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Abstract The automation of cost estimation for manufactur-
ing processes is a challenging task in computer-aided
manufacturing. In this paper, we introduce a two-step analogy
and mathematical approach to estimate the cost of injection
molding. In the analogy step, data of molds are partitioned
into homogeneous groups based on mold type and mold
design. In the prediction step, regression models based upon
geometry, topology, and other inherent shape properties are
constructed within each group. The variables in the regression
models within each group are extracted automatically from
one orthographic two-dimensional (2D) image of the
injection-molded part. Mean and variance estimates are cal-
culated on a subset of relevant molds so that the risk of an
inaccurate bid can be assessed on a subset of relevant molds.

Keywords Injection molding . Cost estimation . Geometry
similarity .Wavelets . Image processing . Topological
descriptors . Pattern recognition

1 Introduction

The North American Industry Classification System
(NAICS) code 3261, “Plastics Product Manufacturing”,

accounted for 163 billion dollars in 2005. Throughout the
world, the competitive bid process is of particular interest
since many injection-molding firms still operate as job
shops. The reason for this interest is that the mold and
related design comprise 50 % of the total cost of a typical
injection-molded part over its lifetime. Significantly, the
industry still lacks a universally accepted method to bid
the injection molds. The most common methods used to
estimate the costs of injection molds are ad hoc and heavily
rely on personal experiences and subjective judgments.

Some research has been undertaken to estimate costs in a
more systematic fashion. But in general, they have not
sought to automate the process and have not considered
the variability of cost information. Most of the research
efforts are analogy-based; therefore, the estimations tend to
be qualitative. In addition, significant cost-contributing fac-
tors, e.g., the complex internal features of some mold and
part designs, have been neglected which affects the accuracy
of the predictions.

In this paper, we propose a new hybrid approach that
combines analogy-based clustering and regression models.
Similar molds are clustered into groups first. Then regres-
sion models are built to estimate cost based on mold com-
plexity. The complexity is quantified by shape descriptors
derived from two-dimensional (2D) images of injection-
molded parts. Particularly, wavelet descriptors of boundaries
as well as other inherent shape descriptors, including size
and number of boundaries, are used to describe the com-
plexity of each part. The descriptors are then used to build
regression models. The objective is the creation of a cost-
effective and standardized methodology for automatic or
semi-automatic cost estimation of injection molds consider-
ing part complexity and variation.

Our hybrid approach is unique for three reasons. First, the
previous methods only consider one data format and fail to
make use of all of the historical data available. Our approach
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uses images that can be created from traditional blueprints,
2D, or 3D computer-aided design (CAD) data. Second, the
existing research only partially classify the mold and part
data into groups of mold types, designs, and part complex-
ities qualitatively prior to cost estimation. In contrast, our
approach incorporates internal features as an important com-
ponent of geometry similarity measurement so that the cost
estimation is based on fine-grained quantitative classifica-
tions. Third, the previous methods use point estimates and
do not evaluate the variations of mold costs thereby
neglecting risk management, which is considered as an
important element in our approach.

In the remainder of the paper, Section 2 provides a brief
introduction of mold cost estimation, geometry similarity,
and wavelets. In Section 3, our proposed cost estimation
framework is presented. In Section 4, the implementation
and experimental results are described.

2 Background

In the injection molding process, solid plastic pellets ap-
proximately the size of a grain of rice are heated until they
liquefy and then injected into the mold under pressures of
5,000–15,000 psi. After the plastic is injected into the mold,
the plastic cools to a solid state and is ejected from the mold
in preparation for the next cycle. There are three main types
of injection molds, each with a different cost structure. The
first is a conventional mold where one mold is dedicated to
one part. The second type is master unit dies (MUD), which
requires less mold base preparation. The third type requiring
the least preparation is a modular mold, where each part has
its own insert in the master mold base. For the three mold
types, three mold designs are commonly used. The least
expensive design type is straight, whereby an ejector pin
driven by the action of the injection-molding machine ejects
the part from the mold. The second mold design type is

spring-loaded ejector, whereby the ejector system is self-
contained within the mold. The third design type is cam
action, whereby the demolding requires cams and springs to
release the part. Cam action is the most expensive mold
design.

