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Abstract Machine condition monitoring is considered
as an important diagnostic and maintenance strategy
to ensure product quality and reduce manufacturing

cost. However, currently most additive manufacturing
(AM) machines are not equipped with sensors for sys-
tem monitoring. In this paper, a real-time lightweight

AMmachine condition monitoring approach is proposed,
where acoustic emission (AE) sensor is used. In the pro-
posed method, the original AE waveform signals are

first simplified as AE hits, and then segmental and prin-
cipal component analyses are applied to further reduce
the data size and computational cost. From AE hits,

the hidden semi-Markov model (HSMM) is applied to
identify the machine states, including both normal and
abnormal ones. Experimental studies on fused deposi-

tion modeling (FDM), one of the most popular AM
technology, show that the typical machine failures can
be identified in a real-time manner. This monitoring

method can serve as a diagnostic tool for FDM ma-
chines.
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1 Introduction

Sensor-based monitoring of machine condition helps in-

crease manufacturing process reliability and product
quality, and reduce maintenance cost [20]. However,
currently most additive manufacturing (AM) machines
are not equipped with closed-loop monitoring and con-

trol systems [31]. With the absence of real-time sensing,
process failures or machine breakdowns occur without
notice during the fabrication process. Thus, the quality

and repeatability of final products can not be guaran-
teed. There is an urgent need of implementing closed-
loop monitoring and control of AM processes to allow

industy to benefit from this new technology [37,35,18,
9].

Among several real-time sensing and non-destructive
evaluation technologies, acoustic emission (AE) is con-

sidered to be suitable in the application to machine
health monitoring, because AE sensor is sensitive to
the dynamic changes of mechanical systems and it can

obtain rich process information. The ease of setup and
non-intrusive deployment of the AE monitoring system
also makes it an attractive choice. In recent years, AE

has been successfully employed for a broad variety of
applications, including machine tool and process fault
detection [19,1,21], material damage and surface burn

detection [33,40], structural health monitoring [25,30],
pharmaceutical crystallization process monitoring [15],
and others.

In this work, AE sensing technique is applied to

monitor AM machines. AE signal is the elastic wave-
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form released in materials and can be detected by ap-

propriate AE sensor. Typically, the continuous AE sig-
nals are recorded as original signal waveform data, and
corresponding signal processing tools, such as wavelet

analysis and empirical mode decomposition [8,41], can
be applied to extract signal features directly for identi-
fying conditions. This monitoring scheme is also widely

used in other types of sensors such as force sensor and
accelerometer [26,12]. The major drawback of this mon-
itoring scheme is that it is difficult to store the orig-

inal waveform data if high sampling rates are applied
and the computational cost for signal processing is high
[32]. The wide frequency range of AE sensor required

for AM machine operation and the relative long fab-
rication time of AM processes also add extra burdens
on the monitoring system. Thus, these conventional ap-

proaches can not take full advantage of AE on its high
sensitivity in real time.

There is a strong need to develop an effective ap-
proach to handle the large amount of data from AE
sensor and develop the corresponding big data analyt-

ics and data-driven diagnostic algorithms for sensing
[29,42] in order to overcome the limitations of data stor-
age and processing. The new application of AM process

monitoring also calls for lightweight monitoring in or-
der to ensure system flexibility, reduce manufacturing
cost, and improve the product quality [10].

In this paper, a new AE-based AM machine moni-
toring approach is proposed. The original AE waveform

signals are first simplified as AE hits, and then seg-
mental and principal component analyses are applied
to further reduce the data size and computational cost.

