The surface linear interpolation approach is a straightforward
method for finding intermediate steps in a phase transition pro-
cess. The positions of atoms during the transition are nonlinearly
interpolated between initial and final states by the surface lin-
ear interpolation. Yet, the physical interaction between atoms is
not captured when deciding their intermediate positions. Physi-
cal forces may prevent atoms from colliding or getting too close to
each other. To model the physical interaction, a second approach,
potential driven surface interpolation, is also proposed here. The
physical forces between atoms are captured by the potential be-
tween surfaces. Given two surfaces

ψi(r) =

Li
li=1

Mi
mi=1

µli,mi cos(2πκli(pmi · r)) = 0

and

ψj(r) =

Lj
lj=1

Mj
mj=1

µlj,mj cos(2πκlj(pmj · r)) = 0

the pair-wise potential between them is defined as

E(ψi, ψj) =


lj<li


mj<mi

[exp(|µli,mi − µlj,mj |

+ (amiamj + bmibmj + cmicmj))

× cos2(π(κli + κlj)(αmi − αmj))]. (17)
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Eq. (17) combines the differences between the basis vectors and
moments. Particularly, the lowest potential between two periodic
planes that have the same normal direction is achieved when the
distance in-between is the largest. That is, the two planes have
a π/2 phase difference. Two perpendicular planes also have a
relatively low potential.

Suppose that there are a total of N surfaces in a model. The
potential driven surface interpolation approach individually finds
the interpolation coefficient λ(k)i for the ith surface at the kth stage,
instead of the predetermined λ(k)’s for all surfaces. The process is
to find λ(k)i ’s such that the total pair-wise potential for all surfaces
at the kth stage is minimized. That is, we need to solve

min
λ
(k)
1 ,...,λ

(k)
N

N
i=1

N
j=i+1

E(ψ (k)
i (λ

(k)
i ), ψ

(k)
j (λ

(k)
j )) for k = 2, . . . , K

s.t.

(C1)
N
i=1

λ
(k)
i = Nλ(k)

(C2) λ(1)i = 0 and λ
(k−1)
i − ε ≤ λ

(k)
i ≤ 1 (i = 1, . . . ,N).

(18)

Notice that the intermediate surfaceψ (k)
i at stage k is a function of

λ
(k)
i where its corresponding basis vectors are calculated similar to

Eq. (16). The equality constraint C1 is the boundary condition that
the initial and final stages are met. At the same time, it ensures
that the system evolves by stages with the predetermined values
of λ(k)’s. The lower and upper bound constraint C2 ensures that
the system evolves forward in general, where a small number
ε is introduced in the lower bound such that a limited setback
is allowed to have more stable intermediate states with a lower
potential level.

6. Demonstration and validation

In this section, we demonstrate the proposed loci-surface
guided transition path search methods by examples of iron–
titanium (FeTi), vanadium dioxide (VO2), and iron—platinum
(FePt) phase transition. FeTi is being extensively studied as a
candidate material for hydrogen storage applications. VO2 thin
films undergo changes during reversible and ultra-fast metal-
to-semiconductor phase transition, which can be widely applied
in high-volume rewritable holographic storage, high-speed fiber-
optical switching, smart windows, etc. The layered state of FePt
exhibits high magnetocrystalline anisotropy, making it potentially
useful as a material in the high density data storage. In order to
search saddle points on the PES by methods such as the NEB, a
good initial guess is required. The proposed geometry-guided path
search method provides such an initial guess that is close to the
minimum energy path.

6.1. FeTi +H transition

FeTi experiences transition from a body-centric structure to an
orthorhombic state where it can hold two hydrogen (H) atoms.
Fig. 6(a) shows four unit cells of the FeTi structure at its initial state.
The unit cell of FeTi is body-centered cubic, where the Ti atoms
are at the center and Fe atoms at the corners. The size of the unit
cell is a = b = c = 5.629 bohr [47]. Fig. 6(b) shows one of
the possible final states when two H atoms are absorbed in each
unit cell forming the structure of FeTiH. This is an orthorhombic
structure with Fe and Ti atoms on each face. Fe atoms still occupy
the corners as well as the centers of the top and bottom faces.
Ti atoms are located in the center of each side face. H atoms are
located on two side faces. The size of the unit cell is a = 5.586 bohr,

b = 8.585 bohr, and c = 8.292 bohr [47]. Notice that Fig. 6(b)
shows two unit cells of FeTiH, which correspond to four unit cells
of FeTi.

