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ABSTRACT: Interval is an alternative to probability distribution in quantifying uncertainty for reliability
analysis when the distribution is unavailable. It only requires the information of lower and upper bounds. The
effect of uncertain parameters can be estimated by solving interval-valued Constraint Satisfaction Problems
(CSPs). By introducing logic quantifiers, Quantified Constraint Satisfaction Problems (QCSPs) can capture
more semantics and engineering intent than CSPs. Sensitivity analysis (SA) takes into account variations of
the structure and parameters of interval constraints to study to which extent they affect the output. In this
paper, a global SA method is developed for QCSPs, where the effects of quantifiers and interval ranges on the
constraints are analyzed based on several proposed metrics, which indicate the levels of indeterminacy for inputs
and outputs as well as unsatisfiability of constraints. Engineering design problems are used to demonstrate the
proposed approach.

1 INTRODUCTION

Interval is an alternative to probability distribution
in quantifying uncertainty when the distribution is
unavailable. It has the practical advantage of only
requiring theminimum information of lower and upper
bounds without assuming any distribution. Hence,
interval analysis becomes attractive in analyzing the
reliability of engineering design. The reliability of an
engineering design can be estimated by solving the
constraints with the consideration of the variations of
parameters. That is, the effect of uncertain parame-
ters on the performances of the engineering system
can be estimated by solving interval-valued constraint
satisfaction problems (CSPs).
Interval-valued CSP is a system of constraints

where the variables are interval values. Solving an
interval-valued CSP is to find the interval values of
variables that satisfy all constraints. In order to capture
more semantics, a CSP can be extended to a quantified
constraint satisfaction problem (QCSP) which allows
for universal (∀) and existential (∃) quantifiers associ-
ated with variables (Börner et al., 2003, Shary, 2002).
Those variables which are not controllable by designer
can be associated with quantifier ∀. They usually cor-
respond to the external disturbance of a system. The
variables which can be controlled andmodified within
some prescribed interval ranges by designer are asso-
ciated with quantifier ∃. Therefore, design intents are
captured by assigning quantifiers to variables. QCSP

is a general problem with its solution satisfying con-
straints in the form of both mathematical and logic
expressions.
An interval-valued QCSP is typically solved by

applying the consistency techniques numerically in
the iterative solving process. It can be simplified by
applying the semantic analysis based on the logic
interpretation. However, when constraints are overly
restrictive on their interval value ranges, wemay not be
able to find feasible solutions. Additionally, when all
variables in a constraint are universally quantified and
interpretation is not possible, the constraint is regarded
as being over-constrained in logic. In these cases, we
need to know which input may have more impact on
the output than the others so that adjustments can be
performed to receive desirable solutions, in addition
to whether there is a feasible solution or not during
the solving process. Therefore, sensitivity analysis for
interval-valued QCSPs is necessary and useful to gain
such information.
Sensitivity analysis (SA) is to determine the rel-

ative contribution of inputs to the observed varia-
tion of outputs in a mathematical model. In contrast
to variance-based statistical sensitivity analysis, few
efforts have been taken for interval-valued models in
uncertainty quantification. Early research focused on
applying interval analysis to rigorously bound the sen-
sitivity estimation of real-valued models, where the
outer and inner estimations of Jacobian for nonlin-
ear equations are computed (Neumaier, 1989, Rump,
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1990, Wallner et al., 2005, Goldsztejn, 2008). More
recently, a local SA method was proposed to study
the impacts of the width and midpoint value changes
of interval variables (Guo and Du, 2009). A hybrid
approach to analyze the sensitivity of interval variables
inmulti-objective optimization problemsvia statistical
sampling was also proposed (Li and Williams, 2009,
Li et al., 2010) in which the sensitivities of parame-
ters with respect to the multiple outputs are measured
by Shannon entropy. Different from the above, the SA
approach proposed here is to analyze the sensitivity of
interval inputs globally with respect to the solutions of
QCSPs.
Sampling is widely used in the traditional SA. It