2.1 Mold cost estimation methods

The most commonly used approach for estimating injection
molds in industry is ad hoc and is solely based on the expe-
riences of the bidder who prepares the bid. Academic re-
searchers have tried to develop more systematic methods to
evaluate the cost of molds. Table 1 provides an overview of
the existing research used to estimate the cost of injection
molds. The first category is analogical, whereby molds are
first grouped and the mold to be bid is compared to those ones
within the same group. The rationale is that similar molds
cause similar costs. The second category is prediction by
mathematical models with parameters such as the number of
features of the part and the number of cavities. Both methods
have advantages, and our method seeks to bridge the gap
between the two methods. Our hybrid approach incorporates
both analogy and mathematical models. The analogy-based
method that is closest to our approach is by El-Mehalawi [1].
But it differs because constructive solid geometry was used as
the input data, the descriptor for clustering was based on the
attributed graph, and the method was not validated.

In our clustering process, we first group the jobs together
by mold type (conventional, MUD, or modular). Next, the
jobs in each group are further clustered based upon the
design of the mold (straight, spring ejector, or cam action).
Each group is categorized even further according to geom-
etry and complexity, which provides a finer granularity.
After clustering, the dataset becomes sparse and reflects
only those most similar molds for estimation thereby pro-
viding for more accurate estimation of mean and variance on
relevant molds.

Table 1 Comparison of cost es-
timation research projects Author Type Automated part matching Validated Implemented

El-Mehalawi [1] Analogy Yes No Yes

Kwong and Smith [2] Analogy No No Yes

Wong [3] Analogy No No Yes

Wang et al. [4] Analogy No No Yes

Bergman [5] Analogy No Yes Yes

Shehab and Abdalla [6] Mathematical No No Yes

Nagahanumaiah et al. [7] Mathematical No Yes Yes

Raviwongse and Allada [8] Mathematical No No Yes

Shehab and Abdalla [9] Mathematical No No Yes

Chan et al. [10] Mathematical No No Yes

Sapene [11] Mathematical No No No
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2.2 Geometry similarity

Geometry similarity provides the finest detail of cost esti-
mation. There are several active research groups working in
the area of geometry similarity representative papers from
the research groups are as follows: Temple Shape Similarity
Project [12], Princeton Shape Retrieval and Analysis Group
[13], and Purdue PRECISE lab [14]. The major research
question is how to quantify geometry similarity and cluster
shapes. The research methods can be divided into two
categories, 2D shape similarity and 3D shape similarity.
2D shape similarity is well studied and represented in the
literature. Example metrics to quantify similarity are shad-
ing, boundaries of silhouette, distributions of distance fields,
statistical moments, and Fourier descriptors. Reviews can be
found in Belongie et al. [15] and Loncaric [16]. The interest
in 3D similarity has grown significantly in recent years.
Example metrics are based on polyhedral meshes and 3D
Fourier descriptors as the extension of 2D methods. Com-
prehensive surveys for 3D shape similarity are given by Iyer
et al. [17], Tangelder et al. [13], Cardone et al. [18], and
Bustos et al. [19].

In our work, wavelet descriptors are used to represent 2D
boundary information of geometry that is extracted from 2D
images, with a different goal than the above approaches.
Similar parts are grouped based upon the wavelet descrip-
tors. Wavelets analysis offers the advantage of multi-
resolution, which is introduced in the next section.

2.3 Wavelets and wavelet descriptors

A good introduction to wavelets can be found in Walker
[20]. Wavelets are the basis functions used in the wavelet
transform, which decomposes a vector space with multiple
resolutions. The difference between the complete vector
space V0 and the scaling function subspace V1 is defined
as the wavelet spaceW1. Wavelets and the associated scaling
functions constitute a basis for the complete vector space
where V0=V1⊕W1. The wavelet and scaling functions are
orthogonal complements and form a complete basis, that is,
∀w∊W1,∀v∊V1,w|v=0. The scaling function subspaces
form a multi-resolution analysis of the complete vector
space, i.e., V0⊃V1⊃V2⊃⋯⊃VK for K+1 levels of resolu-
tions. At each level, the scaling function and wavelet can
be used to construct the next level. That is, Vi=Vi+1⊕Wi+1