In addition, the hidden semi-Markov model (HSMM)
is chosen as the diagnostic algorithm for machine mon-
itoring based on the processed AE data. The HSMM

is a generalization of hidden Markov model (HMM).
HSMM models the duration of states more efficiently
than the original HMM, which focuses more on state

transition [16]. Therefore HSMM is helpful to model sig-
nal segments and make inference for unobservable state
based on observable sensor signals in the noisy environ-

ment [28,36]. The successful applications of HSMM for
state identification and fault diagnosis include tool wear
monitoring [13,14], early fault detection of gearbox [27],

hydraulic pump health monitoring [11], fault diagnosis
in chemical multiphase batch process [7], identification
of sea regimes [6], and others. To the authors’ knowl-

edge, HSMM has not been used in monitoring AM pro-
cesses.

Fused deposition modeling (FDM) is selected as the
focused AM process in this study. FDM is one of the
most widely used AM technology because of its rela-

tive maturity and cost-effectiveness. The FDM fabri-

cating process is adding materials, mostly thermoplas-

tic, in a layer-by-layer scheme. In general, AM machines
go through more frequent state transitions than those
in subtractive manufacturing during fabrication. It has

been reported that the frequent start-stop sequences of
FDM machines affect the product quality [2]. Abnor-
mal states of machine condition, such as nozzle wear,

clogging, material run-out, and filament breakage, may
occur during the fabrication process [35,34]. For ex-
ample, the filament breakage of FDM is illustrated in

Figure 1. The machine monitoring methods that detect
the abnormal states at their early stages can make quick
adjustment possible thus reduce the waste of materials.

Fig. 1 A schematic drawing of material filament breakage in
FDM extruder, where the image on the right shows a typical
broken filament

The proposed machine monitoring method based on
AE sensing and HSMM diagnostics is a further im-

provement and extension of our previous work [39],
where support vector machine was used for classifica-
tion. Here, the recorded AE signals are processed and

analyzed as AE hits instead of the original waveform
data in order to significantly reduced the data size. Seg-
mental analysis and dimensionality reduction are ap-

plied to the AE hits to eliminate the hits saturation
and further compress the AE data. The processed AE
hits are used as inputs to train the HSMM for mon-

itoring FDM machine conditions and the capacity of
real-time diagnostics is investigated.

The rest of the paper is organized as follows. An
overview of the proposed machine monitoring and di-

agnosis framework is provided in Section 2. The exper-
imental setup and results are presented in Section 3,
followed by a discussion in Section 4. Finally, this pa-

per closes with a concluding remarks in Section 5.
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2 Proposed Monitoring and Diagnosis

Framework and Mechanisms

The framework of the proposed AE- and HSMM-based

FDMmachine condition monitoring and diagnosis method
is shown in Figure 2. The AE waveform signals detected
by the sensor are first measured as AE hits, and several

features are extracted accordingly. Segmental analysis
and principal component analysis (PCA) are applied on
the AE hit features to reduce data size and feature vec-

tor dimension, before they become the inputs of HSMM
for diagnosis. The related singal processing method and
background mechanisms are described in the following

subsections.

Fig. 2 The AE based framework with HSMM for FDM ma-
chine condition monitoring and diagnosis

2.1 AE signal processing and feature extraction

The AE signals collected by the sensor are measured as
AE hits and then several features are extracted on the
hit-level accordingly. As a result, the original massive

waveform data recorded by the high-speed data acquisi-
tion (DAQ) system are parametrically compressed. Fig-
ure 3 illustrates the measurement of an AE hit and the

typical features. The analyzed features in this study are
amplitude, counts, duration, absolute energy (Eabs),
signal strength (Str), and root mean square (RMS).

These conventional time-domain features of AE hits are
defined as follows.