aims to generate the profiles of outputs so that the
impacts of inputs can be compared. Sampling implies
high computational costs in which a large number
of calculations are conducted repeatedly, especially
for global sensitivity analysis (GSA) where the entire
range of input variations needs to be studied. The
existing GSA techniques are mainly variance-based
(Homma and Saltelli, 1996, Wagner, 1995, Sobol′,
2001, Chen et al., 2005, Saltelli et al., 2008, Swiler
et al., 2009, Weirs et al., 2012) where the sampling
efficiency is also closely related to the distributions.
In this paper, a GSA approach is developed for an

interval-valued QCSP without assuming the distribu-
tions for the inputs. It aims at analyzing the effects
of both interval value and quantifier of an input on
the output of a constraint. With this information, the
input can be adjusted for feasible solution in appli-
cations. Generalized interval (Dimitrova et al., 1992,
Kaucher, 1980, Gardeñes et al., 2001) is used to repre-
sent the quantified inputs. It provides the convenience
for numerical calculations in interval analysis and
logic interpretations in assessing enclosure.
We use a metric, unsatisfiability denoted by u(·),

to qualitatively measure whether a quantified interval
constraint is satisfiable or not.We also define ametric,
indeterminacy denoted byM(·), as a generalization of
the Hartley like measure (Klir, 2006) to measure the
change of information from an output as a result of the
input variation. The major extension is that M(·) for a
proper interval is defined as positive but negative for
an improper interval. Additionally, the indeterminacy
of a generalized interval vector is defined as a vector
instead of a scalar value.
The interval-valued QCSPs can be specified by a

constraint system in the form of F(a, x)= b in which
a is the input,b is the output, and x is the unknownvari-
ables. The main idea of the proposed GSA approach
is summarized as follows. The sensitivity of every
input with respect to each constraint is estimated both
quantitatively and qualitatively. Three representative
values of an interval inputs are chosen to be the refer-
ences basedonwhich thedifferenceof indeterminacies
M(·)’s for an output are calculated. The three repre-
sentative values are lower bound, midpoint, and upper
bound of an interval input. The information gain is
quantified by the difference between indeterminacies
of outputs. In order to differentiate the impact of each

input on an output, theGSA is implemented in a frame-
work ofmaking the variation of one input at a time.The
interaction of two inputs is estimated by varying the
two inputs simultaneously. The sensitivities of inputs
are ranked by some sensitivity zones which are gen-
erated by computing the total information gains for
the three different representative values of an input.
When two inputs have the same total information gain,
qualitative metrics u(·)’s are compared.
In the remainder of the paper, the background of

generalized interval and Hartley like measure is intro-
duced in Section 2.The proposed approach andmetrics
are described in Section 3. Two engineering design
examples are presented to demonstrate the proposed
method in Section 4.

2 BACKGROUND

2.1 Generalized interval

Generalized interval is an algebraic and semantic
extension of the classical interval (Moore et al., 2009).
The classical interval is defined as a set of real numbers
as [[x, x]] := {x ∈ R|x ≤ x ≤ x}. In contrast, a general-
ized interval x := [x, x]∈ KR, defined by a pair of
numbers, is no longer restricted to the ordered bounds
x ≤ x. An operator � maps a generalized interval x to
a classical interval, defined as

x is proper when x≤ x and denoted as x ∈ IR. x is
improper when x≥ x and denoted as x ∈ IR. Point-
wise interval x, when x= x, can be either proper
or improper. The property of proper or improper is
referred to as the modality of the interval. Opera-
tors pro and imp return proper and improper intervals
respectively and are defined as

The relationship between proper and improper
intervals is established by an operator dual, defined
as dual ([x, x]) := [x, x]. Functions inf ([x, x])= x and
sup ([x, x])= x return the lower and upper bounds of x,
respectively.
The generalized interval arithmetic is also called

Kaucher arithmetic, which coincides with classical
interval arithmetic when only proper intervals are
involved. The intersection between two generalized
intervals x and y is generally defined as

which also holds for the intersection of classical
intervals, originally defined as

