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1 Introduction 

Under the pressure from global competition, corporations 
have shown interest in close cooperation with partners in the 
past few years. Small and medium-sized companies have 
particularly been determined to set up cooperation networks. 
The competition in business has changed from company 
versus company to business network versus business 
network (Zheng and Possel, 2002). 

Collaborative product development among designers, 
manufacturers, suppliers, vendors, users and other 

stakeholders is one of the keys for manufacturers to improve 
product quality, reduce cost and shorten time-to-market in 
global competition. Collaborative design is the new design 
process where multidisciplinary stakeholders participate in 
design decision-making and share product information 
across enterprise boundaries in an internet-enabled 
distributed environment. New technologies for collaborative 
design were developed recently, such as agent system (Shen 
et al., 2001), collaborative environment (Sriram, 2002), 
information management (Huang and Mak, 2003) and 
intelligent system (Zha, 2007). 
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Product lifecycle management (PLM) systems have 
been widely accepted as the major enterprise-level platform 
for information sharing and integration in collaborative 
design and manufacturing. It consists of a collection of 
software tools including product data management (PDM), 
enterprise resource planning (ERP), collaboration process 
management (CPM), customer relationship management 
(CRM), supplier relationship management (SRM), 
document knowledge management (DKM), environment 
health and safety management (EHSM) and others. Yet, one 
of the major challenges for PLM systems is the lack of 
integrated decision support tools to help decision-making 
with available information within the systems. 

This paper addresses the need of decision support in the 
collaborative networks of production enterprises. An 
intelligent decision support system (IDSS) should integrate 
with different ERP systems in such networks of 
collaborative enterprises. An IDSS is a strategic and tactical 
tool capable of supporting a variety of users in making 
informed decisions. Information from this system will be 
used to support both the external and internal objectives of a 
corporation. The role of the IDSS is to suggest solutions 
given certain situations. Thus human users can assess the 
proposals prepared by the system and make decisions. The 
IDSS enables enterprise networks to be less dependent on 
personal experiences of employees and facilitate enterprise 
knowledge accumulation. 

The effectiveness of an IDSS is dependent on the 
alignment of two conditions: the ability to collect the 
required data from the business functions and the 
conversion of the data into useful information. One 
challenge of decision-making in such collaborative 
networks is uncertainty. Uncertainty is due to lack of perfect 
knowledge or enough information. It is also known as 
epistemic uncertainty and reducible uncertainty. There are 
several sources of uncertainties in collaborative networks, 
including: 

• Lack of data: the basic function of ERP systems is to 
collect and share information. When collaboration is 
across enterprise boundaries, not all enterprise data are 
sharable. Sensitive parameters, trading secrets and other 
intellectual properties from other companies usually are 
not available. 

• Conflicting information: if there are multiple sources of 
information through different ERP systems or 
databases, decision-makers may face conflicts among 
them. It is not wise to draw simple conclusions without 
considering the contradictory evidence. 

• Conflicting beliefs: when data are not available, 
decision-makers usually depend on domain experts’ 
opinions. The judgments from those experts can be 
different due to the diversity of their past experiences. 

• Lack of introspection: decision-makers may not be able 
to afford the necessary time to think deliberately about 
an uncertain event. Lack of introspection makes 
decision-making inherently risky. 

• Measurement errors: the data collected by the ERP 
systems may contain errors due to measuring 
environments and human errors. The quality of 
collected quantities affects decision-makers’ judgments. 

Therefore, uncertainty should be incorporated in the IDSS 
for enterprise networks. Traditionally, Bayesian networks 
are used to accommodate uncertainties in probabilistic 
inference. In a dynamic business environment,  
decision-makers usually are required to make proper 
decisions related to product portfolio, platform selection, 
material flow and others based on the latest available 
information. Bayesian networks are convenient in updating 
prior knowledge based on the extra information. They 
capture relationships among random variables and provide a 
reasoning approach with the underlying Bayes’ theorem. 
Bayesian networks have been widely applied in 
classification, data fusion, information retrieval and decision 
support. Nevertheless, the traditional Bayesian networks do 
not differentiate uncertainty from variability. Variability is 
due to the inherent randomness in a system. It is irreducible 
even by additional measurements and extra information. 
Therefore, variability is different from uncertainty. The 
traditional Bayesian networks consider variability and 
uncertainty collectively and simply represent them with 
probability distributions. 

Uncertainty in Bayesian networks are manifested as 
impreciseness of probability distributions due to lack of 
knowledge. For instance, the probability that our market 
share will go up in the next six months is between 0.2 and 
0.4, instead of 0.3 precisely or the probability that our new 
product will last longer than ten years is between 0.7 and 
0.8. The impreciseness directly affects the robustness of the 
reasoning process. This impreciseness can be interpreted as 
uncertain situations. In such cases, we intend to consider a 
range of possible scenarios, instead of one, to ensure the 
robustness during decision-making. 

In this paper, we propose a new decision-making 
approach based on robust Bayesian networks under 
uncertainty for IDSS, where interval-valued imprecise 
probabilities are used. Interval values consider a range of 
situations and represent uncertainties. In combination with 
probabilities that address variabilities, imprecise 
probabilities with lower and upper bounds allow us to 
consider a range of possible scenarios simultaneously in 
probabilistic inference. Incorporating uncertainties in 
stochastic models is particularly important when the size of 
available data is small or contradictory evidence does not 
allow us to reach consensus. 