Amplitude is the measured peak voltage within an

AE hit. The amplitude can be expressed on a decibel
(dB) scale. Counts are the total number of threshold-
crossing pulses. Duration represents the elapsed time of

the AE hit. Absolute energy Eabs is calculated as

Eabs = α

∫ t2

t1

u(t)2dt, (1)

where u(t) is the output voltage of the AE sensor and
coefficient α is inversely proportional to the AE sensor’s

electrical resistance. Signal strength

Str =

∫ t2

t1

|u(t)|dt (2)

Fig. 3 Measurement of an AE hit and the typical time-
domain features

is the integral of the u(t) over the duration of an AE

hit. RMS is defined as

RMS =

√
1

t2 − t1

∫ t2

t1

u(t)2dt. (3)

2.2 Segmental analysis and dimensionality reduction

High-speed DAQ system can record a very large number

of AE hits in real-time monitoring. In order to elimi-
nate the hit saturation and further compress the AE
data size [24], a signal segmental analysis is adopted on

AE hits. The AE hits are therefore divided into short
segments according to a chosen time interval, which
also determines the time resolution of the monitoring

method. Then the mean values of all features in each
segment are calculated to represent the characteristics
of the original AE signal.

After the segmental analysis and processing, the

next step is to reduce the feature vector dimension
based on PCA, since the multi-dimensional features of
AE hits may be correlated with each other to some ex-

tent. PCA can also further alleviate the computation
burdens. PCA is one of the most widely used unsu-
pervised statistical approach for feature dimensionality

reduction [22]. It finds the principal components (PCs)
so that the original data can be linearly projected into
this new set of coordinates with major patterns of vari-

ation represented.

Consider an AE data setX ∈ Rn×p with p-dimensional
features extracted and a total of n data segments along
time. Assume that X has been scaled and centered, and

the column-wise mean values in the data matrix are ze-
ros. The covariance matrix of the data set is

C = E[XTX], (4)

where XT is the transpose of X. A new k-dimensional

data set Y ∈ Rn×k where k ≤ p can be derived from X
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as

Y = XW, (5)

where W ∈ Rp×k is the decreasing-order orthogonal
basis that consists of the eigenvectors associated with
the k largest eigenvalues of C. The new data set Y =

{y1,y2, . . . ,yk} is formed by the projected vectors, which
are the PCs of the original AE data sample X. Partic-
ularly, y1 is the direction that is associated with the

maximum variance of the data, and each of the remain-
ing components is orthogonal to the preceding ones and
has the largest possible variance. The PCs are then used

as the input data (observation sequence) for the HSMM
training and machine state identification, described as
follows.

2.3 Parameter estimation of HSMM and machine state
identification

Similar to HMM, HSMMmodels the general time-series
problems with the differentiation between observable

and hidden states. A graphic model of HSMM is shown
in Figure 4, where the arrow from state S1 to state S2

indicates the state transition, and the line connections

between state sequence {St} and observation sequence
{Ot} indicate the correspondences between the obser-
vations and hidden states. HSMM is modeled by pa-

rameters λ = (π,A,D,B), where π is the initial prob-
abilities, A = {aij}, (i, j ∈ {1, 2, . . . , J}) is the transi-
tion probability matrix (TPM) for a total of J states,

D = {dj(u)} is the state-duration distribution matrix,
and the observation probability matrix is denoted by
B = {bj(ot)}. The major difference between HSMM

and HMM is the introduction of state duration D.

Fig. 4 The HSMM model

The initial state S1 is determined based on the ini-

tial probabilities πj where j ∈ {1, 2, . . . , J}. Given a
{St} semi-Markov chain with finite state space, the
first-order J-state Markov chain’s initial probabilities

are typically initialized as

πj =
1

J
(6)

with
∑

j πj = 1. The transition probabilities

aij = P (St+1 = j|St+1 ̸= i, St = i) (7)

satisfy aii = 0 and
∑

j aij = 1. The duration distri-

butions dj(u), also known as the sojourn time distri-
bution, model the duration of the system remaining at
state St = j. The semi-Markov chain {St} is the com-

bination of the first-order Markov chain and duration
distribution.