2932

D
ow

nl
oa

de
d 

by
 [

G
eo

rg
ia

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y]

 a
t 1

8:
48

 2
8 

Ju
ne

 2
01

4 



The inclusion relationship between x and y is
defined as

The inclusion monotonicity is a useful property of
Kaucher arithmetic which is expressed as

where •∈ {+,−,×, /}, x1, y1, x2, and y2 are gen-
eralized intervals. It also states that if F = F(x1,
x2, . . . , xn) is an interval extension of function f ,
which only involves the operations •∈ {+,−,×, /}
and yi ⊆ xi, for i = 1, . . . , n, then F(y1, y2, . . . , yn)⊆
F(x1, x2, . . . , xn).
The width of a generalized interval x = [x, x] is

defined by wid(x) := |x − x| which is a non-negative
value to quantify the size of an interval. The midpoint
value is found bymid(x) := (x + x)/2, and the radius is
defined by rad(x) := (x − x)/2, which is positive when
x ∈ KR and negative when x ∈ KR.
Generalized intervals based on Kaucher arithmetic

form a group, whereas classical intervals form a semi-
group without invertibility. Generalized interval also
provides richer semantics than the classical interval.
Given a constraint system of a QCSP

where F :KR
l × KR

n → KR
m, the elements in a, x,

and b are generalized intervals. With the notations ρ
for proper and ι for improper, a proper interval vector
aρ ∈ IR

l with its i-th element (aρ)i and an improper
interval vector aι ∈ IR

l with its i-th element (aι)i are
defined as

such that a = aρ + aι. Similarly, b = bρ + bι and x =
xρ + xι are defined. The solution set of Equation 8 is
interpreted as either

or

2.2 Hartley like measure

Hartley like measure (Klir, 2006), denoted by HL(·),
is defined in a bounded and convex subset of R

n for
some n ≥ 1. For the convex subsets A, the HL(A) is
defined as

where µ is the Lebesgue measure, T is the set of all
isometric transformations from one orthogonal coor-
dinate system to another, Ait is the ith projection of A
in coordinate system t, b and c are positive constants
(b 	= 1) whose values define a measurement unit.

HL(A) measures the nonspecificity of a bounded
and convex subset. Nonspecificity characterizes the
uncertainty caused by the quantity of possible alter-
natives in the considered set of values. For a closed
interval I which is a set of real numbers, HL(I ) can be
simplified as

which satisfies some essential requirements (Klir,
2006, Rényi, 1970) for an uncertainty measure.
For pointwise interval [[r, r]] in which r = r, HL(r)

is zero, meaning that it is completely specified. The
value of HL(·) depends on the width of interval r.

3 GLOBAL SENSITIVITYANALYSIS
APPROACH FOR QCSP

3.1 Basic metrics

The proposed sensitivity analysis of interval con-
straints is based on the variation of interval ranges.
A variation of interval x = [x, x], denoted by vx, is
defined as a value change to x′ = [x′, x′] with x′ =
x + δ1 and x′ = x − δ2 where 0< δ1 ≤ 2rad(x) and
0< δ2 ≤ 2rad(x) if x∈ IR, and 2rad(x)≤ δ1 < 0 and
2rad(x)≤ δ2 < 0 if x∈ IR.
When δ1 < rad(x) and δ2 < rad(x) for x∈ IR, and

δ1 > rad(x) and δ2 > rad(x) for x∈ IR, the variation
is called local. When δ1 ≥ rad(x) and δ2 ≥ rad(x) for
x∈ IR, and δ1 ≤ rad(x) and δ2 ≤ rad(x) for x∈ IR, the
variation is calledglobal.There is a change ofmodality
and the associated logic quantifier in global varia-
tion. For instance, if the interval [1,2] is changed to
[1.1,1.9], the variation is local. If it is changed to
[1.5,1.5] or [2,1], the variation is global.
Notice that the term, global, used in the traditional

sensitivity analysis means output variances are evalu-
ated within the entire ranges of all inputs. Here, global
indicates that the variation causes the interval modal-
ity change, which is more significant than the value
change within the input range.
Consider a constraint system with m constraints

and l variables. The first metric for sensitivity analysis
is unsatifiability, defined as

which indicates whether the jth constraint cj is unsat-
isfiable or not with variables a and x. The total unsat-
isfiability of the constraint system with m constraints
is defined as

2933

D
ow

nl
oa

de
d 

by
 [

G
eo

rg
ia

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y]

 a
t 1

8:
48

 2
8 

Ju
ne

 2
01

4 



The second metric is the indeterminacy measure,
denoted as M(·), which is a generalization of the
Hartley like measure HL(·) with the consideration of
generalized intervals. The indeterminacy measure for
a generalized interval x ∈ KR is defined as

AnegativeM(·) is associatedwith an improper interval
so that the indeterminacymeasures for twogeneralized
intervals can be differentiated when they have equal
widths but are associated with different quantifiers.
The indeterminacy of a generalized interval vector

x ∈ KR
l is defined as a vector M(x)= [M(x1), . . . ,

M(xl)], which measures the indeterminacy of each
element xi in x separately.