for i=0,…,K−1.
Wavelet descriptors used in our method are based upon

the wavelet function coefficients hψ and scaling function
coefficients hφ. They offer three major advantages over
other shape descriptor methods. First, the inherent multi-
resolution representation makes shape comparison efficient
since our goal is to build a parsimonious model using the
least possible number of coefficients. Second, they allow

data compression which can help speed up the process of
clustering. Third, they are more robust than those based on
global coefficients, such as the Fourier transform. Local
changes to a signal remain local after the wavelet transform.
A local feature only affects those coefficients that are local
to that region.

3 The proposed cost estimation framework

The overall framework of our proposed method is illustrated
in Fig. 1. First, all part data are converted to a common
format of 2D images. Then the mold type and the mold
design are selected and the part complexity is calculated.
The dataset of all molds are clustered into subsets of rele-
vant molds so that only those most similar mold designs are
used for cost estimation. For each subset of data, three types
of descriptors (regional, topological, and wavelet) are com-
bined into one feature vector for each part along with the
mold type and design data. Lastly, the combined feature
vector is used as the basis to construct a regression model
for prediction. Each of these steps is explained in the fol-
lowing sections.

3.1 Conversion of data to a common neutral format

One unique feature of our approach is that the estimations of the
mold costs are calculated directly from part drawings, where all
part design data are converted to a neutral format of images
prior to further processing. There are several reasons to choose
2D image as the neutral format. First, 2D images can be easily
accessed and visualized without the use of complex software
tools, which are not necessarily available in small and medium
enterprises. Second, 2D images provide ease of conversion
from other data formats. Third, the data processing power
required to display images is less than CAD software. Image
processing tools are much more matured and readily available
as commodities. Fourth, 3D representation is not necessarily
more powerful than 2D representation in capturing geometry
information for the purpose of feature recognition [21].

3.2 Mold type selections

The selection of mold type in our approach is manual and is
based upon both geometric and non-geometric information.
The non-geometric information such as estimated annual
usage, material, and application is as important as geometry
to the selection process. Therefore, this selection process
requires the participation of an experienced bidder who is
familiar with the mold types. Here, the selection of mold
type is restricted to conventional, MUD, and modular be-
cause they are the most common types and encompass a
large proportion of all molds used in industry.
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3.3 Mold design selections

Mold design selection process also heavily relies on the
experts’ experiences today. Over the past decades, the
knowledge of mold design and construction has been accu-
mulated and books are available such as the one by Kluz
[22]. During design, part demolding and part ejections are
the primary considerations. It is believed that a manual
selection process as in our method is still the most reliable
approach. The full automation of this process does not
necessarily bring benefits. Here mold designs are restricted
to the three most commonly used ones: straight, spring
ejector, and cam action.

3.4 Part complexity matching

The most important procedure of the proposed cost
estimation framework is part matching. The complexity
of a part is represented using several descriptors that are
obtained from an image of the part. The process of part
matching consists of three steps. First, the image is pre-
processed and the boundaries of the part are detected.
Here, we only use one view of the part, for instance,

the top view looking directly into the parting line.
Second, the image is normalized by necessary transfor-
mations (translation, rotation, reflection, and scaling) for
ease of comparison. Finally, each detected boundary is
characterized by some shape descriptors.

3.4.1 Image pre-processing and boundary detection

The image pre-processing such as contrast adjustment
and boundary detection can be done easily with some
standard image-processing libraries such as the one in
Matlab. A typical image after the pre-processing is
shown in Fig. 2. The shaded area is one feature on
the injection molded part. The feature is enclosed by a
boundary represented as a circle. Boundaries are those
connected components, which define features on the
injection molded part. After the images are processed,
the boundaries can be traced. Then segmentation is
performed so that the 2D image is divided into regions
as described in Gonzalez [23].