In the remainder of the paper, Section 2 gives a brief 
overview of Bayesian network and imprecise probability. In 
Section 3, we present the proposed robust Bayesian belief 
networks (BBNs) for decision-making under uncertainties in 
IDSS systems. In Section 4, we apply the new probabilistic 
reasoning approach to a general framework of closed-loop 
supply chain and illustrate it with an example of circuit 
board lifecycle decision-making in Section 5. 
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2 Background 

2.1 Bayesian belief network 

A BBN is a probabilistic graphical model with elements of 
nodes, arrows between nodes and probability assignments. 
We can consider a Bayesian network as a directed acyclic 
graph in which nodes represent random variables, where the 
random variable may be either discrete or continuous. In the 
case of discrete variables, they represent finite sets of 
mutually exclusive states which themselves can be 
categorical. Bayesian networks have a built-in 
computational architecture for computing the effect of 
evidence on the states of the variables. 

BBN is able to update the probabilities of variable states 
while learning new evidence. It also utilises probabilistic 
independence relationships, both explicitly and implicitly 
represented in graphical models, in order to compute 
efficiently for large and complex problems (Taroni et al., 
2006). 

In BBN, the decision-maker is concerned with 
determining the probability that a hypothesis (H) is true, 
from evidence (E) linking the hypothesis to other observed 
states of the world. The approach makes use of the Bayes’ 
rule to combine various sources of evidence. The Bayes’ 
rule states that the posterior probability of hypothesis H 
given that evidence E is present or P(H|E), is 
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P E
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where P(H) is the probability of the hypothesis being true 
prior to obtaining the evidence E and P(E|H) is the 
likelihood of obtaining the evidence E given that the 
hypothesis H is true. 

When the evidence consists of multiple sources denoted 
as 1 2 nE E E…, , , ,  each of which is conditionally 
independent, the Bayes’ rule can be expanded into the 
expression: 
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The BBN architecture updates probabilities of the variable 
states on learning new evidence. 

The BBN approach has been applied in solving 
manufacturing and production related problems. For 
instance, an interesting approach of online alert systems for 
production plants was proposed (Nielsen and Jensen, 2007). 
A methodology was developed for detecting fault and 
abnormal behaviours in production plants. This 
methodology has been successfully tested on both real 
world data from a power plant and simulated data from an 
oil production facility. 

BBN was applied in root cause diagnostics of process 
variations (Dev and Story, 2005). It is an effective tool to 

explicitly address input uncertainty and utilise data from 
multiple sources. After being trained with data sets, the 
network was able to diagnose the correct state at a 60% 
confidence level. 

BBN was also successfully implemented for technology 
planning (Spath and Agostini, 1997). The aim was to design 
a system for adaptive planning with integrated feedbacks 
from real time process data and experiences. A Bayesian 
structure was derived from historical data stored as 
processing elements. It was allowed to update the network 
(both the structure and the probabilities) and to expand, 
improve or optimise the decision base. 

BBN has also been used as the knowledge base of 
reasoning systems for supply chain diagnostics and 
prediction, vendor appraisal, customer assessment, 
evaluation of strategic or technical alliance (Kao et al., 
2005). The participating enterprises in the supply chain can 
solve the reasoning problems based on the networks. 

The different applications mentioned above are based on 
the traditional BBN models, where probabilities are 
assumed to be precisely known. When this assumption does 
not necessarily hold, the robustness of BBN should be 
aware of. Sensitivity analysis is the common approach to 
study the effect of uncertainty by introducing the variations 
of probability values. 

A neighbourhood concept from sensitivity analysis, 
called ε-contamination model, is usually used to study the 
robustness (Insua and Ruggeri, 2000). It is focused on 
replacing a single prior distribution by a class of priors. 
Computing the range of the ensuring answers as the prior 
varying over the class is based on the model. 

{ }01P P P Q QΓ = = − + ∈: ( ) ,ε ε ε ϑ  

where Γε  is the ε-neighbourhood of probability 0P  and ϑ  
is called the class of contaminations that contains some 
arbitrary probability measurement .Q  The popularity of the 
model arises, in part, from the ease of its specification and 
from the fact that it can be easily handled by the traditional 
precise probability theory. 

In this paper, we propose a different approach to 
incorporate uncertainty in probabilistic inference. We 
integrate interval-based imprecise probabilities into 
Bayesian networks in order to improve the robustness of 
reasoning. The foundation of our approach is imprecise 
probability, as introduced in Section 2.2. 

2.2 Imprecise probability 

Imprecise probability is a generalisation of traditional 
probability to differentiate uncertainty from variability both 
qualitatively and quantitatively. An interval-valued 
probability p p[ , ]  with the lower and upper bounds captures 

imprecision and indeterminacy. The width of the interval 
reflects the degree of uncertainty. 

There have been several representations of imprecise 
probabilities. For example, behavioural imprecise 
probability theory (Walley, 1991a) models behavioural 
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uncertainties with the lower prevision P X( )  (a maximal 
acceptable buying price for the uncertain reward X) and the 
upper prevision P X P X= − −( ) ( )  (a minimal acceptable 
selling price for X). Coherence principles are developed to 
avoid sure loss and natural extension. The Dempster-Shafer 
evidence theory (Dempster, 1967; Shafer, 1976) 
characterises uncertainties by the aid of basic probability 
assignments m(A) associated with the focal element A. A 
belief-plausibility pair, Bel( ) ( )

i
iB A

A m B
⊂

=∑  and 

Pl( ) ( ),
i

iB A
A m B

∩ ≠∅
=∑  are measures of uncertainty 

based on the collective evidence, since Bel( ) Pl( ).A A≤  The 
possibility theory (Zadeh, 1978; Dubois and Prade, 1998) 
provides an alternative to represent uncertainties with 
necessity-possibility pairs. Possibility can be regarded as a 
special situation of the plausibility measure when all focal 
elements Bi’s are nested. And the corresponding special 
belief measure is the necessity. A random set (Molchanov, 
2005) is a multi-valued mapping from the probability space 
to the value space. Probability bound analysis (Ferson et al., 
2004) captures uncertain information with p-boxes which 
are pairs of lower and upper probability distributions.  
F-probability (Weichselberger, 2000) incorporates intervals 
into probability values which also maintain the Kolmogorov 
properties. Fuzzy probability (Möller and Beer, 2004) 
considers probability distributions with fuzzy parameters. A 
cloud (Neumaier, 2004) is a fuzzy interval with an  
interval-valued membership, which is a combination of 
fuzzy sets, intervals and probability distributions. 