3.2 Sensitivity estimated by indeterminacy of output

Given a system of constraints in Equation 8 where x ∈
KR

n is unknown, a ∈ KR
l is the input, and b ∈ KR

m

is the output, the indeterminacy M(b) of b is called
initial indeterminacy when all inputs of a take their
initially given interval ranges. The remaining indeter-
minacy M(b|ai) is defined as the indeterminacy of b
given that one input ai becomes known with certainty
as a real value whereas others remain as intervals.
That is,

where ∼ i denotes the rest of elements in a vector
except the ith one. Here, the remaining indeterminacy
of output is obtained by choosing ai as a representa-
tive value, i.e. inf(ai), mid(ai), or sup(ai), while other
inputs remaining the original interval values.
Similarly, the joint remaining indeterminacy,

M(b|ai, ak ), canbedefinedwithb = F(a∼i∼k , ai, ak , x)
by choosing ai and ak as the same corresponding
representative values of ai and ak .
Thus, the main information gain by knowing ai

with certainty with respect to the jt constraint is
quantified as

We say I m
j (·) is computable if

and

The two computable conditions in Equations 19–
20 ensure that the definition of I m

j (ai) in Equation
18 holds. The computable condition of Equation 19

requires M(bj) and M(bj|ai) have the same sign,
which indicates that only the numerical value of inde-
terminacy of the jth output is changed with known ai.
I m
j (ai) reveals the numerical change of indeterminacy
of the jth output when ai is changed to ai.

M(bj)× M(bj|ai)< 0 implies that the quantifier
of the jth output is also changed besides of its value
change when ai is changed to ai. In this scenario, the
input ai introduces the additional indeterminacy to
the constraint. The quantifier change of the jth out-
put when M(bj)× M(bj|ai)< 0 is measured by the
quantifier mutation gain defined as

wherebj = Fj (a∼i, ai, x), i = 1, . . . , n, and j = 1, . . . ,m.
The second computable condition in Equation

20 requires that the denominator M(bj) should be
nonzero. When M(bj)= 0, the output bj is a real
number with zero interval width. It implies that the
uncertain inputs compensate to each other so that the
output becomes a precisely known value. Any change
of the inputs may have influence on the output such
that the output becomes uncertain again. Since the
pointwise interval can be treated as either proper or
improper, the quantifier can be seen as either changed
or not when an interval width is reduced to zero. In this
paper, we treat it as a change so that the indeterminacy
of output in this scenario can also be quantified by
Equation 21.
The indeterminacy of an output has two levels.

One is the numerical change with the same quanti-
fier, and the other is the quantifier change. With the
same input variation, an output with quantifier change
is seenmore sensitive than the onewith only numerical
change.
The joint information gain I jt(ai, ak ) is used to

quantify the uncertainty reduction by simultaneously
knowing two inputs ai and ak with certainty, and the
jth joint information gain is calculated by

under the computable conditions M(bj) 	= 0 and
M(bj)× M(bj|ai, ak )≥ 0 where i = 1, . . . , n, j =
1, . . . ,m.
The difference between I jt

j (ai, ak ) and I m
j (ai) and

I m
j (ak ) is the extra information gained by the interac-
tion between ai and ak . Assuming that ai and ak are
independent to each other, the interaction between ai
and ak , as an indicator of the strength of correlation
between the two, is quantified by

where αε is a compensation term, and i 	= k . The
compensation term is introduced because there could
be an error when calculating the linear relationship
in Equation 23, whereas indeterminacy is defined
with the logarithm function. In other words, αε
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is introduced such that I in
j (ai, ak ) becomes zero

when the linear combination of the effects of indi-
vidual inputs I m

j (ai) and I m
j (ak ) is comparable to

I jt
j (ai, ak ) if there is no interaction between the two
inputs. ε is defined as ε = [M(bj|ai)+ M(bj|ak )−
M(bj|ai, ak )− M(bj)]/M(bj). The Boolean indica-
tor α is defined as α = 1 if 2M(bj) + 2M(bj|ai,ak) =
2M(bj|ai) + 2M(bj|ak). Otherwise, α = 0.
Equation 23 should also be under the condition that