In an example shown in Fig. 3, the part has three distinct
boundaries that enclose regions indicated by different
shades and colors. The first boundary is the gear-shaped

Fig. 1 The process of cost estimation in the proposed framework
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outer one. The second boundary is internal and has a re-
versed “C” shape. The third one is also internal and has a
circular shape with a tab on the left side. The number of
boundaries is related to the complexity of the part. Each
boundary is considered to be associated with a feature of the
part.

3.4.2 Normalization

The normalization process first translates the image to the
origin with zero x and y coordinates and crops the image.
Then the image is rotated so that the major axis of the part
aligns with the x-axis. Mirror or reflection compares the
center of the bounding box to the center of mass of the
boundary. Finally, the scale of the image is normalized so
that a common pixel-to-length ratio is maintained, for ex-
ample, 1,000 pixels per 1 in. of length.

3.4.3 Shape descriptors of boundaries

It is important to note that the use of geometry is an indirect
way to measure complexity of molds and complexity is
correlated with cost. Therefore, our goal is slightly different
from the pure shape similarity assessment as mentioned in
Section 2.2. We want to create a feature vector that describes
the complexity of all boundaries resulted from the previous
steps so that clustering of geometry with respect to cost can
be achieved. Each boundary is characterized by a set of
descriptors.

There are three categories of descriptors to measure shape
complexity. The first category includes the regional descrip-
tors such as size, eccentricity, bounding box, etc. The sec-
ond one includes topological descriptors, particularly the
number of enclosed boundaries, Euler numbers, Betti Num-
bers, and Genus. The third one is through coefficients of
wavelet transform. They are introduced respectively as
follows.

1. Regional descriptors
Regional descriptors are the local properties that

describe a boundary’s basic geometric information. For
instance, the area of a region in a 2D image is related to
the volume of the feature therefore the amount of ma-
terials added or subtracted during fabrication. The ec-
centricity is a metric of how similar the boundary is to a
circle, which is calculated by the ratio of the distance
between the foci of the ellipse and its major axis. The
size of the bounding box for the region is also related
the volume of the feature.

We chose six regional descriptors, including area,
eccentricity, convex area, filled area, extent, and solid-
ity. The primary reason we selected them is that they can
be represented as scalar values and easily combined.
Area is the number of pixels in a region. Eccentricity
is the ratio of the distance between the foci of the ellipse
and its major axis. Convex area is the size of a convex
polygon approximating the boundary shape. Filled area
is the size of the bounding box. Extent is the area of the
boundary divided by the area of the bounding box for
that region. Solidity is the area divided by the convex
area.

2. Topological descriptors
Besides geometry, the second type of metrics to

capture complexity is through topographical descrip-
tors, including the Euler number and the number of
boundaries in the image. The Euler number is the
number of boundaries in the image minus the num-
ber of holes in those regions. The number of bound-
aries is an indication of how many features are with
a part. Fewer boundaries would imply a simpler geometry
of the part.

Fig. 2 A typical image of part

Fig. 3 An example of boundaries and regions
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3. Wavelet descriptors
The third descriptor type is the wavelet descriptor. As

shown in Fig. 1, extracting the wavelet descriptor con-
sists of several steps. At this stage, we assume that the
images have been pre-processed and the boundaries
have been detected and normalized. A starting point of
a boundary is identified first. The starting point is the
pixel on the boundarywith the shortest Euclidean distance
to the origin after translation, rotation, and reflection.

The general procedure of wavelet descriptor construc-
tion is as follows: (1) choose which wavelet to use, (2)
convert the 2D boundary to a 1D signal, (3) normalize the
length of the signal, (4) compress the signal and calculate
the scaling coefficients, and (5) cluster similar shapes
together and make the cluster part of the overall feature
vector for cost estimation.

For step 1 above, we use the Daubechies wavelet with
four coefficients since the Daubechies wavelets have
property II [20], which states that if J is the length of the
wavelet filter and the signal is approximately a polyno-
mial of degree less than J/2 over the support, then the
wavelet coefficients will be approximately zero. In other
words, the scaling function for the Daubechies wavelet
with four coefficients approximates straight lines well.
Therefore, a lower resolution subspace with fewer coeffi-
cients can still represent the shape accurately. This enables
efficient compression.