Geometry optimization or relaxation based on the ab initio
molecular dynamics (CPMD) is performed first on both initial and
final states of the FeTi + H transition using the software tool
Quantum-Espresso [48]. Since searching the saddle point of the
transition processwhere H atoms are absorbed, requires us to have
the same number of atoms in a unit cell, H atoms are introduced
into the body-centered cubic FeTi structure to match the final
FeTiH structure. As shown in Fig. 7, there are two basis atoms
for each type of Fe, Ti, and H in one unit cell of FeTiH as the
final structure. Correspondingly, for two unit cells of the body-
centered FeTi, there are two Fe atoms and two Ti atoms as the
basis of the initial structure, in addition to the two H atoms. In
the initial structure, there is a H atom placed on the side of each
unit cell, which is one of the most likely positions where H atoms
are first absorbed in the cell [49]. The size of the unit cell for the
initial structure is also set to be the size of the final structure,
where a meta-stable structure is likely to form. After the geometry
optimization, meta-stable structures with the local minimum total
energy are found, which are very close to the ones in Fig. 7.

During the search of the initial transition path, atom locations
for a unit cell of the two states in Fig. 7 are compared using the
method described in Section 4.2. For each atom in the initial state,
the corresponding location in the final state is found based on
Eq. (10). Three planes are defined for each atom in the initial or
final state. The respective y–z, x–z, and x–y planes of atom i are
ψ

yz
i (x) = cos(π(x + a/2 + xi)/2) = 0
ψ xz

i (y) = cos(π(y + b/2 + yi)/2) = 0
ψ

xy
i (z) = cos(π(z + c/2 + zi)/2) = 0

where a = 5.586, b = 8.585, and c = 8.292 define the size of the
unit cell, and xi, yi, and zi are the coordinates of the six atoms.

Face correlation as described in Section 4.2.2 is used to reduce
the number of loci planes. If we assume that the two basis Fe atoms
are always on the same vertical y–z plane during the transition, the
total number of planes is reduced from 18 to 17. Similarly, if the
two Ti atoms and two H atoms are always on the same y–z plane
respectively, the number of planes is further reduced to 15.

By the surface linear interpolation in Eq. (16), the basis vectors
of the planes that define the atom positions in the initial and final
states, and the basis vectors for planes in the intermediate states
can be found. The PS models in Fig. 8 represent six different states
during the phase transition. Two unit cells of FeTi morph to one
unit cell of FeTiH. It can be seen that the basis H atom on the right
moves up while the basis H atom on the left moves down. At the
same time, the basis Fe atom in the middle moves down towards
the center of the face, while the basis Fe atom in the corner shifts
right. For the two basis Ti atoms, the left one moves up to the top
face while the right one moves further out of the unit cell.

Using the potential-driven surface interpolation in Eq. (18), we
receive a different initial guess of the transition path, as shown in
Fig. 9. Compared to the previous one in Fig. 8, atoms tend to move
individually one after another instead of simultaneously. Table 3
shows the detailed interpolation coefficients λ(k)i ’s for each plane
at each stage as a result of minimizing potentials.

The initial guess of the transition path in Fig. 8 is imported
as the input of the NEB method in Quantum-Espresso to find the
MEP. The result is shown in Fig. 10, where each image at the
bottom of the figure represents a state with a total of six. The
initial and final states are the respective ones in Fig. 8, whereas
the other four intermediate ones have been updated to reflect the
MEP. The calculated energy level for each state is shown with the
solid lines. Particularly, image 3, corresponding to −4713.9203
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Table 3
Interpolation coefficients for y–z, x–z, x–y planes as the result of the potential-driven surface interpolation in Fig. 9.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
y–z x–z x–y y–z x–z x–y y–z x–z x–y y–z x–z x–y y–z x–z x–y y–z x–z x–y