I jt
j (ai, ak ), I m

j (ai) and I m
j (ak ) are all computable. The

total information gain I (ai) with respect to the jth
constraint provided by knowing ai with certainty is
defined as

With the above definitions of information gains and
quantifier change, we can now perform the sensitivity
analysis. There are three possible values of M(b|ai)
as ai has three choices of representative values. Thus,
we use a sensitivity zone of Ij(ai) to represent the pos-
sible sensitivities of ai with respect to the jth output.
The lower and upper bounds of the sensitivity zone are
computed from the minimum and maximum among
the three values in Ij(ai)= {Ij(ai = inf(ai)), Ij(ai =
mid(ai)), Ij(ai = sup(ai))}. When Ij(ai) is not com-
putable, the sensitivity zone is computed from
the minimum and maximum values in Qj(ai)=
{Qj( inf (ai)), Qj(mid(ai)), Qj( sup (ai))}.
Table 1 lists the rules of sensitivity compari-

son, where Sj(ai) denotes sensitivity of the ith input
with respect to the jth constraint when ai changes
to ai. mig(Ij(ai))=min{|Ij( inf (ai))|, |Ij(mid(ai))|,
|Ij( sup (ai))|}. mag(Ij(ai))=max{|Ij( inf (ai))|,
|Ij(mid(ai))|, |Ij( sup (ai))|}.
Quantified interval constraints have logic inter-

pretation embedded in the mathematical expression.
Therefore, the impact of input variation includes not
only the one on the indeterminacy change of the out-
put, but also on the satisfiability of the constraint. The
satisfiability of a quantified constraint can be verified
by checking if the set intersection (defined in Equa-
tion 5) between an initially given output b0

j and the
computed one bj = Fj(a∼i, ai,x) is empty. If the inter-
section is not empty, then the interpretation exists and

Table 1. Sensitivity comparison rules.

Ij(ai) Ij(ak ) Rules

Comp Comp Sj(ai)≥ Sj(ak ), if mig(Ij(ai))≥mag(Ij(ak ));
Sj(ai)<Sj(ak ), if mag(Ij(ai))<mig(Ij(ak ));
Not decided, otherwise.

Comp Incomp Sj(ai)<Sj(ak ).
Incomp Comp Sj(ai)>Sj(ak ).
Incomp Incomp Sj(ai)≥ Sj(ak ),if mig(Qj(ai))≥mag(Qj(ak ));

Sj(ai)<Sj(ak ), if mag(Qj(ai))<mig(Qj(ak ));
Not decided, otherwise.

Note: Comp – computable; Incomp – not computable.

constraint is satisfiable. Otherwise, the constraint is
unsatisfiable.
The indeterminacy of output intersectionM(b∩

j |ai)
can be measured by Equation 17 in which b∩

j =
pro(Fj(a∼i, ai, x)) ∩ pro(b0

j ). It implies that the inde-
terminacy of the interaction between the jth given
output and the one computed by knowing ai with cer-
tainty. WhenM(b∩

j |ai)< 0, the jth quantified interval
constraint is unsatisfiable. The relationship between
u(·) and M(·) is

which is the unsatisfiability of the jth constraint.
Similarly, we have uj(a, x) with variables a and

x by computing M(b∩
j ) where b∩

j = pro(Fj(a, x)) ∩
pro(b0

j ). For example, in a problem with three con-
straints, we have u(a, x)= (1, 0, 1). It indicates that the
first and third constraints are not satisfiable. Nowwith
a variation of input ai, u(a∼i, ai, x)= (1, 1, 1). We will
know that the second constraint becomes unsatisfiable
too. The comparison is described as

which indicates the unsatisfiability change of the jth
constraint from 0 to 1 with the variation ai �→ ai.
The total unsatisfiability change with a variation of