In step 2, a boundary in a 2D image is converted to two
1D signals. The signal is a function of parameter t, which
is the distance along the x-axis or y-axis to the starting
point. Two simple examples are shown in Fig. 4. The
signal X(t) in Fig. 4b is the distance along the x-
axis to the starting point (the bottom left corner) as
the boundary is traced counterclockwise in Fig. 4a.
Figure 4d is the x-axis distance of the circular boundary in
Fig. 4c. Similarly, we can construct the y-axis distance
signal Y(t).

In step 3, the signal length is normalized. The signal is
scaled so that it has a standard length, which is a power of
two because the downsampling process in the wavelet
transform reduces the length of signals by half.

In step 4, we compress the signal because it will reduce
the time required for further processing. Even after com-
pression, the signals retain their essential shape, which is
captured by the scaling function coefficients. These co-
efficients contain the bulk of the energy of the signal and
therefore the basic geometric information of the original
signal.

In the last step of wavelet descriptor construction, the
similar compressed signals are clustered. As a result,
boundaries with similar shapes are grouped. The indices
of wavelet clusters are used to construct the overall feature
vector.

3.5 Create overall feature vector

Having collected the information on mold type, mold de-
sign, and part complexity, our final task is to create a
comprehensive feature vector. It is desirable to build a
parsimonious model that accurately reflects the relationship
between the independent variables and cost.

The known cost estimate will serve as our target in the
supervised learning method or regression. The mold feature
vector is combined with part feature vectors for the descriptors
of geometry and topology. The mold feature vector includes
mold type and design. The part feature vector is formed by the
topological, regional, and wavelet descriptors. All descriptors
of the mold and part form one observation.

3.6 Regression models

Having created the feature vector, we can now build regres-
sion models. The multiple regression technique is chosen as
the supervised learning method because it provides a way to
combine multiple data types. The feature vector has a mix-
ture of data types of continuous, ordinal, and categorical
data. We want to discover how the variables of the selected
descriptors are related to the dependent variable of cost. In
addition to the prediction of mean value, variation predic-
tion will help us determine how precise the estimate can be.

4 Implementation and experimental results

4.1 Implementation

In the implementation, the Microsoft Access database was
used to store information about the mold and cost. Matlab
was used to build the image processing portions of our
method. Ultimately, all the information is combined into
Minitab for the statistical and regression analysis.

Figure 5 shows the typical data automatically collected
from the part print. Name is the unique name of the mold at
the company which supplies the data. Columns 1 and 2 in
the dataset named record are the total number of boundaries
and the boundary indices for one image, respectively. The
dataset labeled T is the cluster index of the wavelet descrip-
tors for the boundaries. T2 is the cluster index based upon
the regional descriptors. In addition, Eccent is the eccentric-
ity of the boundary as the additional variable. Through our
investigation, we find that boundaries with eccentricity below
0.40 highly correlate with circular boundaries. Therefore, the
variable Eccent is used to determine the number of non-
circular boundaries (NonCir) in the image. Round boundaries
are easily machined and have a lower cost than non-circular
ones. Our implemented Matlab code extracts the topological,
regional, and wavelet descriptors automatically.
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4.2 Results

The dataset used in this study consists of 83 molds: conven-
tional, master unit die, and modular type, which are all real-
world examples collected from industry. There are 16 con-
ventional molds, 18 master unit dies, and 49 modular molds.
All mold and part prints are scanned to images, and images
are processed so that boundary information can be detected.
The result of the descriptor extraction process is one master
dataset as shown in Fig. 6, which is used to build the
regression models.

The master dataset used three sources of data: the in-
voices of the molds that include cost, the print of the mold,
and the prints of the plastic parts themselves. The mold print

provides the variable information about the number of
cavities and the design of the mold. These variables are
manually entered into the database. As described in Sec-
tion 3, wavelet descriptors, regional descriptors, and topo-
logical descriptors are calculated automatically from the
part print.