The state sequence {St} can be only evaluated in-
directly through the observation sequence {Ot}. The

discrete observation sequence {Ot} is associated to the
semi-Markov chain {St} by the observation probabili-
ties

bj(ot) = P (Ot = ot|St = j). (8)

In this study, the input data for HSMMs are the PCs
processed from the original AE data set. The HSMM

parameter estimation during the model training pro-
cess is based on the expectation-maximization (EM)
algorithm for the right-censored HSMM [16]. The basic

procedure of the EM algorithm is that the model pa-
rameters are iteratively updated through the iteration
of the so-called E- and M-step until the lower bounds on

the log-likelihood converge and reach an error threshold
or the maximum number of iterations is reached. Here,
the convergence error is set to 10−8, and the maximum

iteration count is set to 50.

Once the training is finished, the next step is to iden-
tify the FDM machine states for diagnosis from new ob-
servation sequences based on the trained HSMM. This

procedure is based on the so-called decoding process
which finds the most probable hidden state sequence
according to the observation sequence. The Viterbi al-

gorithm that performs a global decoding is the most
popular algorithm in solving this problem. The Viterbi
algorithm computes the most probable sequence of un-

observable states given the observation sequence, which
finds

arg max
j1,...,jt

P (S1 = j1, . . . , St = jt|Ot
1 = ot1). (9)

The details of the EM and Viterbi algorithms can
be found in [16,4]. The R implementation of HSMM [5]
is used in this study. Specifically, the observation distri-

bution is assumed to be a Gaussian distribution, which
is derived from our training data. The duration distri-
bution is modeled as a logarithmic distribution based

on our sensor data.



Real-Time FDM Machine Condition Monitoring and Diagnosis with AE and HSMM 5

3 Experimental Study

In this section, an experimental study of real-time mon-
itoring of the FDM extruder condition based on the

proposed method is described.

3.1 Experiment set up

In the experiment, an AE sensor is mounted on the
Model E5 Engine FDM machine made by HYREL3D.

The selected AE sensor is a wide-band differential sen-
sor with a wide response range of 100 − 900 kHz. The
differential sensor allows the background noise to be

reduced by approximately 2 dB. The AE sensor is at-
tached to the FDM machine’s extruder with vacuum
grease. The installation of the AE sensor is shown in

Figure 5. PAC 2/4/6 and PAC PCI-2, both made by
Mistras Group, are used as the preamplifier and DAQ
system respectively. The selected gain of the preampli-

fier is 40 dB, and the threshold value of the DAQ system
is 58 dB. The A/D conversion scheme of this DAQ sys-
tem is 18-bit, and the sampling rate in this study is set

to be 5M samples per second in order to maintain the
information integrity and AE data flow rate.

Fig. 5 Installation of AE sensor

3.2 Experimental procedure

Several machine operating conditions including both

normal and abnormal states are intentionally generated
in the experiment, while AE signals are continuously
collected by the AE system. The controlled operation

sequence of the FDM machine is shown in Figure 6,

where material filament is loaded, extruded, and un-

loaded within a period of time. Four machine states
are assumed, which are extruding without material as
State 1, material loading/unloading as State 2, idle as

State 3, and normal extruding as State 4. These four
represent the major states of the machine conditions.
The state of extruding without material is the typical

abnormal state when material runs out or there is fila-
ment breakage [34,39]. These two failure modes occur
when material filament cannot be fed in by the feeding

motor and gear.

Fig. 6 Operation sequence of FDM extruder in the experi-
ment

Based on the methods described in Section 2, the
recorded AE signals are processed with features identi-

fied by the advanced DAQ system. The PCs of features
are extracted. After the HSMM is trained, new observa-
tion sequences are taken to test the diagnosis function.

Our previous study [39] shows that the time-domain
features of AE hits are closely related to the machine
operating conditions and state transitions. Thus fea-

tures in the time domain are the focus of this work.

3.3 Experimental results and AE data analysis

The segmental analysis was applied to the extracted

AE features first. The chosen time interval or the time
resolution of the monitoring method was 0.1s. A total
number of 581 segments were divided from the experi-

mental process of 58.1s. The total number of the record
AE hits was 29, 523. Thus approximately 51 AE hits
were located in each segment. After segmental analy-

sis, the data size is significantly reduced.