ai �→ ai, denoted by �U (ai �→ ai), is computed as

where ai �→ ai introduces unsatisfiability to the prob-
lem when �U (ai �→ ai)> 0. Otherwise, it does not
affect the unsatisfiability of the problem if �U (ai �→
ai)= 0. An input with �U (·)> 0 has more impact on
the output than the one with �U (·)= 0. Because ai
can be either one of the three representative values, a
set of three values �U (·) will be obtained, similar to
Ij(·) and Qj(·).
The sensitivity analysis includes two aspects. One

is based on I (·) that specifies the total information
gain of inputs quantitatively. The other is based on
�U (·) that provides the unsatisfiability change of the
problem qualitatively. The values in �U (·) are used if
the sensitivity levels cannot be decided based on the
rules in Table 1. In this case, if mig(�U (ai �→ ai))≥
mag(�U (ak �→ ak )), S(ai)≥ S(ak ). If mag(�U (ai �→
ai))≤mig(�U (ak �→ ak )), S(ai)≤ S(ak ). Otherwise,
the sensitivity is not comparable.

4 NUMERICAL EXAMPLESAND RESULTS

The proposed method for interval-valued quantified
constraints is applied to the stability analysis of a
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soil slope problem (Smith, 2006) and the reliabil-
ity analysis of a deep excavation (Xu et al., 2011).
Here the problems have been modified to estimate the
sensitivities of inputs in the form of QCSP.

4.1 SA for soil slope stability

In the stability analysis for a soil slope shown in Fig-
ure 1, input parameter uncertainties represented by
intervals are taken into the calculation of the safety
factor F by the Bishop’s conventional method as

whereW is sliceweight,α is the angle between the total
normal force acting on base of slice and the vertical,
l is the straight distance between the endpoints of slice
circle, ru = rhw/zr is the pore water pressure to the
weight of the material acting on unit area, c is unit
cohesion, and φ is the angle of shearing resistance.
The data are given in Table 2, corresponding to the
five slices in Figure 1.
The sensitivities of inputs α, c, r and φ are esti-

mated. For each selected input, the value is varying
within the range ±10% of the initially given value.
The interval-valued constraint in Equation 28 can be
solved as a quantified onewhich has a solution setwith

Figure 1. Cross-section of an earth dam.

Table 2. Data used in Example 1 (Smith, 2006).

slice z
(m)

b
(m)

W
(kN)

α (◦) hw
(m)

1
2
3
4
5

0.95
2.44
3.32
3.50
1.74

2.35
2.35
2.35
2.35
2.35

42.9
110.1
149.8
157.9
78.5

0.985
0.998
0.940
0.819
0.545

0.654
1.958
2.440
2.020
0.246

others c
(kPa)

φ

(◦)
r
(kN/m3)

R
(m)

θ (◦)

12 20 19.2 9.15 89

the interpretation (∀Xρ ∈ X�
ρ )(∀Aρ ∈A�

ρ ) (∃Bρ ∈ B�
ρ )

f (Aρ,Xρ)= Bρ, with the input, unknown, and output
as Aρ = (α, c, r,φ),X ρ = θ, and Bρ = F respectively.
The result of the proposed method calculated by

choosing midpoint as the representative value is com-
pared with the result from the tradition local SA
method based on the first derivatives, as shown in
Figure 2-a. The quantitative sensitivity zones of S(·)
for each input with respect to the output are shown in
Figure 2-b. The sensitivity level rankings are listed in
Table 3. The rankings marked by * cannot be decided
because of the overlaps between the sensitivity zones.
When all inputs have the universal quantifier in QCSP,
the problem is the same as the classical CSP.
The same input has different sensitivities with

respect to an output when it is associated with differ-
ent quantifiers. For example, in Figure 2-b and rows
2–3 in Table 3, sensitivities are quantitatively differ-
ent between the case when all inputs are associated
the universal quantifier and the one when φ becomes
existentially quantified, even though their rankings do

Figure 2. Comparison between the results.

Table 3. Sensitivity ranking in Example 1.