4.2.1 Mold-related variables

Four mold-related variables, Name, NumCav, Type, and
Design, are taken from the mold print manually and entered
into the database. Name is the name of the mold and is the
unique identifier for that mold within the company that
supplied the data. Num_Cav is the number of cavities in

a

b

c

d
rectangular boundary circular boundary

the signal of x-axis distance in (a)  the signal of x-axis distance in (c) 

X(t)

t t

X(t)

Fig. 4 Boundaries converted to
signals

Fig. 5 Matlab database
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the mold. Intuitively, the more cavities a mold contains, the
more labor and materials it requires. Although more labor
and materials should result in higher cost, this variable is not
in isolation. Type is the mold type taken from the mold print
and represents the system used to manufacture the mold
either conventional (cov), master unit die (mud), or modular
(mod). As mentioned in Section 3.2, these are fundamen-
tally different systems, each with a different cost struc-
ture. Design is the mold design named straight, spring,
or cam. As described in Section 3.2, and 3.3, different
mold types and engineering designs should serve as a
partition for the dataset.

The dependent variable Cost is taken from the customer
invoice, which is the quoted and final sale price. The prices
are calculated based upon experience of the bidder. Howev-
er, they may not reflect reality in all cases. Factors such as
missed bids, intentional over- or under-bid, surface finish, or
tolerance may also be included in the bid.

4.2.2 Part-related variables

As shown in Figs. 6 and 7, the scanned images of parts
are processed, and the boundaries and regions are detected
automatically, as indicated by the different colors. Four
part-related variables, NumBound, WaveClust, RegClust,
and NonCir, are computed from the part images semi-
automatically. The four variables are explained in detail
as follows.

NumBound is the number of boundaries in the image for
a part. Intuitively, the more features a part has, the higher the
manufacturing cost could be.

WaveClust is the total number of unique clusters within
one part out of a total number of general shape clusters
based on the wavelet scaling coefficients. Here, we define
20 shape categories for the given 83 parts and cluster all
boundaries for all parts into the 20 clusters. Then we count
the unique boundary clusters that a given part has as
WaveClust.

Counting the unique clusters is an attempt to measure
symmetry, as more symmetric parts are assumed to have less
complexity for a given number of boundaries. As an exam-
ple of a symmetric part, the part in Fig. 8 has 27 boundaries.
However, some of these boundaries are in common clusters
and have a similar shape. Therefore, the part hasWaveClust = 3
unique boundary shapes. In contrast, a typical non-symmetric
part is shown in Fig. 9.

The values for each individual regional descriptor are
calculated for each boundary within an image. The six de-
scriptors listed in Section 3.4.3 as well as the Euler number
are clustered into ten approximate shapes for all boundaries
for all parts in the dataset. We then record the cluster number
for each boundary. RegClust is defined as the total number
of unique clusters for each part out of the possible ten
clusters.

Similar to WaveClust, RegClust is also an attempt to
measure symmetry. The rationale is that if two boundaries

Fig. 6 Master dataset
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Fig. 7 Scanned images of different parts with boundaries detected
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are similar based upon all metrics, then they belong to the
same cluster. Symmetry indirectly measures complexity and
cost.

Additionally, the geometry-related binary variable
NonCir is used to indicate the circularity of boundaries.
Non-circular boundaries are typically more difficult to ma-
chine and have a higher cost than circular ones. NonCir is
calculated from the regional descriptor eccentricity. Bound-
aries with eccentricities above 0.4 are regarded as non-
circular. This is a simple way to separate circular boundaries
from more complex non-circular ones.

Another variable washer is also defined as binary. If the
number of circular boundaries in a part is less than two, this
variable is defined as a washer. Otherwise, it indicates a
more complex shape. This variable plays a role in the

regression model for mold types. Most molds for washers
are the design type of straight.

4.3 Analysis

4.3.1 Data partitions

The mixed dataset of 83 molds is partitioned into three
distinct homogeneous datasets of mold types and mold
design. The reason is twofold. First, the variance of resid-
uals is reduced because the data have a smaller range.
Second, outliers are easier to identify within the respective
partitions.