The mean values of six time-domain features for

each segment from the AE hits, which were simulta-
neously recorded in the experiment, are displayed in
Figure 7(a)-(f). It is seen that machine state transitions

can be detected with the trend of feature value changes.
Though the mean values of these features may still
vary with different measurement scales, the influence

of random fluctuation and measurement noise can be
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eliminated with the averaging procedure. It is observed

that the state of extruding without material (State 1),
roughly before segment No. 100 and after segment No.
450, has the highest mean values of all six AE fea-

tures, which suggests that the abnormal FDM machine
conditions of material run-out or filament breakage are
largely reflected and sensitive enough for the changes

of these time-domain AE hits. It is also noted that the
characteristics of the feature distributions of the ma-
terial loading and unloading state (State 2), approxi-

mately between segment No. 100 and No. 200, versus
between segment No. 350 and No. 450, are similar. This
is because the only difference between these two states

is the feeding gear and motor are running at opposite
directions and their dynamic characteristics resemble.

One can also tell from Figure 7 that these six time-
domain AE features are correlated to certain extent,
as they show a similar trend during the FDM machine

state transitions. However, the sensitivities of these fea-
tures vary during different state transitions. For in-
stance, the Amplitude feature has significant value shifts

to and from the idle state (approximately between seg-
ment No. 200 and 230, between No. 320 and No. 350).
but the difference between the material loading/unloading

(State 2) and normal extruding (State 4, approximately
between No. 230 and No. 320) for Amplitude are not
obvious. In contrast, the AE features of counts and du-

ration show distinct changes between the material load-
ing/unloading and normal extruding states, whereas
their differences between loading/unloading and idle

are not obvious. The changes of RMS are not distinct
between State 2 and State 4. The sensitivity variation
among features with respect to different states indicates

that no single AE feature is representative enough for
state identification if these features in original signals
are to be used.

For the purpose of reducing feature dimensionality
while ensuring the major variance captured, the PCA

is used to project the six features of original AE hits
to a lower-dimensional space. The variance ranking of
PCs as the result of PCA is shown in Figure 8 (a).

It can be seen that the first principal component PC1
captures most of the variance, which is 91.2% of the
total variance. The values of all six calculated princi-

pal components (PC1 - PC6) are displayed in Figure 8
(b). From the PCs, states and state transition can be
identified more easily than the original AE features.

According to the Kaiser criterion [23], the principal
components with the variance greater than 1.00 are re-

tained. Therefore, the first principal component (PC1)
was selected for the following study of HSMM-based
training and machine state identification. PC1 repre-

sents the main characteristics of the original AE data,

as the four different FDM machine states and transi-

tions can be observed directly. As a result, the previous
issue of sensitivity variation in original AE features with
respect to different states is resolved. There is no need

to use all six dimensions of features, which significantly
reduces computational cost associated with HSMM.

3.4 HSMM training and FDM machine state
identification

The first principal component PC1 from PCA is used
for HSMM parameter estimation. The training data set

contains 80% of the total segments in PC1, and the rest
20% is used to test the accuracy of state identification.
Thus, the numbers of segments for training and testing

were 464 and 117 respectively.

During the training, the initial values of the initial

probabilities are set to be π0 = [1/4, 1/4, 1/4, 1/4]. The
initial values for the TPM is

A0 =


0, 1/3, 1/3, 1/3

1/3, 0, 1/3, 1/3
1/3, 1/3, 0, 1/3
1/3, 1/3, 1/3, 0

 .

The initial parameters for the state-duration distribu-
tion, which is given by a logarithmic distribution, are

p0 = [0.9800, 0.9800, 0.9800, 0.9800].

The observation probabilities are given as Gaussian dis-
tributions with means

µ0 = [2.5504,−1.9940,−3.2017,−0.3652]

and variances

σ2
0 = [0.8144, 0.5738, 0.8164, 0.8110],

which are estimated from the PC1 in different states.