Sensitivity ranking

Inputs highest← →lowest

Local SA α c φ r

Proposed All universal α φ* c* r
φ existential α φ* c* r
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Figure 3. Cross-section of gravity retaining wall.

not change. In Figure 2-b, S(α) is negative. It implies
that the change of α to a representative value causes
the quantifier change of the output. In this case, I (α)
is replaced by Q(α) during the ranking. The change
of output quantifiers has more impact than the one
with value change only. Therefore, α has the highest
sensitivity ranking among all inputs. The change of
quantifier for one inputmay also have impacts on those
other inputs which are involved in the same constraint.

4.2 SA for gravity retaining system of deep
excavation

The proposed method is also applied to the relia-
bility analysis of a deep excavation, as shown in
Figure 3. Two performances against sliding and over-
turning for deep excavation are analyzed. The safety
corresponding factors are

and

respectively, where the soil density r, the internal fric-
tion angle φ, the cohesion c, and the average density
of the wall body r0 are taken as the inputs with uncer-
tainties.H ,D, b and q are the design variables.The soil
pressures on the retaining structure are calculated by

where Ka = tan2(45− φ/2), Kp = tan2(45+ φ/2),
and z = 2c/(r0K

1/2
a ). W is the weight of wall. The data

used here are given in Table 4. Two scenarios are used
to illustrate the proposed method.
Scenario 1: Only one type of quantifiers, either ∀

or ∃, is associated with all elements in A, B and X.
The solution set corresponds to the traditional interval
constraints without quantifiers.

Table 4. Data used in Example 2 (Xu et al., 2011).

variables value variables value

r (kN/m3) [17.8, 18.7] H (m) 9.8
φ (◦) [10.8, 11.7] D (m) 8.2
c (kPa) [8.2, 9.1] b (m) 6.5
r0 (kN/m3) [18, 19] q (kPa) 10

Figure 4. Sensitivities zones of inputs inScenario 1.

Figure 5. Sensitivity bounds when c is existential in Sce-
nario 2.

Scenario 2: Only one type of quantifiers, either ∀
or ∃, is associated with B and X whereas both types
of quantifiers are associated with different elements
inA. The multiple occurrence input, c, is chosen to be
the one which changes the quantifier from ∀ to ∃ in an
assumed design scenario.
Since the existentially quantified variables in the

constraint have the meaning that there exists at least
one value within the interval range that satisfies the
constraints, multiple occurrences of the same exis-
tential variable should be avoided, which is usually
done by applying the dual operation to all occurrences
except one. Therefore, it is possible to have different
results when different occurrences are chosen. Here, c
appears four times in constraint Fs, and three times in
constraint Fo. There are a total of four cases to treat the
multiple occurrences of c.The upper and lower bounds
of sensitivities of inputs with respect to Fs and Fo are
shown in Figure 5.
In Figures 4–5, S(r0)= 0 with respect to the sta-

bility against sliding implies that r0 has no impact on
Fs, because it is not involved in constraint Fs. S(r0)
with respect to the stability against overturning is the
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Table 5. Sensitivity ranking in Example 2.

Sensitivity ranking

Inputs Quantifiers Outputs highest← →lowest

All universal Fs φ r c r0
Fo r φ c r0

c existential Fs r∗ φ∗ c r0
Fo r∗ φ∗ c∗ r0

smallest one among other inputs. r0 only appears once
in Fo whereas other inputs have multiple occurrences.
S(c) changed when c is associated with the existential
quantifier. The indeterminacy of the whole problem
is changed.
InTable 5, when different occurrence of c is chosen

to be existential, the four cases of rankings between r
and φ with respect to Fs are not always the same and
cannot be decided. They are marked by * in Table 5.
The sensitivity zones of r, φ and c overlap with each
other so that their rankings cannot be decided either,
which are marked by * in the row 4 of Table 5. The
sensitivity ranking is not unique for multiple occur-
rences of the input. Lower and upper bounds can
improve the robustness of the analysis.

5 CONCLUSIONS

In this paper, a new global sensitivity analysis method
was developed for interval-valued quantified con-
strainswithout assumingprobabilistic distributions for
the input. The effects of both quantifiers and interval
values on the constraints were analyzed qualitatively
and quantitatively. By the proposed metrics of infor-
mation gain and unsatisfiability, we can assess the
effect of input variations on generalized interval con-
straints.This approach provides an efficient alternative
to the classical variance-based statistical sensitivity
analysis.
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