The first partition is by mold type. A Kruskal–Wallis test
is used to check the normality and equal variance of the
partition. The p value of 0.001 for this test confirms that
mold type can, in fact, be used to partition the dataset. After
partitioning based on mold type, we use the modular parti-
tion for further tests because this subset is most similar to
what we are estimating. To determine whether mold design
is also a good partition, we perform a Tukey multiple
comparisons tests. The individual confidence level is
98.07 %. The confidence interval did not include zero.
Therefore, the result also indicates that the design cam is
different from either spring or straight.

The difference between design spring and design straight
was less clear. Thus we performed a t test to determine whether
or not these are indeed good partitions. A p value of 0.12 is
obtained. This is an indication that the populations were indeed
different. Thus, we further partition the dataset by design.
Based on the partitioned datasets, we can construct two regres-
sion models, as discussed in the next section. One is for the
mold type of modular and the design type of straight. The other
is for the mold type of modular and design type of spring.

4.3.2 Regression models of the partitioned datasets

Here we model two of the partitioned datasets. The first
partition is of mold type modular and mold design straight.
The second partitioned dataset is of mold type modular and
mold design spring. Mold type modular and mold design cam
are not modeled because the dataset only includes four
observations.

1. Mold type modular and design type straight
This partitioned dataset has 31 observations and is

considered to be large enough to build a regression
model with statistical significance. The first step in this
process is the removal of outliers. Of the 31 observa-
tions, six outliers were identified. The six outliers had
significant contributing cost factors related to some
extremely complex geometry that is not representative
for the overall samples.

Fig. 8 An example of symmetric part

Fig. 9 An example of non-symmetric part
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The next step was variable selection. We removed
some variables, such as the number of cavities
(NumCav), because of the associated high p value,
which does not appear to contribute to the predictive
ability. Rather, we find that the quadratic version of this
variable is significant and retain it in the model.

Our final model includes 25 observations with ap-
proximately 68 % of the variance in the data being
explained by the model. The final fitted model is

Cost ¼ 1981þ 3:04WaveClust � 744RegClust
þ 1152NonCir � 13:2NumCav2 þ 111RegClust2

� 103NonCir2 � 1707Washer � 25:7WaveClust2

2. Mold type modular and mold design spring
The second partition includes 14 observations that

are of type modular and design spring. We find one
obvious outlier since a further investigation reveals that
this mold was incorrectly coded, which was an unusual
design type called double spring load. The next step is
variable selection. We excluded reg_sq, which was the
second-order version of RegClust, because it has a high

p value and does not contribute to the model’s predic-
tive ability. The linear term of another variable
NumBound also highly correlates with RegClust and
WaveClust and therefore was removed.

Our final model includes 13 observations with ap-
proximately 99 % of the variance explained by the
model. The final fitted model is

Cost ¼ 1737þ 731NumCavþ 562WaveClust
� 653RegClust � 701NonCir þ20:8NumBound2

� 33:5WaveClust þ 67:2NonCir2

One important consideration of the above two regres-
sion models is that we are working with observed data
instead of data from properly designed experiments.
Therefore, we cannot explore factors in isolation. These
variables are not strictly independent of each other. As a
result, the derived regression models are used strictly for
prediction instead of explanation.

4.4 Cross-fold validation

Here we validate the regression models using the cross-
validation approach. Because of the relatively small
sample sizes, the leave-one-out strategy is used. The
leave-one-out strategy is to take one observation out of
the dataset for validation and use the rest for modeling.
This procedure is repeated for each observation in the
dataset.

Using this strategy, we calculate several validation met-
rics from the two regression models as shown in Tables 2
and 3, respectively. Reading from left to right of the tables,
the metrics include the cost prediction (Predict) based upon
the regression model, the 95 % lower (Lower) and upper
(Upper) prediction intervals, the absolute percentage error
(APE), the prediction interval length (PI), as well as the
name of the mold (Name) and its actual cost (Cost). The

Table 3 Comparisons of pre-
dicted and actual costs
(mold type is modular and
mold design is spring)