Fe 0 0 0 0 0 0 1 0.9837 0.6394 0.9995 0.9979 0.9963 0.9995 0.9999 0.9992 1 1 1
Fe 0 0 0 0.6409 0 0.4990 0.6555 0 0.5000 0.9968 0 0.7783 0.9998 0.1684 0.7773 1 1 1
Ti 0 0 0 0.0146 0 0.4990 0.3269 0 0.4984 0.9970 0 0.9970 1 0.6723 1 1 1 1
Ti 0 0 0 0 0.4834 0 0 0.4824 0 0. 2289 0.4814 0.5361 1 0.6723 0.9994 1 1 1
H 0 0 0 0 0.4990 0 0 0.4980 0 0 0.5361 0 0.7328 0.6723 0.6723 1 1 1
H 0 0 0 0.4990 0.4912 0 0.4980 0.4902 0.3269 0.5361 0.4892 0.5361 0.6723 0.6723 0.6723 1 1 1

Ti

Fe

H

(a) FeTi. (b) FeTiH.

Fig. 6. Comparison between FeTi and FeTiH.

(a) FeTi + H initial structure. (b) FeTiH final structure.

Fig. 7. Initial and final phases of FeTi with H absorbed.

Fig. 8. Initial guess of the transition path for FeTi + H based on the surface linear
interpolation in Eq. (16).

eV, has the highest energy level along the MEP. It is the saddle
point found by the NEB method. The activation energy is 1.5771
eV, which corresponds to 0.26285 eV per atom. The second initial
guess of transition path in Fig. 9 from the potential-driven surface
interpolation is also used to run the NEB. The resultant MEP is
shown as the dash lines in Fig. 10. The corresponding images are
shown at the top of the figure. It is seen that the MEP found by the
initial guess from the potential-driven surface interpolation gives
a saddle point energy value of −4708.5716. The activation energy
found is 6.9258 eV, which corresponds to 1.1543 eV per atom. This
is a higher energy level of the saddle point than the one from the
surface linear interpolation. The lower energy saddle point reflects
the true MEP better. In contrast, we also run the NEB method
with its empirical default initial guess, which is the simple linear

Fig. 9. Initial guess of the transition path for FeTi+H based on the potential-driven
surface interpolation in Eq. (18).

interpolation of atom positions. The result is also shown in Fig. 10,
represented as the dotted lines. In this case, the NEB method fails
in searching the saddle point after 100NEB iterations, since there is
no intermediate state that has a higher energy level than both the
initial and final states. Total CPU time required for the potential-
drivenmethodwas 34 h on a computer nodewith four CPUs, while
the linear interpolation method required 14.5 h. Experimentally,
the activation energy for this material has been found to be 0.2912
eV per atom [50], which is very close to the result obtained with
the surface linear interpolation method.

It can be seen from the results in Fig. 10 that both proposed
methods are superior to the default empirical initial guess, which
fails to find the saddle point in this case. It is also observed that
our more involved, potential-driven surface interpolation method
generates poorer results than the simpler linear interpolation
method, as the resulting saddle point energy level is higher.
One possible explanation for this result is that for the predicted
intermediate states of the potential-driven interpolation method,
as seen in Fig. 9, the atoms move individually, rather than
simultaneously as in Fig. 8. The individual movement or single-
hop diffusion sometimes requires a greater amount of energy
than the coordinated diffusion, which has been discovered by
first-principles simulations and experimentally observed (e.g.
[51,52]). Here, the linear interpolationmethodmay provide amore
accurate prediction of the atommovement and therefore generate
a better result in terms of saddle point energy levels. However,
the potential driven surface interpolation method still provides
more flexibility and a different guess of transition path; it also
avoids paths which may result in atom collisions, which could be
an important consideration.

6.2. VO2 transition

To demonstrate the process outlined in Section 4.3, we will use
an example of VO2 transition. The initial rutile phase and final M2
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Energy (eV) 

–4715.7775

–4709.3970

(initial state)  

&4715.4974

4722.7941

–4708.5716

–4715.4812

–4717.9910

(final state)  

–4716.4783
–4715.9963

–4717.9640
–4717.9351

Saddle-point
energy level 

–4715.2376

–4713.9203

–4717.1825

Coordinate linear interpolation 
Surface linear interpolation 

Potential-driven surface interpolation

Fig. 10. Results of MEP in FeTi + H transition by the NEB method with different initial guesses.