All of these forms treat variability and uncertainty 
separately and propagates them differently so that each 
maintains its own character during analysis. In this paper, 
we take an interval-valued imprecise probability approach 
for Bayesian networks to improve the robustness of 
decision-making. 

3 Robust BBN 

One may regard an IDSS with the BBN mechanism as a 
consultant that supplies various models and assessments, 
combines all judgments and finally informs the user ‘if you 
accept all these judgments, then you should draw these 
conclusions’. In this process, robustness is concerned with 
the sensitivity of the results of Bayesian analysis with 
respect to the inputs. 

Our proposed robust BBN is based on interval-valued 
imprecise probabilities with a generalised interval form 
(Wang, 2008, 2009). Traditionally, a set-based interval 

{ }[ , ] |a b x a x b= ∈ ≤ ≤R  is a set of real numbers defined 
by its lower and upper bounds. Therefore, the interval a b[ , ]  
becomes invalid or empty when a b> .  A generalised 
interval is no longer restricted to the ordered bound 
condition of a b≤ .  This generalisation simplifies the 
Bayes’ rule with imprecise probabilities and its 
computation. 

An interval probability captures uncertainties in 
stochastic processes by simultaneously considering a set of 
probabilities. The interval probability of event A is defined 
as: 

( ) : [ ( ), ( )] (0 ( )) ( ) 1)P A P A P A P A P A= ≤ ≤ ≤  (1) 

with its lower bound P  and upper bound .P  In the case 
( ) ( ),P A P A=  the degenerated interval probability ( )P A  

becomes a traditional precise probability. 
The foundation of our imprecise probability is that all 

imprecise probabilities are subject to a logic coherence 
constraint. That is, the imprecise probabilities of event A 
and its complement Ac have the relationship 
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The logic coherence constraint greatly simplifies the 
probabilistic calculus structure. 

For a class of decision problems, there exists a sequence 
of Bayesian decision problems whose solutions converge 
towards the robust solution. This holds independently of 
whether the preference for robustness is global or restricted 
to local perturbations around some reference model. It is 
shown, that there is a sequence of Bayesian decision 
problems with ever increasing risk aversion with the 
associated optimal decisions converging to the optimal 
robust decision (Adam, 2004). It means that, it is possible to 
achieve solution which is very close to the optimal decision 
even when there is no precise prior information. 

Robust BBN allows us to find solutions under the 
conditions when prior probabilities are not known exactly. 
This solution will also be acceptable in majority of the cases 
after the precise information is obtained. In other words, the 
robust decision needs to be made before the precise prior 
information will be available. The practical motivation 
underlying the robust Bayesian analysis is the difficulty in 
assessing the accuracy of prior probability distributions. 
Robustness with respect to prior distributions stems from 
the practical impossibility of eliciting a unique and precise 
distribution. Similar concerns apply to the other elements 
(likelihood and loss functions) considered in Bayesian 
analysis. The main goal of Bayesian robustness is to 
quantify and interpret the uncertainties induced by partial 
knowledge of one (or more) of the three elements in the 
analysis. 

Given uncertainties involved in prior probabilities, the 
estimation of imprecise posterior probabilities is based on 
the generalised Bayes’ rule (GBR) (Walley, 1996; Wang, 
2008) 
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The GBR gives the lower and upper bounds of all possible 
posterior probabilities given the ranges of prior 
probabilities. It is used to update the initial estimation of 

( )P A  after learning that event B has occurred. The upper 

and lower probabilities, P  and ,P  are specified for all 
subsets of the sample space. We wish to construct posterior 
upper and lower probabilities ( | )P B⋅  and ( | ),P B⋅  i.e., to 
update beliefs after observing the new evidence. 

If there are two sources of new evidence from events A 
and B, the assessment of event C can be based on a more 
general structure. In the traditional BBN, 

( | ) ( | , ) ( )( | , )
( | ) ( | , ) ( )

( | ) ( | , ) ( )c c c

P A C P B C A P CP C A B
P A C P B C A P C

P A C P B C A P C

=
+⎡ ⎤

⎢ ⎥
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where the precise probabilities are used. We extend the 
posterior probability estimation in equation (5) to consider 
imprecise probabilities as 
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In BBN, if A and B are conditionally independent, then 
equations (6) and (7) can be simplified as 

( | ) ( | ) ( )( | , )
( | ) ( | ) ( )

( | ) ( | ) ( )c c c

P A C P B C P CP C A B
P A C P B C P C

P A C P B C P C

=
+⎡ ⎤

⎢ ⎥
⎣ ⎦

 (8) 

( | ) ( | ) ( )( | , )
( | ) ( | ) ( )