Predict Lower Upper APE PI Name Cost

2,873 2,194 3,554 19.71 % 1,360 K-1457 2,400

2,637 1,471 3,803 12.10 % 2,332 K-1474 3,000

3,349 2,586 4,113 16.28 % 1,527 K-1481 4,000

4,122 3,156 4,700 3.05 % 1,544 K-1482 4,000

4,123 3,157 5,088 3.08 % 1,931 K-1483 4,000

2,972 2,028 3,916 8.07 % 1,888 K-1487 2,750

1,927 370 3,484 20.44 % 3,114 K-1493 1,600

1,916 957 2,875 4.20 % 1,918 B-402 2,000

8,088 903 15,273 30.68 % 14,370 B-444 6,189

1,735 −4,062 7,537 3.61 % 11,599 K-1492 1,800

MAPE 12.12 %

Table 2 Comparisons of predicted and actual costs (mold type is
modular and mold design is straight)

Predict Lower Upper APE PI Name Cost

1,523 222 2,824 45.78 % 2,602 K-1448 2,809

2,868 1,323 4,414 4.40 % 3,091 K-1451 3,000

1,388 −715 3,490 8.02 % 4,205 K-1465 1,509

2,429 754 4,103 10.41 % 3,349 K-1472 2,200

1,756 356 3,157 26.83 % 2,801 K-1458 2,400

2,146 304 3,988 12.95 % 3,684 K-1473 1,900

3,066 1,560 4,571 36.27 % 3,011 K-1480 2,250

1,702 62 3,342 13.47 % 3,280 B-441 1,500

2,886 1,291 4,481 15.44 % 3,190 B-452 2,500

3,255 1,618 4,893 41.52 % 3,275 B-448 2,300

MAPE 21.51 %
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last row of Tables 2 and 3 is the mean absolute percentage
error (MAPE), defined as

MAPE ¼ Predict � Costj j Cost=

From the values of MAPE, we can observe that the spring
model is more accurate than the straight model. Considering
the cost range of injection molds is very wide (can be as
high as $60,000 and as low as $600) and the variability of
the data is high, the MAPE of 21.51 % is actually remark-
able. Recall that our models are based upon bids and not real
manufacturing costs. Even if we had real manufacturing
costs, it is well known that in a job shop environment some
jobs may go well while others do not, which results in noisy
data.

5 Conclusions and future extensions

In this paper, we presented a semi-automatic framework to
estimate the cost of injection molds. It is believed to be
difficult to fully automate this process because injection
mold design itself is complex and human knowledge and
experiences cannot be entirely replaced by databases. There-
fore, an experienced bidder should always be included in the
process.

It is demonstrated that images can be used as the common
data format for automated mold cost estimation, from which
geometric and topological features can be extracted auto-
matically. A unique feature vector combines the knowledge
of mold type, mold design, and geometry to construct re-
gression models for cost estimation. Wavelet, regional, and
topological descriptors are used to relate geometry similarity
to complexity and cost.

Some unique variables that are able to relate geometry in
2D images to costs were identified, including the number of
non-circular boundaries, the number of boundaries, and de-
grees of symmetry. The number of wavelet clusters and the
number of regional clusters measure the degree of symmetry.

Our new hybrid approach combines analogy and mathe-
matical methods. At the analogy-based data partitioning
step, data are grouped into homogeneous datasets. This step
is useful to reduce the variance of estimations. At the
regression-modeling step, mathematical models give both
mean estimates and prediction intervals. The information of
variance provides a necessary tool for risk management.

Our approach, however, has several limitations. The first
is that a human expert is still needed to identify the factors
that are not captured by the model. The constructed model
thus should only be used to assist, instead of replace, human
bidders. The cost estimate from the model can serve two
purposes: to provide a double check on the bidders’ esti-
mates and to assist in early design decisions. The second

limitation is that data preprocessing for images may require
an extra amount of time. For instance, the removal of lines
that are not associated with the geometry of the part must be
done prior to our methodology, although converting various
2D or 3D design data formats to 2D images is easy. For our
examples, all non-geometric line removal was done manu-
ally. This manual process took approximately 15 min per
part. The automation of non-geometric line removal needs
further investigation in future research.

The developed injection molding cost estimation process
and framework can also be extended to other net shape
manufacturing processes, such as casting, blow molding,
transfer molding, compression molding, stamping, etc. The
methods described in this paper form the basis to automate
the tooling cost estimation for these processes.
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