(a) VO2 initial rutile phase. (b) VO2 finalM2 phase.

Fig. 11. Initial and final phases of VO2 .

phase of VO2 are shown in Fig. 11. In each unit cell, there are eight
oxygen (O) basis atoms. Following the procedure in Section 4.1,
we build two tetrahedrons or eight different planes for each phase
so that the positions of the O atoms can be uniquely determined
by the intersections of the eight planes. Setting the values of c
and s in Eqs. (11) and (12) to be at least 300, we can reliably find
the correct correspondence of the periodic planes between the
initial and final stages, where the minimum total potential change
1Wtotal = 447.35 is found.

Similar to the previous example in Section 6.1, the surface
linear interpolation method is used to find the initial guess of
the transition path. After the NEB search, the respective energy
levels for seven images are: (1) −5006.1158 eV, (2) −5000.6632
eV, (3) −5003.8746 eV, (4) −4997.6627 eV, (5) −4990.0234 eV,
(6) −4989.7258 eV, and (7) −5006.4782 eV. Image (6) has the
highest energy and therefore represents the saddle point. The
activation energy found is 16.39 eV, which corresponds to 1.37
eV per atom. The experimental data for the activation energy is
approximately 0.6 eV per atom [53]. Using the empirical default
initial guess, the NEB fails to locate the saddle point again.

6.3. FePt transition

The unit cell of the initial disordered A1 state of FePt is face
centered cubic with two iron (Fe) and two platinum (Pt) atoms

Fig. 12. Initial and final phases of FePt.

each. The structure transitions into a layered L10 face centered
tetragonal phase, where atoms of the same species are located
in the same plane. Both phases are shown in Fig. 12. In the final
phase, the dimensions of the unit cell are a = 3.874 bohr and
c = 3.714 bohr [54]. Similar to the previous examples, the surface
linear interpolation is used to generate an initial guess of atom
locations during the transition, where the activation energy found
is 0.8099 eV per atom. The result from the empirical default initial
guess is 0.7602 eV per atom. Both are reasonably close to the
experimentally measured 1.7 eV per atom [55].

7. Concluding remarks

In this paper, we proposed a geometry-guided phase transi-
tion pathway search method for finding intermediate states in the
phase transition of crystals. A periodic surface model is used to
build crystals parametrically for ease of construction andmodifica-
tion. The transition pathway is then estimated by interpolation of
periodic planes, and atompositions are determined by intersection
of the loci surfaces. The estimation can provide a good initial guess
of MEP for physics-based transition path and saddle point search
methods such that the risk of being trapped in a local minimum
energy path is reduced. To enable this integrated computer-aided
transition pathway design, we developed methods of finding the
correspondence of atom locations and periodic planes in the ini-
tial and final states of a crystalline material’s unit cell. A heuristic
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global optimization approach is taken to reduce the complexity of
searching correspondence. Once the surface models in the initial
and final states are matched, the developed surface linear interpo-
lation and potential-driven surface interpolation are used to make
predictions about where each atom will move.

The proposed approach is intended to integrate geometry
and physics information in materials modeling and simulation.
Further exploration of the intrinsic relation between the two that
goes beyond the simple observations is meaningful. Observations
from this paper include that geometric structures and physical
properties in nanoscale materials have connections or even one-
to-one mappings. Metamorphosis in geometry can integrate more
physics of phase transitions. Structures with strongly bonded
atoms can simplify the computation of geometric morphing.
Modeling the interactions among geometric entities can help
simulate physical phenomena more efficiently.

Numerical error is a challenge in our proposed approach. When
the angles between intersecting planes are small and rotation is
involved during the surface interpolation, the numerical error to
compute intersections may become significant. The discretization
of the 3D space to generate fine-grained models in our implicit
modeling scheme is then essential to keep errors small, which will
increase the computational time. One possible way to alleviate this
is to define planes with intersecting angles as large as possible,
such as the y–z, x–z, and x–y planes. In this paper we have shown
that for some cases the saddle point is identified more accurately
using our techniques. In future research, we would like to extend
them tomore applications and test how effective our methods are,
with opportunities to further refine our approach.
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