( | ) ( | ) ( )c c c

P A C P B C P CP C A B
P A C P B C P C

P A C P B C P C

=
⎡ ⎤+
⎢ ⎥
⎢ ⎥⎣ ⎦

 (9) 

respectively. 
After new evidence has taken place, we can compare if 

the upper and lower probabilities of our final goal, such as 
the success of a new product development project, are 
increased or decreased. If it is decreased, we must respond 
with a corrective action, which is able to increase the 
probability of success. A collection of corrective actions 
may be required. We would like to see how the final result 
will be changed with different actions. For instance, in 
collaborative design, the original equipment manufacturer 
(OEM) makes decisions on design parameters and 
configurations based on the life expectancies of components 
from suppliers. Designers may need to choose one of the 
available cooling fans with different sizes and speeds based 
on the reliability of circuit boards from suppliers. When the 
suppliers provide different sets of inconsistent data, we 
make decisions based on the collective information, as well 

as our past knowledge about the probability of successful 
design implementation. Nevertheless, when further 
information is received from suppliers, we need to respond 
with corrective actions and may choose a different design. It 
is important to find the optimal range of corrective actions, 
which will enable us to achieve the required upper and 
lower probabilities of final goal. The higher the probability 
of final goal is, the higher the utility of actions performed 
will be. 

Upper and lower probabilities are used to compare 
actions and make decisions in the following way. In Walley 
(1991b), they are referred to as upper and lower provisions 
respectively. A decision-maker’s lower prevision is the 
highest price at which the decision-maker is sure, he or she 
would bet or buy a gamble and the upper prevision is the 
lowest price at which the decision-maker is sure, he or she 
would buy the opposite of the gamble. Suppose that we 
need to choose an action from a finite set of possible actions 
{ }1 2, ,..., ,ka a a  where the utility ( ),U a ω  of action a 

depends on the unknown situation ω. We assume that 
utilities are specified precisely. Otherwise, the decision 
problem is much more complicated. Define a corrective 
action reward jX  by ( ) ( , )j jX U a=ω ω  for each 

1,2,..., .j k=  To compare two possible corrective actions ai 
and aj for proper decision-making, we compute the upper 
and lower previsions ( )i jP X X−  and ( )i jP X X−  based 

on available information. Then, action ai is preferred to aj if 
( ) 0.i jP X X− >  On the other hand, aj is preferred to ai if 

( ) 0.i jP X X− <  If neither of the conditions hold, there is 

insufficient information to determine the preference. The 
action ai is optimal, if there is no other action that is 
preferred to ai. 

In Section 4, we introduce the reverse logistics and its 
importance in the process of design for supply chain, before 
we demonstrate decision support based on the proposed 
robust BBN. The example of spacecraft circuit board 
recovery in reverse logistics is given in Section 5. 

4 Decision support in design for closed-loop 
supply chain 

The IDSS is general and can be applied in different phases 
of product development. In particular, design for supply 
chain is one of the under-studied research areas in 
collaborative design and manufacturing. The objective of 
design for supply chain is to allow engineers to consider 
lifecycle costs of products from production, distribution, 
maintenance, to recycle during decision-makings at the 
product design phases. Engineers should make sound 
decisions in selecting product platforms, configurations and 
design parameters so that the costs associated with 
production, transportation from multi-tiered suppliers to 
OEMs, disassembly and recycling processes and 
remanufacturing channels from product consumers to 
OEMs. 
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Traditionally, the study of logistics management focuses 
on the forward supply chain, which is the delivery of 
products from manufacturer to marketplace. Only limited 
attention has been given to the reverse logistics, which is the 
flow of returning products from consumer to producer. The 
Council of Logistics Management published the first known 
definition of reverse logistics in the early 1990s, as ‘the role 
of logistics in recycling, waste disposal and management of 
hazardous materials; a broader perspective includes all 
related logistics activities carried out in source reduction, 
recycling, substitution, reuse of materials and disposal’ 
(Stock, 1992). The driving force for reverse logistics has 
been classified into three subgroups: economics, legislation 
and extended responsibilities. It has been realised that the 
total value of products returned in the US is estimated at 
$100 billion annually (Stock et al., 2002). 

4.1 Reverse logistics 

Reverse logistics consists of planning, implementing and 
controlling the reverse flow of materials and management of 
related downstream information through the supply chain 
with the primary purpose of recapturing value. Thus, the 
associated decisions may drive a large extent of 
development in the process of manufacturing and 
remanufacturing, forward and backward material flows and 
related operational functions (Carter and Ellram, 1998). 

Reverse logistics strategies for end-of-life products are 
usually developed to allow manufacturers to determine the 
optimal amount to spend on buy-back and the optimal unit 
cost of reverse logistics (Knemeyer et al., 2002). A good 
management strategy is to find the best choices of material 
recovery channels based on the conditions and values of the 
used products to maximise the recoverable residual values. 
Four major recovery choices are: 

• Reuse: It is the process by which products are reused 
directly without prior operations. It may need cleaning 
and minor maintenance (e.g., reusable packages such as 
bottles, pallets or containers). 

• Repair: It is the process of fixing or restoring failed 
products. However, there is a possibility of quality loss 
(e.g., industrial machines and electronic equipment). 

• Recycling: It is the process of material recovery (e.g., 
scrap, glass, paper and plastic recycling). 

• Remanufacturing: It is the process of disassembly and 
recovery of worn, defective or discarded products. 
Disassembled products and all components are cleaned 
and inspected. Those components which can be reused 
are brought to inspection and those that cannot be 
reused are replaced. A remanufactured product should 
match the same customer expectation as new products 
(e.g., mechanical assemblies such as aircraft engines 
and copy machines). 

 

 

Figure 1 General supply chain framework 

 
Source: Hamza et al. (2007) 

We model the closed-loop supply chain with a general 
framework of the forward and reverse material flows in 
PLM. This framework includes the major scenarios that can 
take place in the recovering of the used product, as shown in 
Figure 1. In the figure, collection refers to all activities of 
rendering used products and physically transporting them 
for further treatment. Sorting and inspection are the 
operations that determine whether a given product is 
reusable and which method to apply. Thus, sort and inspect 
result in splitting the flow of used products according to the 
distinct types of recovery channels such as repair, reuse, 
remanufacturing and recycle. 