The parameter estimation process was performed
based on the EM algorithm mentioned in Section 2.3.
The log-likelihood increases monotonically during the

iterative training process, as shown in Figure 9. The
log-likelihood reaches the preset threshold at iteration
21. This training process indicates that the HSMM has

the capability of rapid learning, which is important for
real-time performance. The final estimated values of the
initial probabilities is π = [1, 0, 0, 0], and the estimated

values for the TPM is

A =


0, 0.3940, 0.3041, 0.3018

0.5785, 0, 0.1169, 0.3045
0.3658, 0.4809, 0, 0.1531
0.6097, 0.1540, 0.2361, 0

 .



Real-Time FDM Machine Condition Monitoring and Diagnosis with AE and HSMM 7

0 100 200 300 400 500 600
58.0

58.5

59.0

59.5

(a)

Am
pl

itu
de

 (d
B)

Segment number

0 100 200 300 400 500 600
0

5

10

15

20

(b)

C
ou

nt
s 

(N
)

Segment number

0 100 200 300 400 500 600
0.0

2.0x102

4.0x102

6.0x102

(c)

D
ur

at
io

n 
(

s)

Segment number

0 100 200 300 400 500 600
0.0

4.0x103

8.0x103

1.2x104

1.6x104

(d)

E ab
s 
 (a

J)

Segment number

0 100 200 300 400 500 600
0

1x105

2x105

3x105

(e)

St
r (

pV
s)

Segment number

0 100 200 300 400 500 600
2.0x10-2

2.5x10-2

3.0x10-2

3.5x10-2

(f)

R
M

S 
(m

V)

Segment number

Fig. 7 Mean values of the six time-domain features for AE hit segments

The estimated parameters of logarithmic distribu-
tions for the state-duration probabilities are

p = [0.5974, 0.4243, 0.3419, 0.3277].

The estimated means and variances for the observation

probability matrix are

µ = [2.6102,−2.0456,−2.6945,−0.4783]

and

σ2 = [0.7685, 0.1241, 0.4249, 0.2835].

By applying the Viterbi algorithm, the most proba-
ble FDM machine states can be obtained from the test

data set. The identification results of the 117 test seg-
ments are presented in Figure 10. The state sequences
of the input PC1 data were inferred by the trained

HSMM. The identification accuracy of the HSMM is
93.2%, where 109 segments from test data are recog-
nized correctly and only 8 segments are mis-identified.

To further evaluate the diagnosis accuracy, the trained
HSMM was further applied to identify the state tran-
sitions during the entire experimental process, and the

identification results are presented in Figure 11. The
overall identification accuracy is 91.9%, where 534 out
of the total 581 segments based on PC1 are identi-

fied correctly. The statistics of the identification results
are provided in Table 1. The relative high unweighted
kappa values indicate a good agreement of these cross-

validation analysis [38].

3.5 Sensitivity analysis of the identification

The sensitivity of the identification accuracy is analyzed
with two other time resolutions. The same procedures
as described in Section 2 for AE data processing and

HSMM training were followed, with the only differences
of the chosen segment lengths.

The state identification result under the time reso-
lution of 0.05s and 0.2s are shown in Figure 12(a) and

(b) respectively. In the first sensitivity analysis with the
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Table 1 Statistical analysis of identification results

Test data All data

Total segment number 117 581
Correctly identified segments 109 534
Accuracy rate 93.2% 91.9%
95% confidence interval (0.8697, 0.97) (0.8939, 0.94)
Kappa 0.9012 0.8832
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Fig. 8 Results of the PCA including (a) the scree plot of
PCA and (b) values of all 6 PCs
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Fig. 9 The training curve of the HSMM

time resolution of 0.05s, a total number of 1162 seg-
ments were generated, of which 20%, or 233 segments,

were randomly selected as the test data set. The iden-
tification accuracy of this data set is 86.27%, and the
number of iterations to train HSMM is 27. In the second

sensitivity study, the time resolution of 0.2s is chosen,
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Fig. 10 The results of FDM machine state identification for
the test data segments of PC1
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Fig. 11 The results of FDM machine state identification for
all data segments of PC1

and the total number of segments is 290. 56 out of the

58 test segments were identified correctly. The identifi-
cation accuracy is 96.55%. The HSMM converges with
only 8 iterations during the training process in this case.