4.2 Decision-making in reverse logistics 

To support a set of decision-makers working together as a 
group, a collaborative IDSS has some special technological 
requirements of hardware, software and procedures (Sean, 
2001). Collaborative IDSS software also needs special 
functional capabilities, in addition to the capabilities of 
single user IDSS software, such as anonymous input of the 
user’s ideas, listing group members’ ideas, voting and 
ranking of the decision alternatives. IDSS will have the 
ability to take the integrated data stored within the database 
and transform them through various analysis techniques. 
ERP systems are able to achieve integration by bringing 
together data from different sources within the corporation. 
This may include disparate databases that exist across 
different functional units, thus, helping the firm to gain a 
more complete and realistic picture of all the data they hold. 
ERP systems have traditionally not been able to provide 
satisfactory support for transforming data and enabling 
decision-makers to discover and learn, ultimately turning 
this data into knowledge. This is where IDSS can give 
strong support. The human component of group IDSS 
should include a group facilitator, who leads the session by 
serving as the interface between the group and the computer 
systems (Shevtshenko, 2007). 
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Figure 2 IDSS system used for reverse logistics in the 
collaborative supply chain network 
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As shown in Figure 2, the IDSS system can be applied in 
the collaborative supply chain networks to assist the  
third-party collector in decision-making. First of all, the data 
about the returned product are inserted into the IDSS 
system. The data about returns will be transmitted to the 
ERP systems of participants. Within the ERP systems, it 
will be possible to track information about returned products 
during the whole life cycle, until the product is disposed. It 
enables the participants to be prepared for the situation 
when the product should be repaired, remanufactured or 
reused. Based on the historical data, the participants are able 
to estimate the probability that the product will be disposed 
or the new products should be produced. This information 
will be used as evidences to support the decision-making. 
The users of the future IDSS systems can be business 
executives or some other groups of management 
(knowledge) workers. 

One of the challenges for decision-making in reverse 
logistics management is the lack of information and 
knowledge (e.g., under which working environment 
products were used by customers, how they were 
maintained, what the long-term impact on environment and 
energy consumption will be) (Tibben-Limbke, 1998). 
Therefore, risks associated with environment, health, 
reusability, total cost of ownership, etc., should be 
considered (Thierry et al., 1995). The amount of data related 
to returned products is much less than that of new products 
flowing forward in the supply chain, since, the initiator of 
reverse logistics usually is end users, who are most likely to 
have no motivation to keep and share detailed product 
lifecycle information. Uncertainties are likely associated 
with information such as the reliability of reverse material 
flows, the quality and condition of returned products, the 
timing of returns, the potential residual values and the 
demand of the secondary market (Tan and Kumar, 2006). 
Moreover, there are uncertainties which arise from limited 
availability of data and deteriorated quality of data. 
Therefore, reverse logistics is characterised by much higher 
uncertain factors compared to regular forward material 
flows in supply chains. An appropriate representation of the 
uncertainties in reverse logistics is important. 

Considering the high uncertainties, we can apply our 
robust Bayesian networks described in Section 3 to the 
selection of proper recovery channels and activities for 
returned products. The IDSS enables participants to be 
prepared for situations when products are ready to be 
returned and decisions of recovery channel selection need to 

be made. The probabilities that products are repaired, 
remanufactured, reused or disposed can be used to support 
decision-making. 

The available information to support decision-making 
for returned products is usually scarce. For this reason, the 
BBN mechanism with probabilistic reasoning is a good 
option in IDSS systems in reverse logistics management. 
BBN can quantitatively evaluate different options and 
propose what the best action could be. If the result of the 
previous action is known, this piece of information can in 
turn be used as extra evidence to update the probabilities for 
further estimations with increased accuracy. In Section 5, 
the new robust probabilistic reasoning approach is 
illustrated with an example of spacecraft circuit board 
recovery. The GBR theory is applied to monitor the 
probability of design project being successful and the 
comparison of different actions is presented. 

5 Application of the robust BBNs to circuit board 
recovery 

We apply the robust decision-making approach to an 
example of spacecraft circuit board recovery. Space systems 
are inherently risky because of the technology involved and 
the complexity of their activities. The significant presence 
of uncertainties requires good management of risks during 
the development of space systems. For example, space 
shuttle is recognised as the world’s first reusable space 
transportation system. The values of components are 
continuously recovered and recaptured. NASA therefore is 
regarded as one of the major reverse logistics practitioners. 
Capturing of the uncertain conditions of these reusable 
components is critical in order to prevent disasters in PLM. 
Since, all phases in the spacecraft life cycle are associated 
with risks, development of a robust tool to calculate the 
accumulated cost and assess risks is essential in this 
industry. 

Figure 3 State diagram of performed tests and activities 
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When previously used circuit boards arrive at the reverse 
logistics collector, their conditions will be tested. The robust 
BBN mechanism can help the collector to decide what 
action should be performed to the recovered circuit boards. 
After several tests, appropriate actions should be selected. 
As shown in Figure 3, four tests are typically performed: 
environmental test; component test; electrical test and 
functional test. If the result of any test is negative, the 
appropriate action including recycle, repair, remanufacture 
and reuse will be performed. After the completion of any 
action, the lower and upper bounds of project success 
probability are updated. The decision-maker will monitor 
the posterior probabilities after each action, until the 
probability of project success is high enough. 

The decisions must be made with the noticeable 
presence of uncertainty. Not enough prior information is 
available, since, the number of previous tests is small. We 
would like to estimate the probability that a project will be 
successful if we take an action of reuse, remanufacture or 
repair for some circuit boards, i.e., 

( . . | ; .; ).P Proj Succ Yes Reuse Remanuf Repair=  As the prior 
probabilities and likelihood functions are given as intervals, 
the posterior probabilities will also be intervals. 

We calculate the range of the project success 
probability. The narrower is the range, the lesser is the 

indeterminacy our decision will have. The network is built 
on the base of prior information. The intervals of project 
success rate can be calculated according to equation (3) and 
equation (4). 

A simple Bayesian network example consisting of three 
nodes is used here to introduce how robust Bayesian 
networks are constructed, then, later in this section, a more 
comprehensive network is used for further calculations. As 
shown in Figure 4, relationships of environmental test, 
component test and project success are built. Environmental 
test is related to project success and component test is 
related to both environmental test and project success. The 
lower and upper bounds of prior probabilities and likelihood 
functions are given in Table 1. 

Figure 4 The BBN model of simple tests for project 
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Table 1 Interval prior probabilities and likelihood probabilities (where lb denotes lower bound and ub denotes upper bound) for the 
Bayesian network in Figure 4 

Prior probabilities and likelihood functions lb ub 

P(ProjectSuccess = Yes) 0.90 0.95 
P(ProjectSuccess = No) 0.05 0.10 
P(Envir.Test = OK|ProjectSuccess = Yes) 0.97 0.99 
P(Envir.Test = Failed|ProjectSuccess = Yes) 0.01 0.03 
P(Envir.Test = OK|ProjectSuccess = No) 0.75 0.8 
P(Envir.Test = Failed|ProjectSuccess = No) 0.2 0.25 
P(Comp.Test = OK|ProjectSuccess = No) 0.6 0.7 
P(Comp.Test = Failed|ProjectSuccess = No) 0.3 0.4 
P(Comp.Test = OK|ProjectSuccess = Yes; Envir.Test = OK) 0.98 0.995 
P(Comp.Test = Failed|ProjectSuccess = Yes; Envir.Test = OK) 0.005 0.02 
P(Comp.Test = OK|ProjectSuccess = No; Envir.Test = OK) 0.6 0.7 
P(Comp.Test = Failed|ProjectSuccess = No; Envir.Test = OK) 0.3 0.4 

 

To calculate the two posterior probabilities 

P Proj Succ Yes Env Test OK Comp Test OK= = =( . . | . ; . )  

and 

P Proj Succ No Env Test OK Comp Test OK= = =( . . | . ; . )  

in the lower bound network, we use the prior probabilities 
and likelihood bounds listed in Table 2. 

 

 

Table 2 Prior probabilities and likelihood functions for the 
nodes in the lower bound Bayesian network 

 Proj.Succ. = Yes Proj.Succ. = No

Prior probability of project 
success 

0.90 (lb) 0.10 (ub) 

OK1 0.97 (lb) 0.8 (ub) Environmental test 
node probabilities 
(test 1) 

Failed1 0.03 (ub) 0.2 (lb) 

OK2 0.98 (lb) 0.7 (ub) Component test 
node probabilities 
(test 2) 

Failed2 0.02 (ub) 0.3 (lb) 
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Based on equation (6), the lower bound of the posterior 
probability that ‘project is successful, given that the 
environmental test is OK and component test is OK’ can be 
calculated as 

P Proj Succ Yes EnvTest OK CompTest OK

P EnvTest OK Proj Succ Yes
P CompTest OK Proj Succ Yes EnvTest OK
P Proj Succ Yes

P EnvTest OK Proj Succ Yes
P CompTest OK Proj Succ Y

= = =
⎡ ⎤= = ⋅
⎢ ⎥

= = = ⋅⎢ ⎥
⎢ ⎥=⎣ ⎦=

= = ⋅
= =

( . . | . ; . )

( . | . . )

( . | . . ; . )

( . . )

( . | . . )

( . | . .

0 97 0 98 0 9 0 938565505
0 97 0 98 0 9 0 8 0 7 0 1

es EnvTest OK
P Proj Succ Yes

P EnvTest OK Proj Succ No

P CompTest OK Proj Succ No EnvTest OK

P Proj Succ No

⎡ ⎤
⎢ ⎥

= ⋅⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥+ = = ⋅
⎢ ⎥

= = = ⋅⎢ ⎥
⎢ ⎥=⎢ ⎥⎣ ⎦

× ×
= =

× × + × ×

; . )

( . . )

( . | . . )

( . | . . ; . )

( . . )

. . .
.

( . . . ) ( . . . )

 

Based on equation (7), the upper bound of the posterior 
probability that ‘project is not successful, given that the 
environmental test is OK and component test is OK’ can be 
calculated as 

( . . | . ; . )

( . | . . )

( . | . . ; . )

( . . )

( . | . . )

( . | . . ;

P Proj Succ No EnvTest OK CompTest OK

P EnvTest OK Proj Succ No

P CompTest OK Proj Succ No EnvTest OK

P Proj Succ No

P EnvTest OK Proj Succ No

P CompTest OK Proj Succ No E

= = =

⎡ ⎤= = ⋅
⎢ ⎥

= = = ⋅⎢ ⎥
⎢ ⎥

=⎢ ⎥⎣ ⎦=
= = ⋅

= = . )

( . . )
( . | . . )

( . | . . ; . )
( . . )

0.8 0.7 0.1 0.061434495
(0.8 0.7 0.1) (0.97 0.98 0.9)

nvTest OK

P Proj Succ No
P EnvTest OK Proj Succ Yes

P CompTest OK Proj Succ Yes EnvTest OK
P Proj Succ yes

⎡ ⎤
⎢ ⎥

= ⋅⎢ ⎥
⎢ ⎥=⎢ ⎥
⎢ ⎥+ = = ⋅
⎢ ⎥

= = = ⋅⎢ ⎥
⎢ ⎥=⎣ ⎦

× ×
= =

× × + × ×

 

Similarly, to calculate the posterior probabilities 

P Proj Succ Yes Env Test OK Comp Test OK= = =( . . | . ; . )  

and 

P Proj Succ No Env Test OK Comp Test OK= = =( . . | . ; . )  

in the upper bound network, we use the prior probabilities 
and likelihood bounds listed in Table 3. 