However, the reduced time resolution may affect the re-
sponse for real-time monitoring.

Sensitivity analysis shows that, although the ma-

jority of the FDM machine states can be identified by
the proposed monitoring method, the selection of the
time resolution and segment length can affect the over-

all performance. Therefore, the selection of 0.1s as the
time interval could maintain a proper balance between
identification accuracy and computational cost under

this monitoring scheme for FDM machine.
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Fig. 12 FDM machine state identification results with dif-
ferent time resolutions of (a) 0.05s and (b) 0.2s

4 Discussions

From the experimental results and analyses, it is seen
that the proposed AE- and HSMM-based FDM ma-

chine monitoring and diagnosis method can identify the
major operating conditions of the extruder. The typical
abnormal states of material run-out or filament break-

age can be detected in a real time manner with efficient
training and learning.

There are mainly two performance improvements of
the method proposed in this paper compared to our
previous support vector machine (SVM) based method

[39]. The first one is that the dimensions of time-domain
AE features are systematically reduced by using PCA.
Thus the robustness and generality of the monitoring

method are improved. With the reduced dimensional-
ity and sizes of input AE data, lightweight and effi-
cient machine learning is good for real-time applica-

tions. A reasonable accuracy (greater than 90%) can
be achieved under the time resolution of 0.1s. Second,
HSMM has the advantage of multi-state identification

compared to SVM, which is basically for binary classifi-
cation. To identify a total of k states, k(k−1)/2 trained
SVM models may be needed based on the one-against-

one strategy, and k SVM models are needed if the one-

against-all strategy is used [17]. In contrast, in HSMM,

the most probable state can be obtained directly via
Viterbi algorithm. HSMM is a more versatile model for
the application of machine condition diagnosis with the

consideration of sensing errors because it introduces the
relation between observable and hidden states. Further-
more, the prediction of state transitions in HSMM also

provides an integrated prognosis approach.

A small number of segments were mis-identified by
HSMM, which is mostly because of the overlaps of the

original data as observed in Figure 8 (c), such as among
segment No. 96-110, No. 435-455 and State 4. These two
obvious AE spikes were seen particularly at the begin-

ning of the material loading state and at the end of the
material unloading state. This phenomenon is very sim-
ilar to the entry and exit AE spikes that were detected

on the grinding process [3]. The cause of these overlaps
could be the sudden changes of machine dynamics, elec-
trical current fluctuations, and instability of the extrud-

ing process. Consequently, methods for noise removal or
suppression on the AE hits need further investigation
in future study for more accurate state identification.

5 Concluding Remarks

In this paper, a real-time and lightweight FDMmachine
condition monitoring and diagnosis method is presented.
Its application to identify operation conditions of the

FDM machine’s extruder, including both normal and
abnormal states, is demonstrated. Experiments were
carried out to identify four typical FDM extruder states

and transitions. AE signals from the experiments were
recorded by a high-speed data acquisition system. Six
time-domain features of the recorded AE hits were an-

alyzed and principal components were extracted. The
size of AE data was significantly reduced while the im-
portant information and the characteristics for diag-

nosis were kept. Consequently, the complexity of the
computation for machine learning was also reduced.
One principal component was used for HSMM parame-

ter estimation and state identification. The experimen-
tal results show that the proposed method can detect
common machine failures such as material run-out or

filament breakage. This method could be applied as a
real-time diagnostic tool for FDM machine condition
monitoring to improve printing process reliability and

product quality.
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