Based on equation (7), the upper bound of ‘project is 
successful, given that the environmental test is OK and 
component test is OK’ is calculated as 

( . . | . ; . )

( . | . . )

( . | . . ; . )

( . . )

( . | . . )

( . | . .

P Proj Succ Yes EnvTest OK CompTest OK

P EnvTest OK Proj Succ Yes

P CompTest OK Proj Succ Yes EnvTest OK

P Proj Succ Yes

P EnvTest OK Proj Succ Yes

P CompTest OK Proj Succ

= = =

⎡ ⎤= = ⋅
⎢ ⎥

= = = ⋅⎢ ⎥
⎢ ⎥

=⎢ ⎥⎣ ⎦=
= = ⋅

= ; . )

( . . )
( . | . . )

( . | . . ; . )
( . . )

0.99 0.995 0.95 0.97652
(0.99 0.995 0.95) (0.75 0.6 0.05)

Yes EnvTest OK

P Proj Succ Yes
P EnvTest OK Proj Succ No

P CompTest OK Proj Succ No EnvTest OK
P Proj Succ no

⎡ ⎤
⎢ ⎥

= = ⋅⎢ ⎥
⎢ ⎥=⎢ ⎥
⎢ ⎥+ = = ⋅
⎢ ⎥

= = = ⋅⎢ ⎥
⎢ ⎥=⎣ ⎦

× ×
= =

× × + × ×
0861

 

Table 3 Prior probabilities and likelihood functions for the 
nodes in the upper bound Bayesian network 

 Proj.Succ. = Yes Proj.Succ. = No 

Prior probability of 
project success 

0.95 (ub) 0.05 (lb) 

OK1 0.99 (ub) 0.75 (lb) Environment
al test node 
probabilities 
(test 1) 

Failed1 0.01 (lb) 0.25 (ub) 

OK2 0.995 (ub) 0.6 (lb) Component 
test node 
probabilities 
(test 2) 

Failed2 0.005 (lb) 0.4 (ub) 

Based on equation (6), the lower bound of ‘project is not 
successful, given that the environmental test is OK and 
component test is OK’ is calculated as 

( . . | . ; . )
( . | . . )
( . | . . ; . )
( . . )
( . | . . )
( . | . . ;

P Proj Succ No EnvTest OK CompTest OK
P EnvTest OK Proj Succ No
P CompTest OK Proj Succ No EnvTest OK
P Proj Succ No
P EnvTest OK Proj Succ No
P CompTest OK Proj Succ No Env

= = =

= = ⋅⎡ ⎤
⎢ ⎥= = = ⋅⎢ ⎥
⎢ ⎥=⎣ ⎦=

= = ⋅
= = . )

( . . )

( . | . . )

( . | . . ; . )

( . . )
0.75 0.6 0.05 0.023479139  

(0.75 0.6 0.05) (0.99 0.995 0.95)

Test OK
P Proj Succ No

P EnvTest OK Proj Succ Yes

P CompTest OK Proj Succ Yes EnvTest OK

P Proj Succ yes

⎡ ⎤
⎢ ⎥= ⋅⎢ ⎥
⎢ ⎥=
⎢ ⎥
+ = = ⋅⎢ ⎥
⎢ ⎥

= = = ⋅⎢ ⎥
⎢ ⎥=⎣ ⎦

× ×
= =

× × + × ×

 

Therefore, the interval posterior probabilities are 

0.938565505,0.976520861
P Proj Succ Yes Env Test OK Comp Test OK= = =
⎡ ⎤= ⎣ ⎦

( . . | . ; . )
 

and 
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0.023479139, 0.061434495
P Proj Succ No Env Test OK Comp Test OK= = =
⎡ ⎤= ⎣ ⎦

( . . | . ; . )
 

Notice that 

1
P Proj Succ No EnvTest OK CompTest OK

P Proj Succ Yes EnvTest OK CompTest OK
= = =

= − = = =
( . . | . ; . )

( . . | . ; . )
 

which satisfies the logic coherence constraint. 
If the goal of conducting the tests is to select a strategy 

of board recovery so that the probability of project success 
should be greater than 0.99, then environmental test and 
component test are not enough. More tests are required. 

Now, we move to the more comprehensive example, 
where all tests are considered. Figure 5 shows the BBN 
model containing all tests. 

Figure 5 The BBN model for project with all tests included 
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Suppose, we would like to decide what tests should be 
performed in order to have a project successful rate of at 
least 99%. The decision support process by the robust BBN 
is illustrated step by step as follows. 

Step 1 After a board passes the environmental test, we 
receive the posterior probability 

( ) 0 916 0 958P oj Succ Yes EnvTest OK ⎡ ⎤= = = ⎣ ⎦Pr . . . . , . .

The probabilities for different actions will also be 
updated as: 

0 0172 0 0475P Repair Yes Env Test OK= = =( | . ) [ . , . ];  

0 0051 0 0187P Remanuf Yes Env Test OK= = =( . | . ) [ . , . ];  

0 874 0 913P Reuse Yes Env Test OK= = =( | . ) [ . , . ];  

0 0894 0 13P Recycle Yes Env Test OK= = =( | . ) [ . , . ].  

The robust BBN tool is also able to estimate the posterior 
probability of project success after different actions are 
successfully performed as: 

( . . | . ; )
[0.275,0.382]

P Proj Succ Yes Env Test OK Repaired Yes= = =
=

 

( . . | . ; . )
[0.959,0969];

P Proj Succ Yes Env Test OK Remanuf Yes= = =
=

 

( . . | . ; )
[0.995,0.998].

P Proj Succ Yes Env Test OK Reuse Yes= = =
=

 

It can be seen that, the most preferred action to take is to 
reuse the board since it has the highest probability lower 
bound. The probability ( . . | . )P Proj Succ Yes Env Test OK= =  

[0.916,0.958]=  is not high enough to reach the target of 
0.99. So we need to perform the further component test. 

Step 2 If the board passes the component test, we receive 
the posterior probability 

( )
[ ]

. . ;

0.973,0.983

P Proj Succ Yes EnvTest OK CompTest OK= = =

=
 

The probabilities for different actions will be also updated 
as: 

( | . ; . ) [0]P Repair Yes Env Test OK Comp Test OK= = = =  

( | . ; . )
[0.0051,0.0195]

P Remanuf Yes Env Test OK Comp Test OK= = =
=

 

( | . ; . )
[0.925,0.935]

P Reuse Yes Env Test OK Comp Test OK= = =
=

 

( | . ; . )
[0.0663,0.0761].

P Recycle Yes Env Test OK Comp Test OK= = =
=

 

The posterior probabilities of project being successful after 
taking different actions are estimated as 

P Proj Succ Yes Env Test OK
Comp Test OK Repaired Yes not valid

= =
= = =

( . . | . ;

. ; ) _
 

( . . | . ;
. ; ) [0.979,0.992]

P Proj Succ Yes Env Test OK
Comp Test OK Remanuf Yes

= =
= = =

 

( . . | . ;
. ; ) [0.9908,0.9975];

P Proj Succ Yes Env Test OK
Comp Test OK Reuse Yes

= =
= = =

 

It means that after a board passes the component test, the 
repair action should not be taken anymore. 

Since the probability 

( . | . ; . )
[0.973,0.983]

P Proj.Succ Yes Env Test OK Comp Test OK= = =
=

 

has not reached the required 0.99, electrical test should be 
performed. 

Step 3 If the board passes the electrical test, we receive 
the posterior probability 

( . . | . ;
. ; . ) [0.991,0.993]

P Proj Succ Yes Env Test OK
Comp Test OK Electr Test OK

= =
= = =
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The probabilities for different actions are also updated as: 

( | . ;
. ; . ) [0]

P Repair Yes Env Test OK
Comp Test OK Electr Test OK

= =
= = =

 

( . | . ;
. ; . ) [0]

P Remanuf Yes Env Test OK
Comp Test OK Electr Test OK

= =
= = =

( | . ;
. ; . ) [0.942,0.944]

P Reuse Yes Env Test OK
Comp Test OK Electr Test OK

= =
= = =

 

( | . ;
. ; . ) [0.0566,0.0581]

P Recycle Yes Env Test OK
Comp Test OK Electr Test OK

= =
= = =

 

The posterior probabilities of project being successful after 
different actions are taken are estimated as: 

( . . | . ; . ;
. ; ) _

P Proj Succ Yes Env Test OK Comp Test OK
Electr Test OK Repaired Yes not valid

= = =
= = =

( . . | . ; . ;
. ; ) _

P Proj Succ Yes Env Test OK Comp Test OK
Electr Test OK Remanuf Yes not valid

= = =
= = =

( . . | . ; . ;
) [0.99955,0.99963]

P Proj Succ Yes Env Test OK Comp Test OK
Reuse Yes

= = =
= =

 

When the electrical test is passed, the posterior  
probability of project success becomes 

( . . | . ;P Proj Succ Yes Env Test OK= = . ;CompTest OK=  
. ) [0.992,0.995]Electr Test OK= =  

The probability of project being successful is high 
enough to meet the minimal requirement. The result 
suggests that the further functional test is not necessary. 

As illustrated by the above procedure, the robust BBN 
tool monitors the upper and lower bounds of posterior 
probabilities until the lower bound of project success 
probability is high enough. It is also possible to predict the 
probability of success after every action and decide what 
should be made next. This allows us to increase the 
effectiveness and robustness of decision-making. 

In summary, the robust BBN mechanism considers the 
latest available evidence. It recalculates and updates 
posterior data after new information is available. The 
uncertainties can be monitored and used to estimate the 
worst case scenario. The imprecise probabilities can 
increase the confidence of decision-makers compared to the 
traditional precise probabilistic reasoning. While, 
probabilistic distributions provide more information than 
deterministic estimations, interval probabilities can provide 
even more information than precise probabilities. 

6 Concluding remarks 

In this paper, we presented a robust probabilistic reasoning 
framework based on imprecise probabilities for robust 
decision support. This model explicitly differentiates 
uncertainty from variability and incorporates uncertainty 
factors due to lack of perfect knowledge. Interval 
probabilities are used to represent classes of possible 
variations instead of precise ones, which captures 

imprecision and indeterminacy. This allows us to consider 
all possible scenarios between extreme cases during 
probabilistic reasoning. A GBR was developed based on 
interval probabilities such that reliable decision-making can 
be supported. This robust decision support tool is useful in 
PLM in collaborative networks, where lack of data and 
information increases risks of decision-making. The new 
approach can be used to improve the robustness of decisions 
under high uncertainties in IDSSs. 
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